blob: e9e6c81ce034a8ffaba105132d5b9ecc59d51880 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright(c) 2021 Intel Corporation. All rights reserved. */
#include <linux/units.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/pci-doe.h>
#include <linux/aer.h>
#include <cxlpci.h>
#include <cxlmem.h>
#include <cxl.h>
#include "core.h"
#include "trace.h"
/**
* DOC: cxl core pci
*
* Compute Express Link protocols are layered on top of PCIe. CXL core provides
* a set of helpers for CXL interactions which occur via PCIe.
*/
static unsigned short media_ready_timeout = 60;
module_param(media_ready_timeout, ushort, 0644);
MODULE_PARM_DESC(media_ready_timeout, "seconds to wait for media ready");
struct cxl_walk_context {
struct pci_bus *bus;
struct cxl_port *port;
int type;
int error;
int count;
};
static int match_add_dports(struct pci_dev *pdev, void *data)
{
struct cxl_walk_context *ctx = data;
struct cxl_port *port = ctx->port;
int type = pci_pcie_type(pdev);
struct cxl_register_map map;
struct cxl_dport *dport;
u32 lnkcap, port_num;
int rc;
if (pdev->bus != ctx->bus)
return 0;
if (!pci_is_pcie(pdev))
return 0;
if (type != ctx->type)
return 0;
if (pci_read_config_dword(pdev, pci_pcie_cap(pdev) + PCI_EXP_LNKCAP,
&lnkcap))
return 0;
rc = cxl_find_regblock(pdev, CXL_REGLOC_RBI_COMPONENT, &map);
if (rc)
dev_dbg(&port->dev, "failed to find component registers\n");
port_num = FIELD_GET(PCI_EXP_LNKCAP_PN, lnkcap);
dport = devm_cxl_add_dport(port, &pdev->dev, port_num, map.resource);
if (IS_ERR(dport)) {
ctx->error = PTR_ERR(dport);
return PTR_ERR(dport);
}
ctx->count++;
return 0;
}
/**
* devm_cxl_port_enumerate_dports - enumerate downstream ports of the upstream port
* @port: cxl_port whose ->uport_dev is the upstream of dports to be enumerated
*
* Returns a positive number of dports enumerated or a negative error
* code.
*/
int devm_cxl_port_enumerate_dports(struct cxl_port *port)
{
struct pci_bus *bus = cxl_port_to_pci_bus(port);
struct cxl_walk_context ctx;
int type;
if (!bus)
return -ENXIO;
if (pci_is_root_bus(bus))
type = PCI_EXP_TYPE_ROOT_PORT;
else
type = PCI_EXP_TYPE_DOWNSTREAM;
ctx = (struct cxl_walk_context) {
.port = port,
.bus = bus,
.type = type,
};
pci_walk_bus(bus, match_add_dports, &ctx);
if (ctx.count == 0)
return -ENODEV;
if (ctx.error)
return ctx.error;
return ctx.count;
}
EXPORT_SYMBOL_NS_GPL(devm_cxl_port_enumerate_dports, CXL);
static int cxl_dvsec_mem_range_valid(struct cxl_dev_state *cxlds, int id)
{
struct pci_dev *pdev = to_pci_dev(cxlds->dev);
int d = cxlds->cxl_dvsec;
bool valid = false;
int rc, i;
u32 temp;
if (id > CXL_DVSEC_RANGE_MAX)
return -EINVAL;
/* Check MEM INFO VALID bit first, give up after 1s */
i = 1;
do {
rc = pci_read_config_dword(pdev,
d + CXL_DVSEC_RANGE_SIZE_LOW(id),
&temp);
if (rc)
return rc;
valid = FIELD_GET(CXL_DVSEC_MEM_INFO_VALID, temp);
if (valid)
break;
msleep(1000);
} while (i--);
if (!valid) {
dev_err(&pdev->dev,
"Timeout awaiting memory range %d valid after 1s.\n",
id);
return -ETIMEDOUT;
}
return 0;
}
static int cxl_dvsec_mem_range_active(struct cxl_dev_state *cxlds, int id)
{
struct pci_dev *pdev = to_pci_dev(cxlds->dev);
int d = cxlds->cxl_dvsec;
bool active = false;
int rc, i;
u32 temp;
if (id > CXL_DVSEC_RANGE_MAX)
return -EINVAL;
/* Check MEM ACTIVE bit, up to 60s timeout by default */
for (i = media_ready_timeout; i; i--) {
rc = pci_read_config_dword(
pdev, d + CXL_DVSEC_RANGE_SIZE_LOW(id), &temp);
if (rc)
return rc;
active = FIELD_GET(CXL_DVSEC_MEM_ACTIVE, temp);
if (active)
break;
msleep(1000);
}
if (!active) {
dev_err(&pdev->dev,
"timeout awaiting memory active after %d seconds\n",
media_ready_timeout);
return -ETIMEDOUT;
}
return 0;
}
/*
* Wait up to @media_ready_timeout for the device to report memory
* active.
*/
int cxl_await_media_ready(struct cxl_dev_state *cxlds)
{
struct pci_dev *pdev = to_pci_dev(cxlds->dev);
int d = cxlds->cxl_dvsec;
int rc, i, hdm_count;
u64 md_status;
u16 cap;
rc = pci_read_config_word(pdev,
d + CXL_DVSEC_CAP_OFFSET, &cap);
if (rc)
return rc;
hdm_count = FIELD_GET(CXL_DVSEC_HDM_COUNT_MASK, cap);
for (i = 0; i < hdm_count; i++) {
rc = cxl_dvsec_mem_range_valid(cxlds, i);
if (rc)
return rc;
}
for (i = 0; i < hdm_count; i++) {
rc = cxl_dvsec_mem_range_active(cxlds, i);
if (rc)
return rc;
}
md_status = readq(cxlds->regs.memdev + CXLMDEV_STATUS_OFFSET);
if (!CXLMDEV_READY(md_status))
return -EIO;
return 0;
}
EXPORT_SYMBOL_NS_GPL(cxl_await_media_ready, CXL);
static int wait_for_valid(struct pci_dev *pdev, int d)
{
u32 val;
int rc;
/*
* Memory_Info_Valid: When set, indicates that the CXL Range 1 Size high
* and Size Low registers are valid. Must be set within 1 second of
* deassertion of reset to CXL device. Likely it is already set by the
* time this runs, but otherwise give a 1.5 second timeout in case of
* clock skew.
*/
rc = pci_read_config_dword(pdev, d + CXL_DVSEC_RANGE_SIZE_LOW(0), &val);
if (rc)
return rc;
if (val & CXL_DVSEC_MEM_INFO_VALID)
return 0;
msleep(1500);
rc = pci_read_config_dword(pdev, d + CXL_DVSEC_RANGE_SIZE_LOW(0), &val);
if (rc)
return rc;
if (val & CXL_DVSEC_MEM_INFO_VALID)
return 0;
return -ETIMEDOUT;
}
static int cxl_set_mem_enable(struct cxl_dev_state *cxlds, u16 val)
{
struct pci_dev *pdev = to_pci_dev(cxlds->dev);
int d = cxlds->cxl_dvsec;
u16 ctrl;
int rc;
rc = pci_read_config_word(pdev, d + CXL_DVSEC_CTRL_OFFSET, &ctrl);
if (rc < 0)
return rc;
if ((ctrl & CXL_DVSEC_MEM_ENABLE) == val)
return 1;
ctrl &= ~CXL_DVSEC_MEM_ENABLE;
ctrl |= val;
rc = pci_write_config_word(pdev, d + CXL_DVSEC_CTRL_OFFSET, ctrl);
if (rc < 0)
return rc;
return 0;
}
static void clear_mem_enable(void *cxlds)
{
cxl_set_mem_enable(cxlds, 0);
}
static int devm_cxl_enable_mem(struct device *host, struct cxl_dev_state *cxlds)
{
int rc;
rc = cxl_set_mem_enable(cxlds, CXL_DVSEC_MEM_ENABLE);
if (rc < 0)
return rc;
if (rc > 0)
return 0;
return devm_add_action_or_reset(host, clear_mem_enable, cxlds);
}
/* require dvsec ranges to be covered by a locked platform window */
static int dvsec_range_allowed(struct device *dev, void *arg)
{
struct range *dev_range = arg;
struct cxl_decoder *cxld;
if (!is_root_decoder(dev))
return 0;
cxld = to_cxl_decoder(dev);
if (!(cxld->flags & CXL_DECODER_F_RAM))
return 0;
return range_contains(&cxld->hpa_range, dev_range);
}
static void disable_hdm(void *_cxlhdm)
{
u32 global_ctrl;
struct cxl_hdm *cxlhdm = _cxlhdm;
void __iomem *hdm = cxlhdm->regs.hdm_decoder;
global_ctrl = readl(hdm + CXL_HDM_DECODER_CTRL_OFFSET);
writel(global_ctrl & ~CXL_HDM_DECODER_ENABLE,
hdm + CXL_HDM_DECODER_CTRL_OFFSET);
}
static int devm_cxl_enable_hdm(struct device *host, struct cxl_hdm *cxlhdm)
{
void __iomem *hdm = cxlhdm->regs.hdm_decoder;
u32 global_ctrl;
global_ctrl = readl(hdm + CXL_HDM_DECODER_CTRL_OFFSET);
writel(global_ctrl | CXL_HDM_DECODER_ENABLE,
hdm + CXL_HDM_DECODER_CTRL_OFFSET);
return devm_add_action_or_reset(host, disable_hdm, cxlhdm);
}
int cxl_dvsec_rr_decode(struct device *dev, int d,
struct cxl_endpoint_dvsec_info *info)
{
struct pci_dev *pdev = to_pci_dev(dev);
int hdm_count, rc, i, ranges = 0;
u16 cap, ctrl;
if (!d) {
dev_dbg(dev, "No DVSEC Capability\n");
return -ENXIO;
}
rc = pci_read_config_word(pdev, d + CXL_DVSEC_CAP_OFFSET, &cap);
if (rc)
return rc;
rc = pci_read_config_word(pdev, d + CXL_DVSEC_CTRL_OFFSET, &ctrl);
if (rc)
return rc;
if (!(cap & CXL_DVSEC_MEM_CAPABLE)) {
dev_dbg(dev, "Not MEM Capable\n");
return -ENXIO;
}
/*
* It is not allowed by spec for MEM.capable to be set and have 0 legacy
* HDM decoders (values > 2 are also undefined as of CXL 2.0). As this
* driver is for a spec defined class code which must be CXL.mem
* capable, there is no point in continuing to enable CXL.mem.
*/
hdm_count = FIELD_GET(CXL_DVSEC_HDM_COUNT_MASK, cap);
if (!hdm_count || hdm_count > 2)
return -EINVAL;
rc = wait_for_valid(pdev, d);
if (rc) {
dev_dbg(dev, "Failure awaiting MEM_INFO_VALID (%d)\n", rc);
return rc;
}
/*
* The current DVSEC values are moot if the memory capability is
* disabled, and they will remain moot after the HDM Decoder
* capability is enabled.
*/
info->mem_enabled = FIELD_GET(CXL_DVSEC_MEM_ENABLE, ctrl);
if (!info->mem_enabled)
return 0;
for (i = 0; i < hdm_count; i++) {
u64 base, size;
u32 temp;
rc = pci_read_config_dword(
pdev, d + CXL_DVSEC_RANGE_SIZE_HIGH(i), &temp);
if (rc)
return rc;
size = (u64)temp << 32;
rc = pci_read_config_dword(
pdev, d + CXL_DVSEC_RANGE_SIZE_LOW(i), &temp);
if (rc)
return rc;
size |= temp & CXL_DVSEC_MEM_SIZE_LOW_MASK;
if (!size) {
info->dvsec_range[i] = (struct range) {
.start = 0,
.end = CXL_RESOURCE_NONE,
};
continue;
}
rc = pci_read_config_dword(
pdev, d + CXL_DVSEC_RANGE_BASE_HIGH(i), &temp);
if (rc)
return rc;
base = (u64)temp << 32;
rc = pci_read_config_dword(
pdev, d + CXL_DVSEC_RANGE_BASE_LOW(i), &temp);
if (rc)
return rc;
base |= temp & CXL_DVSEC_MEM_BASE_LOW_MASK;
info->dvsec_range[i] = (struct range) {
.start = base,
.end = base + size - 1
};
ranges++;
}
info->ranges = ranges;
return 0;
}
EXPORT_SYMBOL_NS_GPL(cxl_dvsec_rr_decode, CXL);
/**
* cxl_hdm_decode_init() - Setup HDM decoding for the endpoint
* @cxlds: Device state
* @cxlhdm: Mapped HDM decoder Capability
* @info: Cached DVSEC range registers info
*
* Try to enable the endpoint's HDM Decoder Capability
*/
int cxl_hdm_decode_init(struct cxl_dev_state *cxlds, struct cxl_hdm *cxlhdm,
struct cxl_endpoint_dvsec_info *info)
{
void __iomem *hdm = cxlhdm->regs.hdm_decoder;
struct cxl_port *port = cxlhdm->port;
struct device *dev = cxlds->dev;
struct cxl_port *root;
int i, rc, allowed;
u32 global_ctrl = 0;
if (hdm)
global_ctrl = readl(hdm + CXL_HDM_DECODER_CTRL_OFFSET);
/*
* If the HDM Decoder Capability is already enabled then assume
* that some other agent like platform firmware set it up.
*/
if (global_ctrl & CXL_HDM_DECODER_ENABLE || (!hdm && info->mem_enabled))
return devm_cxl_enable_mem(&port->dev, cxlds);
else if (!hdm)
return -ENODEV;
root = to_cxl_port(port->dev.parent);
while (!is_cxl_root(root) && is_cxl_port(root->dev.parent))
root = to_cxl_port(root->dev.parent);
if (!is_cxl_root(root)) {
dev_err(dev, "Failed to acquire root port for HDM enable\n");
return -ENODEV;
}
for (i = 0, allowed = 0; info->mem_enabled && i < info->ranges; i++) {
struct device *cxld_dev;
cxld_dev = device_find_child(&root->dev, &info->dvsec_range[i],
dvsec_range_allowed);
if (!cxld_dev) {
dev_dbg(dev, "DVSEC Range%d denied by platform\n", i);
continue;
}
dev_dbg(dev, "DVSEC Range%d allowed by platform\n", i);
put_device(cxld_dev);
allowed++;
}
if (!allowed && info->mem_enabled) {
dev_err(dev, "Range register decodes outside platform defined CXL ranges.\n");
return -ENXIO;
}
/*
* Per CXL 2.0 Section 8.1.3.8.3 and 8.1.3.8.4 DVSEC CXL Range 1 Base
* [High,Low] when HDM operation is enabled the range register values
* are ignored by the device, but the spec also recommends matching the
* DVSEC Range 1,2 to HDM Decoder Range 0,1. So, non-zero info->ranges
* are expected even though Linux does not require or maintain that
* match. If at least one DVSEC range is enabled and allowed, skip HDM
* Decoder Capability Enable.
*/
if (info->mem_enabled)
return 0;
rc = devm_cxl_enable_hdm(&port->dev, cxlhdm);
if (rc)
return rc;
return devm_cxl_enable_mem(&port->dev, cxlds);
}
EXPORT_SYMBOL_NS_GPL(cxl_hdm_decode_init, CXL);
#define CXL_DOE_TABLE_ACCESS_REQ_CODE 0x000000ff
#define CXL_DOE_TABLE_ACCESS_REQ_CODE_READ 0
#define CXL_DOE_TABLE_ACCESS_TABLE_TYPE 0x0000ff00
#define CXL_DOE_TABLE_ACCESS_TABLE_TYPE_CDATA 0
#define CXL_DOE_TABLE_ACCESS_ENTRY_HANDLE 0xffff0000
#define CXL_DOE_TABLE_ACCESS_LAST_ENTRY 0xffff
#define CXL_DOE_PROTOCOL_TABLE_ACCESS 2
#define CDAT_DOE_REQ(entry_handle) cpu_to_le32 \
(FIELD_PREP(CXL_DOE_TABLE_ACCESS_REQ_CODE, \
CXL_DOE_TABLE_ACCESS_REQ_CODE_READ) | \
FIELD_PREP(CXL_DOE_TABLE_ACCESS_TABLE_TYPE, \
CXL_DOE_TABLE_ACCESS_TABLE_TYPE_CDATA) | \
FIELD_PREP(CXL_DOE_TABLE_ACCESS_ENTRY_HANDLE, (entry_handle)))
static int cxl_cdat_get_length(struct device *dev,
struct pci_doe_mb *cdat_doe,
size_t *length)
{
__le32 request = CDAT_DOE_REQ(0);
__le32 response[2];
int rc;
rc = pci_doe(cdat_doe, PCI_DVSEC_VENDOR_ID_CXL,
CXL_DOE_PROTOCOL_TABLE_ACCESS,
&request, sizeof(request),
&response, sizeof(response));
if (rc < 0) {
dev_err(dev, "DOE failed: %d", rc);
return rc;
}
if (rc < sizeof(response))
return -EIO;
*length = le32_to_cpu(response[1]);
dev_dbg(dev, "CDAT length %zu\n", *length);
return 0;
}
static int cxl_cdat_read_table(struct device *dev,
struct pci_doe_mb *cdat_doe,
void *cdat_table, size_t *cdat_length)
{
size_t length = *cdat_length + sizeof(__le32);
__le32 *data = cdat_table;
int entry_handle = 0;
__le32 saved_dw = 0;
do {
__le32 request = CDAT_DOE_REQ(entry_handle);
struct cdat_entry_header *entry;
size_t entry_dw;
int rc;
rc = pci_doe(cdat_doe, PCI_DVSEC_VENDOR_ID_CXL,
CXL_DOE_PROTOCOL_TABLE_ACCESS,
&request, sizeof(request),
data, length);
if (rc < 0) {
dev_err(dev, "DOE failed: %d", rc);
return rc;
}
/* 1 DW Table Access Response Header + CDAT entry */
entry = (struct cdat_entry_header *)(data + 1);
if ((entry_handle == 0 &&
rc != sizeof(__le32) + sizeof(struct cdat_header)) ||
(entry_handle > 0 &&
(rc < sizeof(__le32) + sizeof(*entry) ||
rc != sizeof(__le32) + le16_to_cpu(entry->length))))
return -EIO;
/* Get the CXL table access header entry handle */
entry_handle = FIELD_GET(CXL_DOE_TABLE_ACCESS_ENTRY_HANDLE,
le32_to_cpu(data[0]));
entry_dw = rc / sizeof(__le32);
/* Skip Header */
entry_dw -= 1;
/*
* Table Access Response Header overwrote the last DW of
* previous entry, so restore that DW
*/
*data = saved_dw;
length -= entry_dw * sizeof(__le32);
data += entry_dw;
saved_dw = *data;
} while (entry_handle != CXL_DOE_TABLE_ACCESS_LAST_ENTRY);
/* Length in CDAT header may exceed concatenation of CDAT entries */
*cdat_length -= length - sizeof(__le32);
return 0;
}
static unsigned char cdat_checksum(void *buf, size_t size)
{
unsigned char sum, *data = buf;
size_t i;
for (sum = 0, i = 0; i < size; i++)
sum += data[i];
return sum;
}
/**
* read_cdat_data - Read the CDAT data on this port
* @port: Port to read data from
*
* This call will sleep waiting for responses from the DOE mailbox.
*/
void read_cdat_data(struct cxl_port *port)
{
struct device *uport = port->uport_dev;
struct device *dev = &port->dev;
struct pci_doe_mb *cdat_doe;
struct pci_dev *pdev = NULL;
struct cxl_memdev *cxlmd;
size_t cdat_length;
void *cdat_table, *cdat_buf;
int rc;
if (is_cxl_memdev(uport)) {
struct device *host;
cxlmd = to_cxl_memdev(uport);
host = cxlmd->dev.parent;
if (dev_is_pci(host))
pdev = to_pci_dev(host);
} else if (dev_is_pci(uport)) {
pdev = to_pci_dev(uport);
}
if (!pdev)
return;
cdat_doe = pci_find_doe_mailbox(pdev, PCI_DVSEC_VENDOR_ID_CXL,
CXL_DOE_PROTOCOL_TABLE_ACCESS);
if (!cdat_doe) {
dev_dbg(dev, "No CDAT mailbox\n");
return;
}
port->cdat_available = true;
if (cxl_cdat_get_length(dev, cdat_doe, &cdat_length)) {
dev_dbg(dev, "No CDAT length\n");
return;
}
cdat_buf = devm_kzalloc(dev, cdat_length + sizeof(__le32), GFP_KERNEL);
if (!cdat_buf)
return;
rc = cxl_cdat_read_table(dev, cdat_doe, cdat_buf, &cdat_length);
if (rc)
goto err;
cdat_table = cdat_buf + sizeof(__le32);
if (cdat_checksum(cdat_table, cdat_length))
goto err;
port->cdat.table = cdat_table;
port->cdat.length = cdat_length;
return;
err:
/* Don't leave table data allocated on error */
devm_kfree(dev, cdat_buf);
dev_err(dev, "Failed to read/validate CDAT.\n");
}
EXPORT_SYMBOL_NS_GPL(read_cdat_data, CXL);
static void __cxl_handle_cor_ras(struct cxl_dev_state *cxlds,
void __iomem *ras_base)
{
void __iomem *addr;
u32 status;
if (!ras_base)
return;
addr = ras_base + CXL_RAS_CORRECTABLE_STATUS_OFFSET;
status = readl(addr);
if (status & CXL_RAS_CORRECTABLE_STATUS_MASK) {
writel(status & CXL_RAS_CORRECTABLE_STATUS_MASK, addr);
trace_cxl_aer_correctable_error(cxlds->cxlmd, status);
}
}
static void cxl_handle_endpoint_cor_ras(struct cxl_dev_state *cxlds)
{
return __cxl_handle_cor_ras(cxlds, cxlds->regs.ras);
}
/* CXL spec rev3.0 8.2.4.16.1 */
static void header_log_copy(void __iomem *ras_base, u32 *log)
{
void __iomem *addr;
u32 *log_addr;
int i, log_u32_size = CXL_HEADERLOG_SIZE / sizeof(u32);
addr = ras_base + CXL_RAS_HEADER_LOG_OFFSET;
log_addr = log;
for (i = 0; i < log_u32_size; i++) {
*log_addr = readl(addr);
log_addr++;
addr += sizeof(u32);
}
}
/*
* Log the state of the RAS status registers and prepare them to log the
* next error status. Return 1 if reset needed.
*/
static bool __cxl_handle_ras(struct cxl_dev_state *cxlds,
void __iomem *ras_base)
{
u32 hl[CXL_HEADERLOG_SIZE_U32];
void __iomem *addr;
u32 status;
u32 fe;
if (!ras_base)
return false;
addr = ras_base + CXL_RAS_UNCORRECTABLE_STATUS_OFFSET;
status = readl(addr);
if (!(status & CXL_RAS_UNCORRECTABLE_STATUS_MASK))
return false;
/* If multiple errors, log header points to first error from ctrl reg */
if (hweight32(status) > 1) {
void __iomem *rcc_addr =
ras_base + CXL_RAS_CAP_CONTROL_OFFSET;
fe = BIT(FIELD_GET(CXL_RAS_CAP_CONTROL_FE_MASK,
readl(rcc_addr)));
} else {
fe = status;
}
header_log_copy(ras_base, hl);
trace_cxl_aer_uncorrectable_error(cxlds->cxlmd, status, fe, hl);
writel(status & CXL_RAS_UNCORRECTABLE_STATUS_MASK, addr);
return true;
}
static bool cxl_handle_endpoint_ras(struct cxl_dev_state *cxlds)
{
return __cxl_handle_ras(cxlds, cxlds->regs.ras);
}
#ifdef CONFIG_PCIEAER_CXL
static void cxl_dport_map_rch_aer(struct cxl_dport *dport)
{
struct cxl_rcrb_info *ri = &dport->rcrb;
void __iomem *dport_aer = NULL;
resource_size_t aer_phys;
struct device *host;
if (dport->rch && ri->aer_cap) {
host = dport->reg_map.host;
aer_phys = ri->aer_cap + ri->base;
dport_aer = devm_cxl_iomap_block(host, aer_phys,
sizeof(struct aer_capability_regs));
}
dport->regs.dport_aer = dport_aer;
}
static void cxl_dport_map_regs(struct cxl_dport *dport)
{
struct cxl_register_map *map = &dport->reg_map;
struct device *dev = dport->dport_dev;
if (!map->component_map.ras.valid)
dev_dbg(dev, "RAS registers not found\n");
else if (cxl_map_component_regs(map, &dport->regs.component,
BIT(CXL_CM_CAP_CAP_ID_RAS)))
dev_dbg(dev, "Failed to map RAS capability.\n");
if (dport->rch)
cxl_dport_map_rch_aer(dport);
}
static void cxl_disable_rch_root_ints(struct cxl_dport *dport)
{
void __iomem *aer_base = dport->regs.dport_aer;
struct pci_host_bridge *bridge;
u32 aer_cmd_mask, aer_cmd;
if (!aer_base)
return;
bridge = to_pci_host_bridge(dport->dport_dev);
/*
* Disable RCH root port command interrupts.
* CXL 3.0 12.2.1.1 - RCH Downstream Port-detected Errors
*
* This sequence may not be necessary. CXL spec states disabling
* the root cmd register's interrupts is required. But, PCI spec
* shows these are disabled by default on reset.
*/
if (bridge->native_aer) {
aer_cmd_mask = (PCI_ERR_ROOT_CMD_COR_EN |
PCI_ERR_ROOT_CMD_NONFATAL_EN |
PCI_ERR_ROOT_CMD_FATAL_EN);
aer_cmd = readl(aer_base + PCI_ERR_ROOT_COMMAND);
aer_cmd &= ~aer_cmd_mask;
writel(aer_cmd, aer_base + PCI_ERR_ROOT_COMMAND);
}
}
void cxl_setup_parent_dport(struct device *host, struct cxl_dport *dport)
{
struct device *dport_dev = dport->dport_dev;
struct pci_host_bridge *host_bridge;
host_bridge = to_pci_host_bridge(dport_dev);
if (host_bridge->native_aer)
dport->rcrb.aer_cap = cxl_rcrb_to_aer(dport_dev, dport->rcrb.base);
dport->reg_map.host = host;
cxl_dport_map_regs(dport);
if (dport->rch)
cxl_disable_rch_root_ints(dport);
}
EXPORT_SYMBOL_NS_GPL(cxl_setup_parent_dport, CXL);
static void cxl_handle_rdport_cor_ras(struct cxl_dev_state *cxlds,
struct cxl_dport *dport)
{
return __cxl_handle_cor_ras(cxlds, dport->regs.ras);
}
static bool cxl_handle_rdport_ras(struct cxl_dev_state *cxlds,
struct cxl_dport *dport)
{
return __cxl_handle_ras(cxlds, dport->regs.ras);
}
/*
* Copy the AER capability registers using 32 bit read accesses.
* This is necessary because RCRB AER capability is MMIO mapped. Clear the
* status after copying.
*
* @aer_base: base address of AER capability block in RCRB
* @aer_regs: destination for copying AER capability
*/
static bool cxl_rch_get_aer_info(void __iomem *aer_base,
struct aer_capability_regs *aer_regs)
{
int read_cnt = sizeof(struct aer_capability_regs) / sizeof(u32);
u32 *aer_regs_buf = (u32 *)aer_regs;
int n;
if (!aer_base)
return false;
/* Use readl() to guarantee 32-bit accesses */
for (n = 0; n < read_cnt; n++)
aer_regs_buf[n] = readl(aer_base + n * sizeof(u32));
writel(aer_regs->uncor_status, aer_base + PCI_ERR_UNCOR_STATUS);
writel(aer_regs->cor_status, aer_base + PCI_ERR_COR_STATUS);
return true;
}
/* Get AER severity. Return false if there is no error. */
static bool cxl_rch_get_aer_severity(struct aer_capability_regs *aer_regs,
int *severity)
{
if (aer_regs->uncor_status & ~aer_regs->uncor_mask) {
if (aer_regs->uncor_status & PCI_ERR_ROOT_FATAL_RCV)
*severity = AER_FATAL;
else
*severity = AER_NONFATAL;
return true;
}
if (aer_regs->cor_status & ~aer_regs->cor_mask) {
*severity = AER_CORRECTABLE;
return true;
}
return false;
}
static void cxl_handle_rdport_errors(struct cxl_dev_state *cxlds)
{
struct pci_dev *pdev = to_pci_dev(cxlds->dev);
struct aer_capability_regs aer_regs;
struct cxl_dport *dport;
struct cxl_port *port;
int severity;
port = cxl_pci_find_port(pdev, &dport);
if (!port)
return;
put_device(&port->dev);
if (!cxl_rch_get_aer_info(dport->regs.dport_aer, &aer_regs))
return;
if (!cxl_rch_get_aer_severity(&aer_regs, &severity))
return;
pci_print_aer(pdev, severity, &aer_regs);
if (severity == AER_CORRECTABLE)
cxl_handle_rdport_cor_ras(cxlds, dport);
else
cxl_handle_rdport_ras(cxlds, dport);
}
#else
static void cxl_handle_rdport_errors(struct cxl_dev_state *cxlds) { }
#endif
void cxl_cor_error_detected(struct pci_dev *pdev)
{
struct cxl_dev_state *cxlds = pci_get_drvdata(pdev);
struct device *dev = &cxlds->cxlmd->dev;
scoped_guard(device, dev) {
if (!dev->driver) {
dev_warn(&pdev->dev,
"%s: memdev disabled, abort error handling\n",
dev_name(dev));
return;
}
if (cxlds->rcd)
cxl_handle_rdport_errors(cxlds);
cxl_handle_endpoint_cor_ras(cxlds);
}
}
EXPORT_SYMBOL_NS_GPL(cxl_cor_error_detected, CXL);
pci_ers_result_t cxl_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct cxl_dev_state *cxlds = pci_get_drvdata(pdev);
struct cxl_memdev *cxlmd = cxlds->cxlmd;
struct device *dev = &cxlmd->dev;
bool ue;
scoped_guard(device, dev) {
if (!dev->driver) {
dev_warn(&pdev->dev,
"%s: memdev disabled, abort error handling\n",
dev_name(dev));
return PCI_ERS_RESULT_DISCONNECT;
}
if (cxlds->rcd)
cxl_handle_rdport_errors(cxlds);
/*
* A frozen channel indicates an impending reset which is fatal to
* CXL.mem operation, and will likely crash the system. On the off
* chance the situation is recoverable dump the status of the RAS
* capability registers and bounce the active state of the memdev.
*/
ue = cxl_handle_endpoint_ras(cxlds);
}
switch (state) {
case pci_channel_io_normal:
if (ue) {
device_release_driver(dev);
return PCI_ERS_RESULT_NEED_RESET;
}
return PCI_ERS_RESULT_CAN_RECOVER;
case pci_channel_io_frozen:
dev_warn(&pdev->dev,
"%s: frozen state error detected, disable CXL.mem\n",
dev_name(dev));
device_release_driver(dev);
return PCI_ERS_RESULT_NEED_RESET;
case pci_channel_io_perm_failure:
dev_warn(&pdev->dev,
"failure state error detected, request disconnect\n");
return PCI_ERS_RESULT_DISCONNECT;
}
return PCI_ERS_RESULT_NEED_RESET;
}
EXPORT_SYMBOL_NS_GPL(cxl_error_detected, CXL);
static int cxl_flit_size(struct pci_dev *pdev)
{
if (cxl_pci_flit_256(pdev))
return 256;
return 68;
}
/**
* cxl_pci_get_latency - calculate the link latency for the PCIe link
* @pdev: PCI device
*
* return: calculated latency or 0 for no latency
*
* CXL Memory Device SW Guide v1.0 2.11.4 Link latency calculation
* Link latency = LinkPropagationLatency + FlitLatency + RetimerLatency
* LinkProgationLatency is negligible, so 0 will be used
* RetimerLatency is assumed to be negligible and 0 will be used
* FlitLatency = FlitSize / LinkBandwidth
* FlitSize is defined by spec. CXL rev3.0 4.2.1.
* 68B flit is used up to 32GT/s. >32GT/s, 256B flit size is used.
* The FlitLatency is converted to picoseconds.
*/
long cxl_pci_get_latency(struct pci_dev *pdev)
{
long bw;
bw = pcie_link_speed_mbps(pdev);
if (bw < 0)
return 0;
bw /= BITS_PER_BYTE;
return cxl_flit_size(pdev) * MEGA / bw;
}