| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Accelerated GHASH implementation with ARMv8 vmull.p64 instructions. |
| * |
| * Copyright (C) 2015 - 2018 Linaro Ltd. |
| * Copyright (C) 2023 Google LLC. |
| */ |
| |
| #include <asm/hwcap.h> |
| #include <asm/neon.h> |
| #include <asm/simd.h> |
| #include <linux/unaligned.h> |
| #include <crypto/aes.h> |
| #include <crypto/gcm.h> |
| #include <crypto/b128ops.h> |
| #include <crypto/cryptd.h> |
| #include <crypto/internal/aead.h> |
| #include <crypto/internal/hash.h> |
| #include <crypto/internal/simd.h> |
| #include <crypto/internal/skcipher.h> |
| #include <crypto/gf128mul.h> |
| #include <crypto/scatterwalk.h> |
| #include <linux/cpufeature.h> |
| #include <linux/crypto.h> |
| #include <linux/jump_label.h> |
| #include <linux/module.h> |
| |
| MODULE_DESCRIPTION("GHASH hash function using ARMv8 Crypto Extensions"); |
| MODULE_AUTHOR("Ard Biesheuvel <ardb@kernel.org>"); |
| MODULE_LICENSE("GPL"); |
| MODULE_ALIAS_CRYPTO("ghash"); |
| MODULE_ALIAS_CRYPTO("gcm(aes)"); |
| MODULE_ALIAS_CRYPTO("rfc4106(gcm(aes))"); |
| |
| #define GHASH_BLOCK_SIZE 16 |
| #define GHASH_DIGEST_SIZE 16 |
| |
| #define RFC4106_NONCE_SIZE 4 |
| |
| struct ghash_key { |
| be128 k; |
| u64 h[][2]; |
| }; |
| |
| struct gcm_key { |
| u64 h[4][2]; |
| u32 rk[AES_MAX_KEYLENGTH_U32]; |
| int rounds; |
| u8 nonce[]; // for RFC4106 nonce |
| }; |
| |
| struct ghash_desc_ctx { |
| u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)]; |
| u8 buf[GHASH_BLOCK_SIZE]; |
| u32 count; |
| }; |
| |
| struct ghash_async_ctx { |
| struct cryptd_ahash *cryptd_tfm; |
| }; |
| |
| asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src, |
| u64 const h[][2], const char *head); |
| |
| asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src, |
| u64 const h[][2], const char *head); |
| |
| static __ro_after_init DEFINE_STATIC_KEY_FALSE(use_p64); |
| |
| static int ghash_init(struct shash_desc *desc) |
| { |
| struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); |
| |
| *ctx = (struct ghash_desc_ctx){}; |
| return 0; |
| } |
| |
| static void ghash_do_update(int blocks, u64 dg[], const char *src, |
| struct ghash_key *key, const char *head) |
| { |
| if (likely(crypto_simd_usable())) { |
| kernel_neon_begin(); |
| if (static_branch_likely(&use_p64)) |
| pmull_ghash_update_p64(blocks, dg, src, key->h, head); |
| else |
| pmull_ghash_update_p8(blocks, dg, src, key->h, head); |
| kernel_neon_end(); |
| } else { |
| be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) }; |
| |
| do { |
| const u8 *in = src; |
| |
| if (head) { |
| in = head; |
| blocks++; |
| head = NULL; |
| } else { |
| src += GHASH_BLOCK_SIZE; |
| } |
| |
| crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE); |
| gf128mul_lle(&dst, &key->k); |
| } while (--blocks); |
| |
| dg[0] = be64_to_cpu(dst.b); |
| dg[1] = be64_to_cpu(dst.a); |
| } |
| } |
| |
| static int ghash_update(struct shash_desc *desc, const u8 *src, |
| unsigned int len) |
| { |
| struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); |
| unsigned int partial = ctx->count % GHASH_BLOCK_SIZE; |
| |
| ctx->count += len; |
| |
| if ((partial + len) >= GHASH_BLOCK_SIZE) { |
| struct ghash_key *key = crypto_shash_ctx(desc->tfm); |
| int blocks; |
| |
| if (partial) { |
| int p = GHASH_BLOCK_SIZE - partial; |
| |
| memcpy(ctx->buf + partial, src, p); |
| src += p; |
| len -= p; |
| } |
| |
| blocks = len / GHASH_BLOCK_SIZE; |
| len %= GHASH_BLOCK_SIZE; |
| |
| ghash_do_update(blocks, ctx->digest, src, key, |
| partial ? ctx->buf : NULL); |
| src += blocks * GHASH_BLOCK_SIZE; |
| partial = 0; |
| } |
| if (len) |
| memcpy(ctx->buf + partial, src, len); |
| return 0; |
| } |
| |
| static int ghash_final(struct shash_desc *desc, u8 *dst) |
| { |
| struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); |
| unsigned int partial = ctx->count % GHASH_BLOCK_SIZE; |
| |
| if (partial) { |
| struct ghash_key *key = crypto_shash_ctx(desc->tfm); |
| |
| memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial); |
| ghash_do_update(1, ctx->digest, ctx->buf, key, NULL); |
| } |
| put_unaligned_be64(ctx->digest[1], dst); |
| put_unaligned_be64(ctx->digest[0], dst + 8); |
| |
| *ctx = (struct ghash_desc_ctx){}; |
| return 0; |
| } |
| |
| static void ghash_reflect(u64 h[], const be128 *k) |
| { |
| u64 carry = be64_to_cpu(k->a) >> 63; |
| |
| h[0] = (be64_to_cpu(k->b) << 1) | carry; |
| h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63); |
| |
| if (carry) |
| h[1] ^= 0xc200000000000000UL; |
| } |
| |
| static int ghash_setkey(struct crypto_shash *tfm, |
| const u8 *inkey, unsigned int keylen) |
| { |
| struct ghash_key *key = crypto_shash_ctx(tfm); |
| |
| if (keylen != GHASH_BLOCK_SIZE) |
| return -EINVAL; |
| |
| /* needed for the fallback */ |
| memcpy(&key->k, inkey, GHASH_BLOCK_SIZE); |
| ghash_reflect(key->h[0], &key->k); |
| |
| if (static_branch_likely(&use_p64)) { |
| be128 h = key->k; |
| |
| gf128mul_lle(&h, &key->k); |
| ghash_reflect(key->h[1], &h); |
| |
| gf128mul_lle(&h, &key->k); |
| ghash_reflect(key->h[2], &h); |
| |
| gf128mul_lle(&h, &key->k); |
| ghash_reflect(key->h[3], &h); |
| } |
| return 0; |
| } |
| |
| static struct shash_alg ghash_alg = { |
| .digestsize = GHASH_DIGEST_SIZE, |
| .init = ghash_init, |
| .update = ghash_update, |
| .final = ghash_final, |
| .setkey = ghash_setkey, |
| .descsize = sizeof(struct ghash_desc_ctx), |
| |
| .base.cra_name = "ghash", |
| .base.cra_driver_name = "ghash-ce-sync", |
| .base.cra_priority = 300 - 1, |
| .base.cra_blocksize = GHASH_BLOCK_SIZE, |
| .base.cra_ctxsize = sizeof(struct ghash_key) + sizeof(u64[2]), |
| .base.cra_module = THIS_MODULE, |
| }; |
| |
| static int ghash_async_init(struct ahash_request *req) |
| { |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm); |
| struct ahash_request *cryptd_req = ahash_request_ctx(req); |
| struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm; |
| struct shash_desc *desc = cryptd_shash_desc(cryptd_req); |
| struct crypto_shash *child = cryptd_ahash_child(cryptd_tfm); |
| |
| desc->tfm = child; |
| return crypto_shash_init(desc); |
| } |
| |
| static int ghash_async_update(struct ahash_request *req) |
| { |
| struct ahash_request *cryptd_req = ahash_request_ctx(req); |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm); |
| struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm; |
| |
| if (!crypto_simd_usable() || |
| (in_atomic() && cryptd_ahash_queued(cryptd_tfm))) { |
| memcpy(cryptd_req, req, sizeof(*req)); |
| ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base); |
| return crypto_ahash_update(cryptd_req); |
| } else { |
| struct shash_desc *desc = cryptd_shash_desc(cryptd_req); |
| return shash_ahash_update(req, desc); |
| } |
| } |
| |
| static int ghash_async_final(struct ahash_request *req) |
| { |
| struct ahash_request *cryptd_req = ahash_request_ctx(req); |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm); |
| struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm; |
| |
| if (!crypto_simd_usable() || |
| (in_atomic() && cryptd_ahash_queued(cryptd_tfm))) { |
| memcpy(cryptd_req, req, sizeof(*req)); |
| ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base); |
| return crypto_ahash_final(cryptd_req); |
| } else { |
| struct shash_desc *desc = cryptd_shash_desc(cryptd_req); |
| return crypto_shash_final(desc, req->result); |
| } |
| } |
| |
| static int ghash_async_digest(struct ahash_request *req) |
| { |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm); |
| struct ahash_request *cryptd_req = ahash_request_ctx(req); |
| struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm; |
| |
| if (!crypto_simd_usable() || |
| (in_atomic() && cryptd_ahash_queued(cryptd_tfm))) { |
| memcpy(cryptd_req, req, sizeof(*req)); |
| ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base); |
| return crypto_ahash_digest(cryptd_req); |
| } else { |
| struct shash_desc *desc = cryptd_shash_desc(cryptd_req); |
| struct crypto_shash *child = cryptd_ahash_child(cryptd_tfm); |
| |
| desc->tfm = child; |
| return shash_ahash_digest(req, desc); |
| } |
| } |
| |
| static int ghash_async_import(struct ahash_request *req, const void *in) |
| { |
| struct ahash_request *cryptd_req = ahash_request_ctx(req); |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm); |
| struct shash_desc *desc = cryptd_shash_desc(cryptd_req); |
| |
| desc->tfm = cryptd_ahash_child(ctx->cryptd_tfm); |
| |
| return crypto_shash_import(desc, in); |
| } |
| |
| static int ghash_async_export(struct ahash_request *req, void *out) |
| { |
| struct ahash_request *cryptd_req = ahash_request_ctx(req); |
| struct shash_desc *desc = cryptd_shash_desc(cryptd_req); |
| |
| return crypto_shash_export(desc, out); |
| } |
| |
| static int ghash_async_setkey(struct crypto_ahash *tfm, const u8 *key, |
| unsigned int keylen) |
| { |
| struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm); |
| struct crypto_ahash *child = &ctx->cryptd_tfm->base; |
| |
| crypto_ahash_clear_flags(child, CRYPTO_TFM_REQ_MASK); |
| crypto_ahash_set_flags(child, crypto_ahash_get_flags(tfm) |
| & CRYPTO_TFM_REQ_MASK); |
| return crypto_ahash_setkey(child, key, keylen); |
| } |
| |
| static int ghash_async_init_tfm(struct crypto_tfm *tfm) |
| { |
| struct cryptd_ahash *cryptd_tfm; |
| struct ghash_async_ctx *ctx = crypto_tfm_ctx(tfm); |
| |
| cryptd_tfm = cryptd_alloc_ahash("ghash-ce-sync", 0, 0); |
| if (IS_ERR(cryptd_tfm)) |
| return PTR_ERR(cryptd_tfm); |
| ctx->cryptd_tfm = cryptd_tfm; |
| crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), |
| sizeof(struct ahash_request) + |
| crypto_ahash_reqsize(&cryptd_tfm->base)); |
| |
| return 0; |
| } |
| |
| static void ghash_async_exit_tfm(struct crypto_tfm *tfm) |
| { |
| struct ghash_async_ctx *ctx = crypto_tfm_ctx(tfm); |
| |
| cryptd_free_ahash(ctx->cryptd_tfm); |
| } |
| |
| static struct ahash_alg ghash_async_alg = { |
| .init = ghash_async_init, |
| .update = ghash_async_update, |
| .final = ghash_async_final, |
| .setkey = ghash_async_setkey, |
| .digest = ghash_async_digest, |
| .import = ghash_async_import, |
| .export = ghash_async_export, |
| .halg.digestsize = GHASH_DIGEST_SIZE, |
| .halg.statesize = sizeof(struct ghash_desc_ctx), |
| .halg.base = { |
| .cra_name = "ghash", |
| .cra_driver_name = "ghash-ce", |
| .cra_priority = 300, |
| .cra_flags = CRYPTO_ALG_ASYNC, |
| .cra_blocksize = GHASH_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct ghash_async_ctx), |
| .cra_module = THIS_MODULE, |
| .cra_init = ghash_async_init_tfm, |
| .cra_exit = ghash_async_exit_tfm, |
| }, |
| }; |
| |
| |
| void pmull_gcm_encrypt(int blocks, u64 dg[], const char *src, |
| struct gcm_key const *k, char *dst, |
| const char *iv, int rounds, u32 counter); |
| |
| void pmull_gcm_enc_final(int blocks, u64 dg[], char *tag, |
| struct gcm_key const *k, char *head, |
| const char *iv, int rounds, u32 counter); |
| |
| void pmull_gcm_decrypt(int bytes, u64 dg[], const char *src, |
| struct gcm_key const *k, char *dst, |
| const char *iv, int rounds, u32 counter); |
| |
| int pmull_gcm_dec_final(int bytes, u64 dg[], char *tag, |
| struct gcm_key const *k, char *head, |
| const char *iv, int rounds, u32 counter, |
| const char *otag, int authsize); |
| |
| static int gcm_aes_setkey(struct crypto_aead *tfm, const u8 *inkey, |
| unsigned int keylen) |
| { |
| struct gcm_key *ctx = crypto_aead_ctx(tfm); |
| struct crypto_aes_ctx aes_ctx; |
| be128 h, k; |
| int ret; |
| |
| ret = aes_expandkey(&aes_ctx, inkey, keylen); |
| if (ret) |
| return -EINVAL; |
| |
| aes_encrypt(&aes_ctx, (u8 *)&k, (u8[AES_BLOCK_SIZE]){}); |
| |
| memcpy(ctx->rk, aes_ctx.key_enc, sizeof(ctx->rk)); |
| ctx->rounds = 6 + keylen / 4; |
| |
| memzero_explicit(&aes_ctx, sizeof(aes_ctx)); |
| |
| ghash_reflect(ctx->h[0], &k); |
| |
| h = k; |
| gf128mul_lle(&h, &k); |
| ghash_reflect(ctx->h[1], &h); |
| |
| gf128mul_lle(&h, &k); |
| ghash_reflect(ctx->h[2], &h); |
| |
| gf128mul_lle(&h, &k); |
| ghash_reflect(ctx->h[3], &h); |
| |
| return 0; |
| } |
| |
| static int gcm_aes_setauthsize(struct crypto_aead *tfm, unsigned int authsize) |
| { |
| return crypto_gcm_check_authsize(authsize); |
| } |
| |
| static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[], |
| int *buf_count, struct gcm_key *ctx) |
| { |
| if (*buf_count > 0) { |
| int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count); |
| |
| memcpy(&buf[*buf_count], src, buf_added); |
| |
| *buf_count += buf_added; |
| src += buf_added; |
| count -= buf_added; |
| } |
| |
| if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) { |
| int blocks = count / GHASH_BLOCK_SIZE; |
| |
| pmull_ghash_update_p64(blocks, dg, src, ctx->h, |
| *buf_count ? buf : NULL); |
| |
| src += blocks * GHASH_BLOCK_SIZE; |
| count %= GHASH_BLOCK_SIZE; |
| *buf_count = 0; |
| } |
| |
| if (count > 0) { |
| memcpy(buf, src, count); |
| *buf_count = count; |
| } |
| } |
| |
| static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[], u32 len) |
| { |
| struct crypto_aead *aead = crypto_aead_reqtfm(req); |
| struct gcm_key *ctx = crypto_aead_ctx(aead); |
| u8 buf[GHASH_BLOCK_SIZE]; |
| struct scatter_walk walk; |
| int buf_count = 0; |
| |
| scatterwalk_start(&walk, req->src); |
| |
| do { |
| u32 n = scatterwalk_clamp(&walk, len); |
| u8 *p; |
| |
| if (!n) { |
| scatterwalk_start(&walk, sg_next(walk.sg)); |
| n = scatterwalk_clamp(&walk, len); |
| } |
| |
| p = scatterwalk_map(&walk); |
| gcm_update_mac(dg, p, n, buf, &buf_count, ctx); |
| scatterwalk_unmap(p); |
| |
| if (unlikely(len / SZ_4K > (len - n) / SZ_4K)) { |
| kernel_neon_end(); |
| kernel_neon_begin(); |
| } |
| |
| len -= n; |
| scatterwalk_advance(&walk, n); |
| scatterwalk_done(&walk, 0, len); |
| } while (len); |
| |
| if (buf_count) { |
| memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count); |
| pmull_ghash_update_p64(1, dg, buf, ctx->h, NULL); |
| } |
| } |
| |
| static int gcm_encrypt(struct aead_request *req, const u8 *iv, u32 assoclen) |
| { |
| struct crypto_aead *aead = crypto_aead_reqtfm(req); |
| struct gcm_key *ctx = crypto_aead_ctx(aead); |
| struct skcipher_walk walk; |
| u8 buf[AES_BLOCK_SIZE]; |
| u32 counter = 2; |
| u64 dg[2] = {}; |
| be128 lengths; |
| const u8 *src; |
| u8 *tag, *dst; |
| int tail, err; |
| |
| if (WARN_ON_ONCE(!may_use_simd())) |
| return -EBUSY; |
| |
| err = skcipher_walk_aead_encrypt(&walk, req, false); |
| |
| kernel_neon_begin(); |
| |
| if (assoclen) |
| gcm_calculate_auth_mac(req, dg, assoclen); |
| |
| src = walk.src.virt.addr; |
| dst = walk.dst.virt.addr; |
| |
| while (walk.nbytes >= AES_BLOCK_SIZE) { |
| int nblocks = walk.nbytes / AES_BLOCK_SIZE; |
| |
| pmull_gcm_encrypt(nblocks, dg, src, ctx, dst, iv, |
| ctx->rounds, counter); |
| counter += nblocks; |
| |
| if (walk.nbytes == walk.total) { |
| src += nblocks * AES_BLOCK_SIZE; |
| dst += nblocks * AES_BLOCK_SIZE; |
| break; |
| } |
| |
| kernel_neon_end(); |
| |
| err = skcipher_walk_done(&walk, |
| walk.nbytes % AES_BLOCK_SIZE); |
| if (err) |
| return err; |
| |
| src = walk.src.virt.addr; |
| dst = walk.dst.virt.addr; |
| |
| kernel_neon_begin(); |
| } |
| |
| |
| lengths.a = cpu_to_be64(assoclen * 8); |
| lengths.b = cpu_to_be64(req->cryptlen * 8); |
| |
| tag = (u8 *)&lengths; |
| tail = walk.nbytes % AES_BLOCK_SIZE; |
| |
| /* |
| * Bounce via a buffer unless we are encrypting in place and src/dst |
| * are not pointing to the start of the walk buffer. In that case, we |
| * can do a NEON load/xor/store sequence in place as long as we move |
| * the plain/ciphertext and keystream to the start of the register. If |
| * not, do a memcpy() to the end of the buffer so we can reuse the same |
| * logic. |
| */ |
| if (unlikely(tail && (tail == walk.nbytes || src != dst))) |
| src = memcpy(buf + sizeof(buf) - tail, src, tail); |
| |
| pmull_gcm_enc_final(tail, dg, tag, ctx, (u8 *)src, iv, |
| ctx->rounds, counter); |
| kernel_neon_end(); |
| |
| if (unlikely(tail && src != dst)) |
| memcpy(dst, src, tail); |
| |
| if (walk.nbytes) { |
| err = skcipher_walk_done(&walk, 0); |
| if (err) |
| return err; |
| } |
| |
| /* copy authtag to end of dst */ |
| scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen, |
| crypto_aead_authsize(aead), 1); |
| |
| return 0; |
| } |
| |
| static int gcm_decrypt(struct aead_request *req, const u8 *iv, u32 assoclen) |
| { |
| struct crypto_aead *aead = crypto_aead_reqtfm(req); |
| struct gcm_key *ctx = crypto_aead_ctx(aead); |
| int authsize = crypto_aead_authsize(aead); |
| struct skcipher_walk walk; |
| u8 otag[AES_BLOCK_SIZE]; |
| u8 buf[AES_BLOCK_SIZE]; |
| u32 counter = 2; |
| u64 dg[2] = {}; |
| be128 lengths; |
| const u8 *src; |
| u8 *tag, *dst; |
| int tail, err, ret; |
| |
| if (WARN_ON_ONCE(!may_use_simd())) |
| return -EBUSY; |
| |
| scatterwalk_map_and_copy(otag, req->src, |
| req->assoclen + req->cryptlen - authsize, |
| authsize, 0); |
| |
| err = skcipher_walk_aead_decrypt(&walk, req, false); |
| |
| kernel_neon_begin(); |
| |
| if (assoclen) |
| gcm_calculate_auth_mac(req, dg, assoclen); |
| |
| src = walk.src.virt.addr; |
| dst = walk.dst.virt.addr; |
| |
| while (walk.nbytes >= AES_BLOCK_SIZE) { |
| int nblocks = walk.nbytes / AES_BLOCK_SIZE; |
| |
| pmull_gcm_decrypt(nblocks, dg, src, ctx, dst, iv, |
| ctx->rounds, counter); |
| counter += nblocks; |
| |
| if (walk.nbytes == walk.total) { |
| src += nblocks * AES_BLOCK_SIZE; |
| dst += nblocks * AES_BLOCK_SIZE; |
| break; |
| } |
| |
| kernel_neon_end(); |
| |
| err = skcipher_walk_done(&walk, |
| walk.nbytes % AES_BLOCK_SIZE); |
| if (err) |
| return err; |
| |
| src = walk.src.virt.addr; |
| dst = walk.dst.virt.addr; |
| |
| kernel_neon_begin(); |
| } |
| |
| lengths.a = cpu_to_be64(assoclen * 8); |
| lengths.b = cpu_to_be64((req->cryptlen - authsize) * 8); |
| |
| tag = (u8 *)&lengths; |
| tail = walk.nbytes % AES_BLOCK_SIZE; |
| |
| if (unlikely(tail && (tail == walk.nbytes || src != dst))) |
| src = memcpy(buf + sizeof(buf) - tail, src, tail); |
| |
| ret = pmull_gcm_dec_final(tail, dg, tag, ctx, (u8 *)src, iv, |
| ctx->rounds, counter, otag, authsize); |
| kernel_neon_end(); |
| |
| if (unlikely(tail && src != dst)) |
| memcpy(dst, src, tail); |
| |
| if (walk.nbytes) { |
| err = skcipher_walk_done(&walk, 0); |
| if (err) |
| return err; |
| } |
| |
| return ret ? -EBADMSG : 0; |
| } |
| |
| static int gcm_aes_encrypt(struct aead_request *req) |
| { |
| return gcm_encrypt(req, req->iv, req->assoclen); |
| } |
| |
| static int gcm_aes_decrypt(struct aead_request *req) |
| { |
| return gcm_decrypt(req, req->iv, req->assoclen); |
| } |
| |
| static int rfc4106_setkey(struct crypto_aead *tfm, const u8 *inkey, |
| unsigned int keylen) |
| { |
| struct gcm_key *ctx = crypto_aead_ctx(tfm); |
| int err; |
| |
| keylen -= RFC4106_NONCE_SIZE; |
| err = gcm_aes_setkey(tfm, inkey, keylen); |
| if (err) |
| return err; |
| |
| memcpy(ctx->nonce, inkey + keylen, RFC4106_NONCE_SIZE); |
| return 0; |
| } |
| |
| static int rfc4106_setauthsize(struct crypto_aead *tfm, unsigned int authsize) |
| { |
| return crypto_rfc4106_check_authsize(authsize); |
| } |
| |
| static int rfc4106_encrypt(struct aead_request *req) |
| { |
| struct crypto_aead *aead = crypto_aead_reqtfm(req); |
| struct gcm_key *ctx = crypto_aead_ctx(aead); |
| u8 iv[GCM_AES_IV_SIZE]; |
| |
| memcpy(iv, ctx->nonce, RFC4106_NONCE_SIZE); |
| memcpy(iv + RFC4106_NONCE_SIZE, req->iv, GCM_RFC4106_IV_SIZE); |
| |
| return crypto_ipsec_check_assoclen(req->assoclen) ?: |
| gcm_encrypt(req, iv, req->assoclen - GCM_RFC4106_IV_SIZE); |
| } |
| |
| static int rfc4106_decrypt(struct aead_request *req) |
| { |
| struct crypto_aead *aead = crypto_aead_reqtfm(req); |
| struct gcm_key *ctx = crypto_aead_ctx(aead); |
| u8 iv[GCM_AES_IV_SIZE]; |
| |
| memcpy(iv, ctx->nonce, RFC4106_NONCE_SIZE); |
| memcpy(iv + RFC4106_NONCE_SIZE, req->iv, GCM_RFC4106_IV_SIZE); |
| |
| return crypto_ipsec_check_assoclen(req->assoclen) ?: |
| gcm_decrypt(req, iv, req->assoclen - GCM_RFC4106_IV_SIZE); |
| } |
| |
| static struct aead_alg gcm_aes_algs[] = {{ |
| .ivsize = GCM_AES_IV_SIZE, |
| .chunksize = AES_BLOCK_SIZE, |
| .maxauthsize = AES_BLOCK_SIZE, |
| .setkey = gcm_aes_setkey, |
| .setauthsize = gcm_aes_setauthsize, |
| .encrypt = gcm_aes_encrypt, |
| .decrypt = gcm_aes_decrypt, |
| |
| .base.cra_name = "gcm(aes)", |
| .base.cra_driver_name = "gcm-aes-ce", |
| .base.cra_priority = 400, |
| .base.cra_blocksize = 1, |
| .base.cra_ctxsize = sizeof(struct gcm_key), |
| .base.cra_module = THIS_MODULE, |
| }, { |
| .ivsize = GCM_RFC4106_IV_SIZE, |
| .chunksize = AES_BLOCK_SIZE, |
| .maxauthsize = AES_BLOCK_SIZE, |
| .setkey = rfc4106_setkey, |
| .setauthsize = rfc4106_setauthsize, |
| .encrypt = rfc4106_encrypt, |
| .decrypt = rfc4106_decrypt, |
| |
| .base.cra_name = "rfc4106(gcm(aes))", |
| .base.cra_driver_name = "rfc4106-gcm-aes-ce", |
| .base.cra_priority = 400, |
| .base.cra_blocksize = 1, |
| .base.cra_ctxsize = sizeof(struct gcm_key) + RFC4106_NONCE_SIZE, |
| .base.cra_module = THIS_MODULE, |
| }}; |
| |
| static int __init ghash_ce_mod_init(void) |
| { |
| int err; |
| |
| if (!(elf_hwcap & HWCAP_NEON)) |
| return -ENODEV; |
| |
| if (elf_hwcap2 & HWCAP2_PMULL) { |
| err = crypto_register_aeads(gcm_aes_algs, |
| ARRAY_SIZE(gcm_aes_algs)); |
| if (err) |
| return err; |
| ghash_alg.base.cra_ctxsize += 3 * sizeof(u64[2]); |
| static_branch_enable(&use_p64); |
| } |
| |
| err = crypto_register_shash(&ghash_alg); |
| if (err) |
| goto err_aead; |
| err = crypto_register_ahash(&ghash_async_alg); |
| if (err) |
| goto err_shash; |
| |
| return 0; |
| |
| err_shash: |
| crypto_unregister_shash(&ghash_alg); |
| err_aead: |
| if (elf_hwcap2 & HWCAP2_PMULL) |
| crypto_unregister_aeads(gcm_aes_algs, |
| ARRAY_SIZE(gcm_aes_algs)); |
| return err; |
| } |
| |
| static void __exit ghash_ce_mod_exit(void) |
| { |
| crypto_unregister_ahash(&ghash_async_alg); |
| crypto_unregister_shash(&ghash_alg); |
| if (elf_hwcap2 & HWCAP2_PMULL) |
| crypto_unregister_aeads(gcm_aes_algs, |
| ARRAY_SIZE(gcm_aes_algs)); |
| } |
| |
| module_init(ghash_ce_mod_init); |
| module_exit(ghash_ce_mod_exit); |