| // SPDX-License-Identifier: GPL-2.0-or-later |
| /******************************************************************************* |
| * |
| * CTU CAN FD IP Core |
| * |
| * Copyright (C) 2015-2018 Ondrej Ille <ondrej.ille@gmail.com> FEE CTU |
| * Copyright (C) 2018-2021 Ondrej Ille <ondrej.ille@gmail.com> self-funded |
| * Copyright (C) 2018-2019 Martin Jerabek <martin.jerabek01@gmail.com> FEE CTU |
| * Copyright (C) 2018-2022 Pavel Pisa <pisa@cmp.felk.cvut.cz> FEE CTU/self-funded |
| * |
| * Project advisors: |
| * Jiri Novak <jnovak@fel.cvut.cz> |
| * Pavel Pisa <pisa@cmp.felk.cvut.cz> |
| * |
| * Department of Measurement (http://meas.fel.cvut.cz/) |
| * Faculty of Electrical Engineering (http://www.fel.cvut.cz) |
| * Czech Technical University (http://www.cvut.cz/) |
| ******************************************************************************/ |
| |
| #include <linux/clk.h> |
| #include <linux/errno.h> |
| #include <linux/ethtool.h> |
| #include <linux/init.h> |
| #include <linux/bitfield.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/skbuff.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/can/error.h> |
| #include <linux/pm_runtime.h> |
| |
| #include "ctucanfd.h" |
| #include "ctucanfd_kregs.h" |
| #include "ctucanfd_kframe.h" |
| |
| #ifdef DEBUG |
| #define ctucan_netdev_dbg(ndev, args...) \ |
| netdev_dbg(ndev, args) |
| #else |
| #define ctucan_netdev_dbg(...) do { } while (0) |
| #endif |
| |
| #define CTUCANFD_ID 0xCAFD |
| |
| /* TX buffer rotation: |
| * - when a buffer transitions to empty state, rotate order and priorities |
| * - if more buffers seem to transition at the same time, rotate by the number of buffers |
| * - it may be assumed that buffers transition to empty state in FIFO order (because we manage |
| * priorities that way) |
| * - at frame filling, do not rotate anything, just increment buffer modulo counter |
| */ |
| |
| #define CTUCANFD_FLAG_RX_FFW_BUFFERED 1 |
| |
| #define CTUCAN_STATE_TO_TEXT_ENTRY(st) \ |
| [st] = #st |
| |
| enum ctucan_txtb_status { |
| TXT_NOT_EXIST = 0x0, |
| TXT_RDY = 0x1, |
| TXT_TRAN = 0x2, |
| TXT_ABTP = 0x3, |
| TXT_TOK = 0x4, |
| TXT_ERR = 0x6, |
| TXT_ABT = 0x7, |
| TXT_ETY = 0x8, |
| }; |
| |
| enum ctucan_txtb_command { |
| TXT_CMD_SET_EMPTY = 0x01, |
| TXT_CMD_SET_READY = 0x02, |
| TXT_CMD_SET_ABORT = 0x04 |
| }; |
| |
| static const struct can_bittiming_const ctu_can_fd_bit_timing_max = { |
| .name = "ctu_can_fd", |
| .tseg1_min = 2, |
| .tseg1_max = 190, |
| .tseg2_min = 1, |
| .tseg2_max = 63, |
| .sjw_max = 31, |
| .brp_min = 1, |
| .brp_max = 8, |
| .brp_inc = 1, |
| }; |
| |
| static const struct can_bittiming_const ctu_can_fd_bit_timing_data_max = { |
| .name = "ctu_can_fd", |
| .tseg1_min = 2, |
| .tseg1_max = 94, |
| .tseg2_min = 1, |
| .tseg2_max = 31, |
| .sjw_max = 31, |
| .brp_min = 1, |
| .brp_max = 2, |
| .brp_inc = 1, |
| }; |
| |
| static const char * const ctucan_state_strings[CAN_STATE_MAX] = { |
| CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_ERROR_ACTIVE), |
| CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_ERROR_WARNING), |
| CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_ERROR_PASSIVE), |
| CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_BUS_OFF), |
| CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_STOPPED), |
| CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_SLEEPING) |
| }; |
| |
| static void ctucan_write32_le(struct ctucan_priv *priv, |
| enum ctu_can_fd_can_registers reg, u32 val) |
| { |
| iowrite32(val, priv->mem_base + reg); |
| } |
| |
| static void ctucan_write32_be(struct ctucan_priv *priv, |
| enum ctu_can_fd_can_registers reg, u32 val) |
| { |
| iowrite32be(val, priv->mem_base + reg); |
| } |
| |
| static u32 ctucan_read32_le(struct ctucan_priv *priv, |
| enum ctu_can_fd_can_registers reg) |
| { |
| return ioread32(priv->mem_base + reg); |
| } |
| |
| static u32 ctucan_read32_be(struct ctucan_priv *priv, |
| enum ctu_can_fd_can_registers reg) |
| { |
| return ioread32be(priv->mem_base + reg); |
| } |
| |
| static void ctucan_write32(struct ctucan_priv *priv, enum ctu_can_fd_can_registers reg, u32 val) |
| { |
| priv->write_reg(priv, reg, val); |
| } |
| |
| static u32 ctucan_read32(struct ctucan_priv *priv, enum ctu_can_fd_can_registers reg) |
| { |
| return priv->read_reg(priv, reg); |
| } |
| |
| static void ctucan_write_txt_buf(struct ctucan_priv *priv, enum ctu_can_fd_can_registers buf_base, |
| u32 offset, u32 val) |
| { |
| priv->write_reg(priv, buf_base + offset, val); |
| } |
| |
| #define CTU_CAN_FD_TXTNF(priv) (!!FIELD_GET(REG_STATUS_TXNF, ctucan_read32(priv, CTUCANFD_STATUS))) |
| #define CTU_CAN_FD_ENABLED(priv) (!!FIELD_GET(REG_MODE_ENA, ctucan_read32(priv, CTUCANFD_MODE))) |
| |
| /** |
| * ctucan_state_to_str() - Converts CAN controller state code to corresponding text |
| * @state: CAN controller state code |
| * |
| * Return: Pointer to string representation of the error state |
| */ |
| static const char *ctucan_state_to_str(enum can_state state) |
| { |
| const char *txt = NULL; |
| |
| if (state >= 0 && state < CAN_STATE_MAX) |
| txt = ctucan_state_strings[state]; |
| return txt ? txt : "UNKNOWN"; |
| } |
| |
| /** |
| * ctucan_reset() - Issues software reset request to CTU CAN FD |
| * @ndev: Pointer to net_device structure |
| * |
| * Return: 0 for success, -%ETIMEDOUT if CAN controller does not leave reset |
| */ |
| static int ctucan_reset(struct net_device *ndev) |
| { |
| struct ctucan_priv *priv = netdev_priv(ndev); |
| int i = 100; |
| |
| ctucan_write32(priv, CTUCANFD_MODE, REG_MODE_RST); |
| clear_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED, &priv->drv_flags); |
| |
| do { |
| u16 device_id = FIELD_GET(REG_DEVICE_ID_DEVICE_ID, |
| ctucan_read32(priv, CTUCANFD_DEVICE_ID)); |
| |
| if (device_id == 0xCAFD) |
| return 0; |
| if (!i--) { |
| netdev_warn(ndev, "device did not leave reset\n"); |
| return -ETIMEDOUT; |
| } |
| usleep_range(100, 200); |
| } while (1); |
| } |
| |
| /** |
| * ctucan_set_btr() - Sets CAN bus bit timing in CTU CAN FD |
| * @ndev: Pointer to net_device structure |
| * @bt: Pointer to Bit timing structure |
| * @nominal: True - Nominal bit timing, False - Data bit timing |
| * |
| * Return: 0 - OK, -%EPERM if controller is enabled |
| */ |
| static int ctucan_set_btr(struct net_device *ndev, struct can_bittiming *bt, bool nominal) |
| { |
| struct ctucan_priv *priv = netdev_priv(ndev); |
| int max_ph1_len = 31; |
| u32 btr = 0; |
| u32 prop_seg = bt->prop_seg; |
| u32 phase_seg1 = bt->phase_seg1; |
| |
| if (CTU_CAN_FD_ENABLED(priv)) { |
| netdev_err(ndev, "BUG! Cannot set bittiming - CAN is enabled\n"); |
| return -EPERM; |
| } |
| |
| if (nominal) |
| max_ph1_len = 63; |
| |
| /* The timing calculation functions have only constraints on tseg1, which is prop_seg + |
| * phase1_seg combined. tseg1 is then split in half and stored into prog_seg and phase_seg1. |
| * In CTU CAN FD, PROP is 6/7 bits wide but PH1 only 6/5, so we must re-distribute the |
| * values here. |
| */ |
| if (phase_seg1 > max_ph1_len) { |
| prop_seg += phase_seg1 - max_ph1_len; |
| phase_seg1 = max_ph1_len; |
| bt->prop_seg = prop_seg; |
| bt->phase_seg1 = phase_seg1; |
| } |
| |
| if (nominal) { |
| btr = FIELD_PREP(REG_BTR_PROP, prop_seg); |
| btr |= FIELD_PREP(REG_BTR_PH1, phase_seg1); |
| btr |= FIELD_PREP(REG_BTR_PH2, bt->phase_seg2); |
| btr |= FIELD_PREP(REG_BTR_BRP, bt->brp); |
| btr |= FIELD_PREP(REG_BTR_SJW, bt->sjw); |
| |
| ctucan_write32(priv, CTUCANFD_BTR, btr); |
| } else { |
| btr = FIELD_PREP(REG_BTR_FD_PROP_FD, prop_seg); |
| btr |= FIELD_PREP(REG_BTR_FD_PH1_FD, phase_seg1); |
| btr |= FIELD_PREP(REG_BTR_FD_PH2_FD, bt->phase_seg2); |
| btr |= FIELD_PREP(REG_BTR_FD_BRP_FD, bt->brp); |
| btr |= FIELD_PREP(REG_BTR_FD_SJW_FD, bt->sjw); |
| |
| ctucan_write32(priv, CTUCANFD_BTR_FD, btr); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ctucan_set_bittiming() - CAN set nominal bit timing routine |
| * @ndev: Pointer to net_device structure |
| * |
| * Return: 0 on success, -%EPERM on error |
| */ |
| static int ctucan_set_bittiming(struct net_device *ndev) |
| { |
| struct ctucan_priv *priv = netdev_priv(ndev); |
| struct can_bittiming *bt = &priv->can.bittiming; |
| |
| /* Note that bt may be modified here */ |
| return ctucan_set_btr(ndev, bt, true); |
| } |
| |
| /** |
| * ctucan_set_data_bittiming() - CAN set data bit timing routine |
| * @ndev: Pointer to net_device structure |
| * |
| * Return: 0 on success, -%EPERM on error |
| */ |
| static int ctucan_set_data_bittiming(struct net_device *ndev) |
| { |
| struct ctucan_priv *priv = netdev_priv(ndev); |
| struct can_bittiming *dbt = &priv->can.data_bittiming; |
| |
| /* Note that dbt may be modified here */ |
| return ctucan_set_btr(ndev, dbt, false); |
| } |
| |
| /** |
| * ctucan_set_secondary_sample_point() - Sets secondary sample point in CTU CAN FD |
| * @ndev: Pointer to net_device structure |
| * |
| * Return: 0 on success, -%EPERM if controller is enabled |
| */ |
| static int ctucan_set_secondary_sample_point(struct net_device *ndev) |
| { |
| struct ctucan_priv *priv = netdev_priv(ndev); |
| struct can_bittiming *dbt = &priv->can.data_bittiming; |
| int ssp_offset = 0; |
| u32 ssp_cfg = 0; /* No SSP by default */ |
| |
| if (CTU_CAN_FD_ENABLED(priv)) { |
| netdev_err(ndev, "BUG! Cannot set SSP - CAN is enabled\n"); |
| return -EPERM; |
| } |
| |
| /* Use SSP for bit-rates above 1 Mbits/s */ |
| if (dbt->bitrate > 1000000) { |
| /* Calculate SSP in minimal time quanta */ |
| ssp_offset = (priv->can.clock.freq / 1000) * dbt->sample_point / dbt->bitrate; |
| |
| if (ssp_offset > 127) { |
| netdev_warn(ndev, "SSP offset saturated to 127\n"); |
| ssp_offset = 127; |
| } |
| |
| ssp_cfg = FIELD_PREP(REG_TRV_DELAY_SSP_OFFSET, ssp_offset); |
| ssp_cfg |= FIELD_PREP(REG_TRV_DELAY_SSP_SRC, 0x1); |
| } |
| |
| ctucan_write32(priv, CTUCANFD_TRV_DELAY, ssp_cfg); |
| |
| return 0; |
| } |
| |
| /** |
| * ctucan_set_mode() - Sets CTU CAN FDs mode |
| * @priv: Pointer to private data |
| * @mode: Pointer to controller modes to be set |
| */ |
| static void ctucan_set_mode(struct ctucan_priv *priv, const struct can_ctrlmode *mode) |
| { |
| u32 mode_reg = ctucan_read32(priv, CTUCANFD_MODE); |
| |
| mode_reg = (mode->flags & CAN_CTRLMODE_LOOPBACK) ? |
| (mode_reg | REG_MODE_ILBP) : |
| (mode_reg & ~REG_MODE_ILBP); |
| |
| mode_reg = (mode->flags & CAN_CTRLMODE_LISTENONLY) ? |
| (mode_reg | REG_MODE_BMM) : |
| (mode_reg & ~REG_MODE_BMM); |
| |
| mode_reg = (mode->flags & CAN_CTRLMODE_FD) ? |
| (mode_reg | REG_MODE_FDE) : |
| (mode_reg & ~REG_MODE_FDE); |
| |
| mode_reg = (mode->flags & CAN_CTRLMODE_PRESUME_ACK) ? |
| (mode_reg | REG_MODE_ACF) : |
| (mode_reg & ~REG_MODE_ACF); |
| |
| mode_reg = (mode->flags & CAN_CTRLMODE_FD_NON_ISO) ? |
| (mode_reg | REG_MODE_NISOFD) : |
| (mode_reg & ~REG_MODE_NISOFD); |
| |
| /* One shot mode supported indirectly via Retransmit limit */ |
| mode_reg &= ~FIELD_PREP(REG_MODE_RTRTH, 0xF); |
| mode_reg = (mode->flags & CAN_CTRLMODE_ONE_SHOT) ? |
| (mode_reg | REG_MODE_RTRLE) : |
| (mode_reg & ~REG_MODE_RTRLE); |
| |
| /* Some bits fixed: |
| * TSTM - Off, User shall not be able to change REC/TEC by hand during operation |
| */ |
| mode_reg &= ~REG_MODE_TSTM; |
| |
| ctucan_write32(priv, CTUCANFD_MODE, mode_reg); |
| } |
| |
| /** |
| * ctucan_chip_start() - This routine starts the driver |
| * @ndev: Pointer to net_device structure |
| * |
| * Routine expects that chip is in reset state. It setups initial |
| * Tx buffers for FIFO priorities, sets bittiming, enables interrupts, |
| * switches core to operational mode and changes controller |
| * state to %CAN_STATE_STOPPED. |
| * |
| * Return: 0 on success and failure value on error |
| */ |
| static int ctucan_chip_start(struct net_device *ndev) |
| { |
| struct ctucan_priv *priv = netdev_priv(ndev); |
| u32 int_ena, int_msk; |
| u32 mode_reg; |
| int err; |
| struct can_ctrlmode mode; |
| |
| priv->txb_prio = 0x01234567; |
| priv->txb_head = 0; |
| priv->txb_tail = 0; |
| ctucan_write32(priv, CTUCANFD_TX_PRIORITY, priv->txb_prio); |
| |
| /* Configure bit-rates and ssp */ |
| err = ctucan_set_bittiming(ndev); |
| if (err < 0) |
| return err; |
| |
| err = ctucan_set_data_bittiming(ndev); |
| if (err < 0) |
| return err; |
| |
| err = ctucan_set_secondary_sample_point(ndev); |
| if (err < 0) |
| return err; |
| |
| /* Configure modes */ |
| mode.flags = priv->can.ctrlmode; |
| mode.mask = 0xFFFFFFFF; |
| ctucan_set_mode(priv, &mode); |
| |
| /* Configure interrupts */ |
| int_ena = REG_INT_STAT_RBNEI | |
| REG_INT_STAT_TXBHCI | |
| REG_INT_STAT_EWLI | |
| REG_INT_STAT_FCSI; |
| |
| /* Bus error reporting -> Allow Error/Arb.lost interrupts */ |
| if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) { |
| int_ena |= REG_INT_STAT_ALI | |
| REG_INT_STAT_BEI; |
| } |
| |
| int_msk = ~int_ena; /* Mask all disabled interrupts */ |
| |
| /* It's after reset, so there is no need to clear anything */ |
| ctucan_write32(priv, CTUCANFD_INT_MASK_SET, int_msk); |
| ctucan_write32(priv, CTUCANFD_INT_ENA_SET, int_ena); |
| |
| /* Controller enters ERROR_ACTIVE on initial FCSI */ |
| priv->can.state = CAN_STATE_STOPPED; |
| |
| /* Enable the controller */ |
| mode_reg = ctucan_read32(priv, CTUCANFD_MODE); |
| mode_reg |= REG_MODE_ENA; |
| ctucan_write32(priv, CTUCANFD_MODE, mode_reg); |
| |
| return 0; |
| } |
| |
| /** |
| * ctucan_do_set_mode() - Sets mode of the driver |
| * @ndev: Pointer to net_device structure |
| * @mode: Tells the mode of the driver |
| * |
| * This check the drivers state and calls the corresponding modes to set. |
| * |
| * Return: 0 on success and failure value on error |
| */ |
| static int ctucan_do_set_mode(struct net_device *ndev, enum can_mode mode) |
| { |
| int ret; |
| |
| switch (mode) { |
| case CAN_MODE_START: |
| ret = ctucan_reset(ndev); |
| if (ret < 0) |
| return ret; |
| ret = ctucan_chip_start(ndev); |
| if (ret < 0) { |
| netdev_err(ndev, "ctucan_chip_start failed!\n"); |
| return ret; |
| } |
| netif_wake_queue(ndev); |
| break; |
| default: |
| ret = -EOPNOTSUPP; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * ctucan_get_tx_status() - Gets status of TXT buffer |
| * @priv: Pointer to private data |
| * @buf: Buffer index (0-based) |
| * |
| * Return: Status of TXT buffer |
| */ |
| static enum ctucan_txtb_status ctucan_get_tx_status(struct ctucan_priv *priv, u8 buf) |
| { |
| u32 tx_status = ctucan_read32(priv, CTUCANFD_TX_STATUS); |
| enum ctucan_txtb_status status = (tx_status >> (buf * 4)) & 0x7; |
| |
| return status; |
| } |
| |
| /** |
| * ctucan_is_txt_buf_writable() - Checks if frame can be inserted to TXT Buffer |
| * @priv: Pointer to private data |
| * @buf: Buffer index (0-based) |
| * |
| * Return: True - Frame can be inserted to TXT Buffer, False - If attempted, frame will not be |
| * inserted to TXT Buffer |
| */ |
| static bool ctucan_is_txt_buf_writable(struct ctucan_priv *priv, u8 buf) |
| { |
| enum ctucan_txtb_status buf_status; |
| |
| buf_status = ctucan_get_tx_status(priv, buf); |
| if (buf_status == TXT_RDY || buf_status == TXT_TRAN || buf_status == TXT_ABTP) |
| return false; |
| |
| return true; |
| } |
| |
| /** |
| * ctucan_insert_frame() - Inserts frame to TXT buffer |
| * @priv: Pointer to private data |
| * @cf: Pointer to CAN frame to be inserted |
| * @buf: TXT Buffer index to which frame is inserted (0-based) |
| * @isfdf: True - CAN FD Frame, False - CAN 2.0 Frame |
| * |
| * Return: True - Frame inserted successfully |
| * False - Frame was not inserted due to one of: |
| * 1. TXT Buffer is not writable (it is in wrong state) |
| * 2. Invalid TXT buffer index |
| * 3. Invalid frame length |
| */ |
| static bool ctucan_insert_frame(struct ctucan_priv *priv, const struct canfd_frame *cf, u8 buf, |
| bool isfdf) |
| { |
| u32 buf_base; |
| u32 ffw = 0; |
| u32 idw = 0; |
| unsigned int i; |
| |
| if (buf >= priv->ntxbufs) |
| return false; |
| |
| if (!ctucan_is_txt_buf_writable(priv, buf)) |
| return false; |
| |
| if (cf->len > CANFD_MAX_DLEN) |
| return false; |
| |
| /* Prepare Frame format */ |
| if (cf->can_id & CAN_RTR_FLAG) |
| ffw |= REG_FRAME_FORMAT_W_RTR; |
| |
| if (cf->can_id & CAN_EFF_FLAG) |
| ffw |= REG_FRAME_FORMAT_W_IDE; |
| |
| if (isfdf) { |
| ffw |= REG_FRAME_FORMAT_W_FDF; |
| if (cf->flags & CANFD_BRS) |
| ffw |= REG_FRAME_FORMAT_W_BRS; |
| } |
| |
| ffw |= FIELD_PREP(REG_FRAME_FORMAT_W_DLC, can_fd_len2dlc(cf->len)); |
| |
| /* Prepare identifier */ |
| if (cf->can_id & CAN_EFF_FLAG) |
| idw = cf->can_id & CAN_EFF_MASK; |
| else |
| idw = FIELD_PREP(REG_IDENTIFIER_W_IDENTIFIER_BASE, cf->can_id & CAN_SFF_MASK); |
| |
| /* Write ID, Frame format, Don't write timestamp -> Time triggered transmission disabled */ |
| buf_base = (buf + 1) * 0x100; |
| ctucan_write_txt_buf(priv, buf_base, CTUCANFD_FRAME_FORMAT_W, ffw); |
| ctucan_write_txt_buf(priv, buf_base, CTUCANFD_IDENTIFIER_W, idw); |
| |
| /* Write Data payload */ |
| if (!(cf->can_id & CAN_RTR_FLAG)) { |
| for (i = 0; i < cf->len; i += 4) { |
| u32 data = le32_to_cpu(*(__le32 *)(cf->data + i)); |
| |
| ctucan_write_txt_buf(priv, buf_base, CTUCANFD_DATA_1_4_W + i, data); |
| } |
| } |
| |
| return true; |
| } |
| |
| /** |
| * ctucan_give_txtb_cmd() - Applies command on TXT buffer |
| * @priv: Pointer to private data |
| * @cmd: Command to give |
| * @buf: Buffer index (0-based) |
| */ |
| static void ctucan_give_txtb_cmd(struct ctucan_priv *priv, enum ctucan_txtb_command cmd, u8 buf) |
| { |
| u32 tx_cmd = cmd; |
| |
| tx_cmd |= 1 << (buf + 8); |
| ctucan_write32(priv, CTUCANFD_TX_COMMAND, tx_cmd); |
| } |
| |
| /** |
| * ctucan_start_xmit() - Starts the transmission |
| * @skb: sk_buff pointer that contains data to be Txed |
| * @ndev: Pointer to net_device structure |
| * |
| * Invoked from upper layers to initiate transmission. Uses the next available free TXT Buffer and |
| * populates its fields to start the transmission. |
| * |
| * Return: %NETDEV_TX_OK on success, %NETDEV_TX_BUSY when no free TXT buffer is available, |
| * negative return values reserved for error cases |
| */ |
| static netdev_tx_t ctucan_start_xmit(struct sk_buff *skb, struct net_device *ndev) |
| { |
| struct ctucan_priv *priv = netdev_priv(ndev); |
| struct canfd_frame *cf = (struct canfd_frame *)skb->data; |
| u32 txtb_id; |
| bool ok; |
| unsigned long flags; |
| |
| if (can_dev_dropped_skb(ndev, skb)) |
| return NETDEV_TX_OK; |
| |
| if (unlikely(!CTU_CAN_FD_TXTNF(priv))) { |
| netif_stop_queue(ndev); |
| netdev_err(ndev, "BUG!, no TXB free when queue awake!\n"); |
| return NETDEV_TX_BUSY; |
| } |
| |
| txtb_id = priv->txb_head % priv->ntxbufs; |
| ctucan_netdev_dbg(ndev, "%s: using TXB#%u\n", __func__, txtb_id); |
| ok = ctucan_insert_frame(priv, cf, txtb_id, can_is_canfd_skb(skb)); |
| |
| if (!ok) { |
| netdev_err(ndev, "BUG! TXNF set but cannot insert frame into TXTB! HW Bug?"); |
| kfree_skb(skb); |
| ndev->stats.tx_dropped++; |
| return NETDEV_TX_OK; |
| } |
| |
| can_put_echo_skb(skb, ndev, txtb_id, 0); |
| |
| spin_lock_irqsave(&priv->tx_lock, flags); |
| ctucan_give_txtb_cmd(priv, TXT_CMD_SET_READY, txtb_id); |
| priv->txb_head++; |
| |
| /* Check if all TX buffers are full */ |
| if (!CTU_CAN_FD_TXTNF(priv)) |
| netif_stop_queue(ndev); |
| |
| spin_unlock_irqrestore(&priv->tx_lock, flags); |
| |
| return NETDEV_TX_OK; |
| } |
| |
| /** |
| * ctucan_read_rx_frame() - Reads frame from RX FIFO |
| * @priv: Pointer to CTU CAN FD's private data |
| * @cf: Pointer to CAN frame struct |
| * @ffw: Previously read frame format word |
| * |
| * Note: Frame format word must be read separately and provided in 'ffw'. |
| */ |
| static void ctucan_read_rx_frame(struct ctucan_priv *priv, struct canfd_frame *cf, u32 ffw) |
| { |
| u32 idw; |
| unsigned int i; |
| unsigned int wc; |
| unsigned int len; |
| |
| idw = ctucan_read32(priv, CTUCANFD_RX_DATA); |
| if (FIELD_GET(REG_FRAME_FORMAT_W_IDE, ffw)) |
| cf->can_id = (idw & CAN_EFF_MASK) | CAN_EFF_FLAG; |
| else |
| cf->can_id = (idw >> 18) & CAN_SFF_MASK; |
| |
| /* BRS, ESI, RTR Flags */ |
| if (FIELD_GET(REG_FRAME_FORMAT_W_FDF, ffw)) { |
| if (FIELD_GET(REG_FRAME_FORMAT_W_BRS, ffw)) |
| cf->flags |= CANFD_BRS; |
| if (FIELD_GET(REG_FRAME_FORMAT_W_ESI_RSV, ffw)) |
| cf->flags |= CANFD_ESI; |
| } else if (FIELD_GET(REG_FRAME_FORMAT_W_RTR, ffw)) { |
| cf->can_id |= CAN_RTR_FLAG; |
| } |
| |
| wc = FIELD_GET(REG_FRAME_FORMAT_W_RWCNT, ffw) - 3; |
| |
| /* DLC */ |
| if (FIELD_GET(REG_FRAME_FORMAT_W_DLC, ffw) <= 8) { |
| len = FIELD_GET(REG_FRAME_FORMAT_W_DLC, ffw); |
| } else { |
| if (FIELD_GET(REG_FRAME_FORMAT_W_FDF, ffw)) |
| len = wc << 2; |
| else |
| len = 8; |
| } |
| cf->len = len; |
| if (unlikely(len > wc * 4)) |
| len = wc * 4; |
| |
| /* Timestamp - Read and throw away */ |
| ctucan_read32(priv, CTUCANFD_RX_DATA); |
| ctucan_read32(priv, CTUCANFD_RX_DATA); |
| |
| /* Data */ |
| for (i = 0; i < len; i += 4) { |
| u32 data = ctucan_read32(priv, CTUCANFD_RX_DATA); |
| *(__le32 *)(cf->data + i) = cpu_to_le32(data); |
| } |
| while (unlikely(i < wc * 4)) { |
| ctucan_read32(priv, CTUCANFD_RX_DATA); |
| i += 4; |
| } |
| } |
| |
| /** |
| * ctucan_rx() - Called from CAN ISR to complete the received frame processing |
| * @ndev: Pointer to net_device structure |
| * |
| * This function is invoked from the CAN isr(poll) to process the Rx frames. It does minimal |
| * processing and invokes "netif_receive_skb" to complete further processing. |
| * Return: 1 when frame is passed to the network layer, 0 when the first frame word is read but |
| * system is out of free SKBs temporally and left code to resolve SKB allocation later, |
| * -%EAGAIN in a case of empty Rx FIFO. |
| */ |
| static int ctucan_rx(struct net_device *ndev) |
| { |
| struct ctucan_priv *priv = netdev_priv(ndev); |
| struct net_device_stats *stats = &ndev->stats; |
| struct canfd_frame *cf; |
| struct sk_buff *skb; |
| u32 ffw; |
| |
| if (test_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED, &priv->drv_flags)) { |
| ffw = priv->rxfrm_first_word; |
| clear_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED, &priv->drv_flags); |
| } else { |
| ffw = ctucan_read32(priv, CTUCANFD_RX_DATA); |
| } |
| |
| if (!FIELD_GET(REG_FRAME_FORMAT_W_RWCNT, ffw)) |
| return -EAGAIN; |
| |
| if (FIELD_GET(REG_FRAME_FORMAT_W_FDF, ffw)) |
| skb = alloc_canfd_skb(ndev, &cf); |
| else |
| skb = alloc_can_skb(ndev, (struct can_frame **)&cf); |
| |
| if (unlikely(!skb)) { |
| priv->rxfrm_first_word = ffw; |
| set_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED, &priv->drv_flags); |
| return 0; |
| } |
| |
| ctucan_read_rx_frame(priv, cf, ffw); |
| |
| stats->rx_bytes += cf->len; |
| stats->rx_packets++; |
| netif_receive_skb(skb); |
| |
| return 1; |
| } |
| |
| /** |
| * ctucan_read_fault_state() - Reads CTU CAN FDs fault confinement state. |
| * @priv: Pointer to private data |
| * |
| * Returns: Fault confinement state of controller |
| */ |
| static enum can_state ctucan_read_fault_state(struct ctucan_priv *priv) |
| { |
| u32 fs; |
| u32 rec_tec; |
| u32 ewl; |
| |
| fs = ctucan_read32(priv, CTUCANFD_EWL); |
| rec_tec = ctucan_read32(priv, CTUCANFD_REC); |
| ewl = FIELD_GET(REG_EWL_EW_LIMIT, fs); |
| |
| if (FIELD_GET(REG_EWL_ERA, fs)) { |
| if (ewl > FIELD_GET(REG_REC_REC_VAL, rec_tec) && |
| ewl > FIELD_GET(REG_REC_TEC_VAL, rec_tec)) |
| return CAN_STATE_ERROR_ACTIVE; |
| else |
| return CAN_STATE_ERROR_WARNING; |
| } else if (FIELD_GET(REG_EWL_ERP, fs)) { |
| return CAN_STATE_ERROR_PASSIVE; |
| } else if (FIELD_GET(REG_EWL_BOF, fs)) { |
| return CAN_STATE_BUS_OFF; |
| } |
| |
| WARN(true, "Invalid error state"); |
| return CAN_STATE_ERROR_PASSIVE; |
| } |
| |
| /** |
| * ctucan_get_rec_tec() - Reads REC/TEC counter values from controller |
| * @priv: Pointer to private data |
| * @bec: Pointer to Error counter structure |
| */ |
| static void ctucan_get_rec_tec(struct ctucan_priv *priv, struct can_berr_counter *bec) |
| { |
| u32 err_ctrs = ctucan_read32(priv, CTUCANFD_REC); |
| |
| bec->rxerr = FIELD_GET(REG_REC_REC_VAL, err_ctrs); |
| bec->txerr = FIELD_GET(REG_REC_TEC_VAL, err_ctrs); |
| } |
| |
| /** |
| * ctucan_err_interrupt() - Error frame ISR |
| * @ndev: net_device pointer |
| * @isr: interrupt status register value |
| * |
| * This is the CAN error interrupt and it will check the type of error and forward the error |
| * frame to upper layers. |
| */ |
| static void ctucan_err_interrupt(struct net_device *ndev, u32 isr) |
| { |
| struct ctucan_priv *priv = netdev_priv(ndev); |
| struct net_device_stats *stats = &ndev->stats; |
| struct can_frame *cf; |
| struct sk_buff *skb; |
| enum can_state state; |
| struct can_berr_counter bec; |
| u32 err_capt_alc; |
| int dologerr = net_ratelimit(); |
| |
| ctucan_get_rec_tec(priv, &bec); |
| state = ctucan_read_fault_state(priv); |
| err_capt_alc = ctucan_read32(priv, CTUCANFD_ERR_CAPT); |
| |
| if (dologerr) |
| netdev_info(ndev, "%s: ISR = 0x%08x, rxerr %d, txerr %d, error type %lu, pos %lu, ALC id_field %lu, bit %lu\n", |
| __func__, isr, bec.rxerr, bec.txerr, |
| FIELD_GET(REG_ERR_CAPT_ERR_TYPE, err_capt_alc), |
| FIELD_GET(REG_ERR_CAPT_ERR_POS, err_capt_alc), |
| FIELD_GET(REG_ERR_CAPT_ALC_ID_FIELD, err_capt_alc), |
| FIELD_GET(REG_ERR_CAPT_ALC_BIT, err_capt_alc)); |
| |
| skb = alloc_can_err_skb(ndev, &cf); |
| |
| /* EWLI: error warning limit condition met |
| * FCSI: fault confinement state changed |
| * ALI: arbitration lost (just informative) |
| * BEI: bus error interrupt |
| */ |
| if (FIELD_GET(REG_INT_STAT_FCSI, isr) || FIELD_GET(REG_INT_STAT_EWLI, isr)) { |
| netdev_info(ndev, "state changes from %s to %s\n", |
| ctucan_state_to_str(priv->can.state), |
| ctucan_state_to_str(state)); |
| |
| if (priv->can.state == state) |
| netdev_warn(ndev, |
| "current and previous state is the same! (missed interrupt?)\n"); |
| |
| priv->can.state = state; |
| switch (state) { |
| case CAN_STATE_BUS_OFF: |
| priv->can.can_stats.bus_off++; |
| can_bus_off(ndev); |
| if (skb) |
| cf->can_id |= CAN_ERR_BUSOFF; |
| break; |
| case CAN_STATE_ERROR_PASSIVE: |
| priv->can.can_stats.error_passive++; |
| if (skb) { |
| cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; |
| cf->data[1] = (bec.rxerr > 127) ? |
| CAN_ERR_CRTL_RX_PASSIVE : |
| CAN_ERR_CRTL_TX_PASSIVE; |
| cf->data[6] = bec.txerr; |
| cf->data[7] = bec.rxerr; |
| } |
| break; |
| case CAN_STATE_ERROR_WARNING: |
| priv->can.can_stats.error_warning++; |
| if (skb) { |
| cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; |
| cf->data[1] |= (bec.txerr > bec.rxerr) ? |
| CAN_ERR_CRTL_TX_WARNING : |
| CAN_ERR_CRTL_RX_WARNING; |
| cf->data[6] = bec.txerr; |
| cf->data[7] = bec.rxerr; |
| } |
| break; |
| case CAN_STATE_ERROR_ACTIVE: |
| cf->can_id |= CAN_ERR_CNT; |
| cf->data[1] = CAN_ERR_CRTL_ACTIVE; |
| cf->data[6] = bec.txerr; |
| cf->data[7] = bec.rxerr; |
| break; |
| default: |
| netdev_warn(ndev, "unhandled error state (%d:%s)!\n", |
| state, ctucan_state_to_str(state)); |
| break; |
| } |
| } |
| |
| /* Check for Arbitration Lost interrupt */ |
| if (FIELD_GET(REG_INT_STAT_ALI, isr)) { |
| if (dologerr) |
| netdev_info(ndev, "arbitration lost\n"); |
| priv->can.can_stats.arbitration_lost++; |
| if (skb) { |
| cf->can_id |= CAN_ERR_LOSTARB; |
| cf->data[0] = CAN_ERR_LOSTARB_UNSPEC; |
| } |
| } |
| |
| /* Check for Bus Error interrupt */ |
| if (FIELD_GET(REG_INT_STAT_BEI, isr)) { |
| netdev_info(ndev, "bus error\n"); |
| priv->can.can_stats.bus_error++; |
| stats->rx_errors++; |
| if (skb) { |
| cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; |
| cf->data[2] = CAN_ERR_PROT_UNSPEC; |
| cf->data[3] = CAN_ERR_PROT_LOC_UNSPEC; |
| } |
| } |
| |
| if (skb) { |
| stats->rx_packets++; |
| stats->rx_bytes += cf->can_dlc; |
| netif_rx(skb); |
| } |
| } |
| |
| /** |
| * ctucan_rx_poll() - Poll routine for rx packets (NAPI) |
| * @napi: NAPI structure pointer |
| * @quota: Max number of rx packets to be processed. |
| * |
| * This is the poll routine for rx part. It will process the packets maximux quota value. |
| * |
| * Return: Number of packets received |
| */ |
| static int ctucan_rx_poll(struct napi_struct *napi, int quota) |
| { |
| struct net_device *ndev = napi->dev; |
| struct ctucan_priv *priv = netdev_priv(ndev); |
| int work_done = 0; |
| u32 status; |
| u32 framecnt; |
| int res = 1; |
| |
| framecnt = FIELD_GET(REG_RX_STATUS_RXFRC, ctucan_read32(priv, CTUCANFD_RX_STATUS)); |
| while (framecnt && work_done < quota && res > 0) { |
| res = ctucan_rx(ndev); |
| work_done++; |
| framecnt = FIELD_GET(REG_RX_STATUS_RXFRC, ctucan_read32(priv, CTUCANFD_RX_STATUS)); |
| } |
| |
| /* Check for RX FIFO Overflow */ |
| status = ctucan_read32(priv, CTUCANFD_STATUS); |
| if (FIELD_GET(REG_STATUS_DOR, status)) { |
| struct net_device_stats *stats = &ndev->stats; |
| struct can_frame *cf; |
| struct sk_buff *skb; |
| |
| netdev_info(ndev, "rx_poll: rx fifo overflow\n"); |
| stats->rx_over_errors++; |
| stats->rx_errors++; |
| skb = alloc_can_err_skb(ndev, &cf); |
| if (skb) { |
| cf->can_id |= CAN_ERR_CRTL; |
| cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW; |
| stats->rx_packets++; |
| stats->rx_bytes += cf->can_dlc; |
| netif_rx(skb); |
| } |
| |
| /* Clear Data Overrun */ |
| ctucan_write32(priv, CTUCANFD_COMMAND, REG_COMMAND_CDO); |
| } |
| |
| if (!framecnt && res != 0) { |
| if (napi_complete_done(napi, work_done)) { |
| /* Clear and enable RBNEI. It is level-triggered, so |
| * there is no race condition. |
| */ |
| ctucan_write32(priv, CTUCANFD_INT_STAT, REG_INT_STAT_RBNEI); |
| ctucan_write32(priv, CTUCANFD_INT_MASK_CLR, REG_INT_STAT_RBNEI); |
| } |
| } |
| |
| return work_done; |
| } |
| |
| /** |
| * ctucan_rotate_txb_prio() - Rotates priorities of TXT Buffers |
| * @ndev: net_device pointer |
| */ |
| static void ctucan_rotate_txb_prio(struct net_device *ndev) |
| { |
| struct ctucan_priv *priv = netdev_priv(ndev); |
| u32 prio = priv->txb_prio; |
| |
| prio = (prio << 4) | ((prio >> ((priv->ntxbufs - 1) * 4)) & 0xF); |
| ctucan_netdev_dbg(ndev, "%s: from 0x%08x to 0x%08x\n", __func__, priv->txb_prio, prio); |
| priv->txb_prio = prio; |
| ctucan_write32(priv, CTUCANFD_TX_PRIORITY, prio); |
| } |
| |
| /** |
| * ctucan_tx_interrupt() - Tx done Isr |
| * @ndev: net_device pointer |
| */ |
| static void ctucan_tx_interrupt(struct net_device *ndev) |
| { |
| struct ctucan_priv *priv = netdev_priv(ndev); |
| struct net_device_stats *stats = &ndev->stats; |
| bool first = true; |
| bool some_buffers_processed; |
| unsigned long flags; |
| enum ctucan_txtb_status txtb_status; |
| u32 txtb_id; |
| |
| /* read tx_status |
| * if txb[n].finished (bit 2) |
| * if ok -> echo |
| * if error / aborted -> ?? (find how to handle oneshot mode) |
| * txb_tail++ |
| */ |
| do { |
| spin_lock_irqsave(&priv->tx_lock, flags); |
| |
| some_buffers_processed = false; |
| while ((int)(priv->txb_head - priv->txb_tail) > 0) { |
| txtb_id = priv->txb_tail % priv->ntxbufs; |
| txtb_status = ctucan_get_tx_status(priv, txtb_id); |
| |
| ctucan_netdev_dbg(ndev, "TXI: TXB#%u: status 0x%x\n", txtb_id, txtb_status); |
| |
| switch (txtb_status) { |
| case TXT_TOK: |
| ctucan_netdev_dbg(ndev, "TXT_OK\n"); |
| stats->tx_bytes += can_get_echo_skb(ndev, txtb_id, NULL); |
| stats->tx_packets++; |
| break; |
| case TXT_ERR: |
| /* This indicated that retransmit limit has been reached. Obviously |
| * we should not echo the frame, but also not indicate any kind of |
| * error. If desired, it was already reported (possible multiple |
| * times) on each arbitration lost. |
| */ |
| netdev_warn(ndev, "TXB in Error state\n"); |
| can_free_echo_skb(ndev, txtb_id, NULL); |
| stats->tx_dropped++; |
| break; |
| case TXT_ABT: |
| /* Same as for TXT_ERR, only with different cause. We *could* |
| * re-queue the frame, but multiqueue/abort is not supported yet |
| * anyway. |
| */ |
| netdev_warn(ndev, "TXB in Aborted state\n"); |
| can_free_echo_skb(ndev, txtb_id, NULL); |
| stats->tx_dropped++; |
| break; |
| default: |
| /* Bug only if the first buffer is not finished, otherwise it is |
| * pretty much expected. |
| */ |
| if (first) { |
| netdev_err(ndev, |
| "BUG: TXB#%u not in a finished state (0x%x)!\n", |
| txtb_id, txtb_status); |
| spin_unlock_irqrestore(&priv->tx_lock, flags); |
| /* do not clear nor wake */ |
| return; |
| } |
| goto clear; |
| } |
| priv->txb_tail++; |
| first = false; |
| some_buffers_processed = true; |
| /* Adjust priorities *before* marking the buffer as empty. */ |
| ctucan_rotate_txb_prio(ndev); |
| ctucan_give_txtb_cmd(priv, TXT_CMD_SET_EMPTY, txtb_id); |
| } |
| clear: |
| spin_unlock_irqrestore(&priv->tx_lock, flags); |
| |
| /* If no buffers were processed this time, we cannot clear - that would introduce |
| * a race condition. |
| */ |
| if (some_buffers_processed) { |
| /* Clear the interrupt again. We do not want to receive again interrupt for |
| * the buffer already handled. If it is the last finished one then it would |
| * cause log of spurious interrupt. |
| */ |
| ctucan_write32(priv, CTUCANFD_INT_STAT, REG_INT_STAT_TXBHCI); |
| } |
| } while (some_buffers_processed); |
| |
| spin_lock_irqsave(&priv->tx_lock, flags); |
| |
| /* Check if at least one TX buffer is free */ |
| if (CTU_CAN_FD_TXTNF(priv)) |
| netif_wake_queue(ndev); |
| |
| spin_unlock_irqrestore(&priv->tx_lock, flags); |
| } |
| |
| /** |
| * ctucan_interrupt() - CAN Isr |
| * @irq: irq number |
| * @dev_id: device id pointer |
| * |
| * This is the CTU CAN FD ISR. It checks for the type of interrupt |
| * and invokes the corresponding ISR. |
| * |
| * Return: |
| * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise |
| */ |
| static irqreturn_t ctucan_interrupt(int irq, void *dev_id) |
| { |
| struct net_device *ndev = (struct net_device *)dev_id; |
| struct ctucan_priv *priv = netdev_priv(ndev); |
| u32 isr, icr; |
| u32 imask; |
| int irq_loops; |
| |
| for (irq_loops = 0; irq_loops < 10000; irq_loops++) { |
| /* Get the interrupt status */ |
| isr = ctucan_read32(priv, CTUCANFD_INT_STAT); |
| |
| if (!isr) |
| return irq_loops ? IRQ_HANDLED : IRQ_NONE; |
| |
| /* Receive Buffer Not Empty Interrupt */ |
| if (FIELD_GET(REG_INT_STAT_RBNEI, isr)) { |
| ctucan_netdev_dbg(ndev, "RXBNEI\n"); |
| /* Mask RXBNEI the first, then clear interrupt and schedule NAPI. Even if |
| * another IRQ fires, RBNEI will always be 0 (masked). |
| */ |
| icr = REG_INT_STAT_RBNEI; |
| ctucan_write32(priv, CTUCANFD_INT_MASK_SET, icr); |
| ctucan_write32(priv, CTUCANFD_INT_STAT, icr); |
| napi_schedule(&priv->napi); |
| } |
| |
| /* TXT Buffer HW Command Interrupt */ |
| if (FIELD_GET(REG_INT_STAT_TXBHCI, isr)) { |
| ctucan_netdev_dbg(ndev, "TXBHCI\n"); |
| /* Cleared inside */ |
| ctucan_tx_interrupt(ndev); |
| } |
| |
| /* Error interrupts */ |
| if (FIELD_GET(REG_INT_STAT_EWLI, isr) || |
| FIELD_GET(REG_INT_STAT_FCSI, isr) || |
| FIELD_GET(REG_INT_STAT_ALI, isr)) { |
| icr = isr & (REG_INT_STAT_EWLI | REG_INT_STAT_FCSI | REG_INT_STAT_ALI); |
| |
| ctucan_netdev_dbg(ndev, "some ERR interrupt: clearing 0x%08x\n", icr); |
| ctucan_write32(priv, CTUCANFD_INT_STAT, icr); |
| ctucan_err_interrupt(ndev, isr); |
| } |
| /* Ignore RI, TI, LFI, RFI, BSI */ |
| } |
| |
| netdev_err(ndev, "%s: stuck interrupt (isr=0x%08x), stopping\n", __func__, isr); |
| |
| if (FIELD_GET(REG_INT_STAT_TXBHCI, isr)) { |
| int i; |
| |
| netdev_err(ndev, "txb_head=0x%08x txb_tail=0x%08x\n", |
| priv->txb_head, priv->txb_tail); |
| for (i = 0; i < priv->ntxbufs; i++) { |
| u32 status = ctucan_get_tx_status(priv, i); |
| |
| netdev_err(ndev, "txb[%d] txb status=0x%08x\n", i, status); |
| } |
| } |
| |
| imask = 0xffffffff; |
| ctucan_write32(priv, CTUCANFD_INT_ENA_CLR, imask); |
| ctucan_write32(priv, CTUCANFD_INT_MASK_SET, imask); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * ctucan_chip_stop() - Driver stop routine |
| * @ndev: Pointer to net_device structure |
| * |
| * This is the drivers stop routine. It will disable the |
| * interrupts and disable the controller. |
| */ |
| static void ctucan_chip_stop(struct net_device *ndev) |
| { |
| struct ctucan_priv *priv = netdev_priv(ndev); |
| u32 mask = 0xffffffff; |
| u32 mode; |
| |
| /* Disable interrupts and disable CAN */ |
| ctucan_write32(priv, CTUCANFD_INT_ENA_CLR, mask); |
| ctucan_write32(priv, CTUCANFD_INT_MASK_SET, mask); |
| mode = ctucan_read32(priv, CTUCANFD_MODE); |
| mode &= ~REG_MODE_ENA; |
| ctucan_write32(priv, CTUCANFD_MODE, mode); |
| |
| priv->can.state = CAN_STATE_STOPPED; |
| } |
| |
| /** |
| * ctucan_open() - Driver open routine |
| * @ndev: Pointer to net_device structure |
| * |
| * This is the driver open routine. |
| * Return: 0 on success and failure value on error |
| */ |
| static int ctucan_open(struct net_device *ndev) |
| { |
| struct ctucan_priv *priv = netdev_priv(ndev); |
| int ret; |
| |
| ret = pm_runtime_get_sync(priv->dev); |
| if (ret < 0) { |
| netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n", |
| __func__, ret); |
| pm_runtime_put_noidle(priv->dev); |
| return ret; |
| } |
| |
| ret = ctucan_reset(ndev); |
| if (ret < 0) |
| goto err_reset; |
| |
| /* Common open */ |
| ret = open_candev(ndev); |
| if (ret) { |
| netdev_warn(ndev, "open_candev failed!\n"); |
| goto err_open; |
| } |
| |
| ret = request_irq(ndev->irq, ctucan_interrupt, priv->irq_flags, ndev->name, ndev); |
| if (ret < 0) { |
| netdev_err(ndev, "irq allocation for CAN failed\n"); |
| goto err_irq; |
| } |
| |
| ret = ctucan_chip_start(ndev); |
| if (ret < 0) { |
| netdev_err(ndev, "ctucan_chip_start failed!\n"); |
| goto err_chip_start; |
| } |
| |
| netdev_info(ndev, "ctu_can_fd device registered\n"); |
| napi_enable(&priv->napi); |
| netif_start_queue(ndev); |
| |
| return 0; |
| |
| err_chip_start: |
| free_irq(ndev->irq, ndev); |
| err_irq: |
| close_candev(ndev); |
| err_open: |
| err_reset: |
| pm_runtime_put(priv->dev); |
| |
| return ret; |
| } |
| |
| /** |
| * ctucan_close() - Driver close routine |
| * @ndev: Pointer to net_device structure |
| * |
| * Return: 0 always |
| */ |
| static int ctucan_close(struct net_device *ndev) |
| { |
| struct ctucan_priv *priv = netdev_priv(ndev); |
| |
| netif_stop_queue(ndev); |
| napi_disable(&priv->napi); |
| ctucan_chip_stop(ndev); |
| free_irq(ndev->irq, ndev); |
| close_candev(ndev); |
| |
| pm_runtime_put(priv->dev); |
| |
| return 0; |
| } |
| |
| /** |
| * ctucan_get_berr_counter() - error counter routine |
| * @ndev: Pointer to net_device structure |
| * @bec: Pointer to can_berr_counter structure |
| * |
| * This is the driver error counter routine. |
| * Return: 0 on success and failure value on error |
| */ |
| static int ctucan_get_berr_counter(const struct net_device *ndev, struct can_berr_counter *bec) |
| { |
| struct ctucan_priv *priv = netdev_priv(ndev); |
| int ret; |
| |
| ret = pm_runtime_get_sync(priv->dev); |
| if (ret < 0) { |
| netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n", __func__, ret); |
| pm_runtime_put_noidle(priv->dev); |
| return ret; |
| } |
| |
| ctucan_get_rec_tec(priv, bec); |
| pm_runtime_put(priv->dev); |
| |
| return 0; |
| } |
| |
| static const struct net_device_ops ctucan_netdev_ops = { |
| .ndo_open = ctucan_open, |
| .ndo_stop = ctucan_close, |
| .ndo_start_xmit = ctucan_start_xmit, |
| .ndo_change_mtu = can_change_mtu, |
| }; |
| |
| static const struct ethtool_ops ctucan_ethtool_ops = { |
| .get_ts_info = ethtool_op_get_ts_info, |
| }; |
| |
| int ctucan_suspend(struct device *dev) |
| { |
| struct net_device *ndev = dev_get_drvdata(dev); |
| struct ctucan_priv *priv = netdev_priv(ndev); |
| |
| if (netif_running(ndev)) { |
| netif_stop_queue(ndev); |
| netif_device_detach(ndev); |
| } |
| |
| priv->can.state = CAN_STATE_SLEEPING; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ctucan_suspend); |
| |
| int ctucan_resume(struct device *dev) |
| { |
| struct net_device *ndev = dev_get_drvdata(dev); |
| struct ctucan_priv *priv = netdev_priv(ndev); |
| |
| priv->can.state = CAN_STATE_ERROR_ACTIVE; |
| |
| if (netif_running(ndev)) { |
| netif_device_attach(ndev); |
| netif_start_queue(ndev); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ctucan_resume); |
| |
| int ctucan_probe_common(struct device *dev, void __iomem *addr, int irq, unsigned int ntxbufs, |
| unsigned long can_clk_rate, int pm_enable_call, |
| void (*set_drvdata_fnc)(struct device *dev, struct net_device *ndev)) |
| { |
| struct ctucan_priv *priv; |
| struct net_device *ndev; |
| int ret; |
| |
| /* Create a CAN device instance */ |
| ndev = alloc_candev(sizeof(struct ctucan_priv), ntxbufs); |
| if (!ndev) |
| return -ENOMEM; |
| |
| priv = netdev_priv(ndev); |
| spin_lock_init(&priv->tx_lock); |
| INIT_LIST_HEAD(&priv->peers_on_pdev); |
| priv->ntxbufs = ntxbufs; |
| priv->dev = dev; |
| priv->can.bittiming_const = &ctu_can_fd_bit_timing_max; |
| priv->can.data_bittiming_const = &ctu_can_fd_bit_timing_data_max; |
| priv->can.do_set_mode = ctucan_do_set_mode; |
| |
| /* Needed for timing adjustment to be performed as soon as possible */ |
| priv->can.do_set_bittiming = ctucan_set_bittiming; |
| priv->can.do_set_data_bittiming = ctucan_set_data_bittiming; |
| |
| priv->can.do_get_berr_counter = ctucan_get_berr_counter; |
| priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
| | CAN_CTRLMODE_LISTENONLY |
| | CAN_CTRLMODE_FD |
| | CAN_CTRLMODE_PRESUME_ACK |
| | CAN_CTRLMODE_BERR_REPORTING |
| | CAN_CTRLMODE_FD_NON_ISO |
| | CAN_CTRLMODE_ONE_SHOT; |
| priv->mem_base = addr; |
| |
| /* Get IRQ for the device */ |
| ndev->irq = irq; |
| ndev->flags |= IFF_ECHO; /* We support local echo */ |
| |
| if (set_drvdata_fnc) |
| set_drvdata_fnc(dev, ndev); |
| SET_NETDEV_DEV(ndev, dev); |
| ndev->netdev_ops = &ctucan_netdev_ops; |
| ndev->ethtool_ops = &ctucan_ethtool_ops; |
| |
| /* Getting the can_clk info */ |
| if (!can_clk_rate) { |
| priv->can_clk = devm_clk_get(dev, NULL); |
| if (IS_ERR(priv->can_clk)) { |
| dev_err(dev, "Device clock not found.\n"); |
| ret = PTR_ERR(priv->can_clk); |
| goto err_free; |
| } |
| can_clk_rate = clk_get_rate(priv->can_clk); |
| } |
| |
| priv->write_reg = ctucan_write32_le; |
| priv->read_reg = ctucan_read32_le; |
| |
| if (pm_enable_call) |
| pm_runtime_enable(dev); |
| ret = pm_runtime_get_sync(dev); |
| if (ret < 0) { |
| netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n", |
| __func__, ret); |
| pm_runtime_put_noidle(priv->dev); |
| goto err_pmdisable; |
| } |
| |
| /* Check for big-endianity and set according IO-accessors */ |
| if ((ctucan_read32(priv, CTUCANFD_DEVICE_ID) & 0xFFFF) != CTUCANFD_ID) { |
| priv->write_reg = ctucan_write32_be; |
| priv->read_reg = ctucan_read32_be; |
| if ((ctucan_read32(priv, CTUCANFD_DEVICE_ID) & 0xFFFF) != CTUCANFD_ID) { |
| netdev_err(ndev, "CTU_CAN_FD signature not found\n"); |
| ret = -ENODEV; |
| goto err_deviceoff; |
| } |
| } |
| |
| ret = ctucan_reset(ndev); |
| if (ret < 0) |
| goto err_deviceoff; |
| |
| priv->can.clock.freq = can_clk_rate; |
| |
| netif_napi_add(ndev, &priv->napi, ctucan_rx_poll); |
| |
| ret = register_candev(ndev); |
| if (ret) { |
| dev_err(dev, "fail to register failed (err=%d)\n", ret); |
| goto err_deviceoff; |
| } |
| |
| pm_runtime_put(dev); |
| |
| netdev_dbg(ndev, "mem_base=0x%p irq=%d clock=%d, no. of txt buffers:%d\n", |
| priv->mem_base, ndev->irq, priv->can.clock.freq, priv->ntxbufs); |
| |
| return 0; |
| |
| err_deviceoff: |
| pm_runtime_put(priv->dev); |
| err_pmdisable: |
| if (pm_enable_call) |
| pm_runtime_disable(dev); |
| err_free: |
| list_del_init(&priv->peers_on_pdev); |
| free_candev(ndev); |
| return ret; |
| } |
| EXPORT_SYMBOL(ctucan_probe_common); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Martin Jerabek <martin.jerabek01@gmail.com>"); |
| MODULE_AUTHOR("Pavel Pisa <pisa@cmp.felk.cvut.cz>"); |
| MODULE_AUTHOR("Ondrej Ille <ondrej.ille@gmail.com>"); |
| MODULE_DESCRIPTION("CTU CAN FD interface"); |