| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * davinci_nand.c - NAND Flash Driver for DaVinci family chips |
| * |
| * Copyright © 2006 Texas Instruments. |
| * |
| * Port to 2.6.23 Copyright © 2008 by: |
| * Sander Huijsen <Shuijsen@optelecom-nkf.com> |
| * Troy Kisky <troy.kisky@boundarydevices.com> |
| * Dirk Behme <Dirk.Behme@gmail.com> |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/platform_device.h> |
| #include <linux/err.h> |
| #include <linux/iopoll.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/slab.h> |
| #include <linux/of.h> |
| |
| #include <linux/platform_data/mtd-davinci.h> |
| #include <linux/platform_data/mtd-davinci-aemif.h> |
| |
| /* |
| * This is a device driver for the NAND flash controller found on the |
| * various DaVinci family chips. It handles up to four SoC chipselects, |
| * and some flavors of secondary chipselect (e.g. based on A12) as used |
| * with multichip packages. |
| * |
| * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC |
| * available on chips like the DM355 and OMAP-L137 and needed with the |
| * more error-prone MLC NAND chips. |
| * |
| * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY |
| * outputs in a "wire-AND" configuration, with no per-chip signals. |
| */ |
| struct davinci_nand_info { |
| struct nand_controller controller; |
| struct nand_chip chip; |
| |
| struct platform_device *pdev; |
| |
| bool is_readmode; |
| |
| void __iomem *base; |
| void __iomem *vaddr; |
| |
| void __iomem *current_cs; |
| |
| uint32_t mask_chipsel; |
| uint32_t mask_ale; |
| uint32_t mask_cle; |
| |
| uint32_t core_chipsel; |
| |
| struct davinci_aemif_timing *timing; |
| }; |
| |
| static DEFINE_SPINLOCK(davinci_nand_lock); |
| static bool ecc4_busy; |
| |
| static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd) |
| { |
| return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip); |
| } |
| |
| static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info, |
| int offset) |
| { |
| return __raw_readl(info->base + offset); |
| } |
| |
| static inline void davinci_nand_writel(struct davinci_nand_info *info, |
| int offset, unsigned long value) |
| { |
| __raw_writel(value, info->base + offset); |
| } |
| |
| /*----------------------------------------------------------------------*/ |
| |
| /* |
| * 1-bit hardware ECC ... context maintained for each core chipselect |
| */ |
| |
| static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd) |
| { |
| struct davinci_nand_info *info = to_davinci_nand(mtd); |
| |
| return davinci_nand_readl(info, NANDF1ECC_OFFSET |
| + 4 * info->core_chipsel); |
| } |
| |
| static void nand_davinci_hwctl_1bit(struct nand_chip *chip, int mode) |
| { |
| struct davinci_nand_info *info; |
| uint32_t nandcfr; |
| unsigned long flags; |
| |
| info = to_davinci_nand(nand_to_mtd(chip)); |
| |
| /* Reset ECC hardware */ |
| nand_davinci_readecc_1bit(nand_to_mtd(chip)); |
| |
| spin_lock_irqsave(&davinci_nand_lock, flags); |
| |
| /* Restart ECC hardware */ |
| nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET); |
| nandcfr |= BIT(8 + info->core_chipsel); |
| davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr); |
| |
| spin_unlock_irqrestore(&davinci_nand_lock, flags); |
| } |
| |
| /* |
| * Read hardware ECC value and pack into three bytes |
| */ |
| static int nand_davinci_calculate_1bit(struct nand_chip *chip, |
| const u_char *dat, u_char *ecc_code) |
| { |
| unsigned int ecc_val = nand_davinci_readecc_1bit(nand_to_mtd(chip)); |
| unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4); |
| |
| /* invert so that erased block ecc is correct */ |
| ecc24 = ~ecc24; |
| ecc_code[0] = (u_char)(ecc24); |
| ecc_code[1] = (u_char)(ecc24 >> 8); |
| ecc_code[2] = (u_char)(ecc24 >> 16); |
| |
| return 0; |
| } |
| |
| static int nand_davinci_correct_1bit(struct nand_chip *chip, u_char *dat, |
| u_char *read_ecc, u_char *calc_ecc) |
| { |
| uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) | |
| (read_ecc[2] << 16); |
| uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) | |
| (calc_ecc[2] << 16); |
| uint32_t diff = eccCalc ^ eccNand; |
| |
| if (diff) { |
| if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) { |
| /* Correctable error */ |
| if ((diff >> (12 + 3)) < chip->ecc.size) { |
| dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7); |
| return 1; |
| } else { |
| return -EBADMSG; |
| } |
| } else if (!(diff & (diff - 1))) { |
| /* Single bit ECC error in the ECC itself, |
| * nothing to fix */ |
| return 1; |
| } else { |
| /* Uncorrectable error */ |
| return -EBADMSG; |
| } |
| |
| } |
| return 0; |
| } |
| |
| /*----------------------------------------------------------------------*/ |
| |
| /* |
| * 4-bit hardware ECC ... context maintained over entire AEMIF |
| * |
| * This is a syndrome engine, but we avoid NAND_ECC_PLACEMENT_INTERLEAVED |
| * since that forces use of a problematic "infix OOB" layout. |
| * Among other things, it trashes manufacturer bad block markers. |
| * Also, and specific to this hardware, it ECC-protects the "prepad" |
| * in the OOB ... while having ECC protection for parts of OOB would |
| * seem useful, the current MTD stack sometimes wants to update the |
| * OOB without recomputing ECC. |
| */ |
| |
| static void nand_davinci_hwctl_4bit(struct nand_chip *chip, int mode) |
| { |
| struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip)); |
| unsigned long flags; |
| u32 val; |
| |
| /* Reset ECC hardware */ |
| davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET); |
| |
| spin_lock_irqsave(&davinci_nand_lock, flags); |
| |
| /* Start 4-bit ECC calculation for read/write */ |
| val = davinci_nand_readl(info, NANDFCR_OFFSET); |
| val &= ~(0x03 << 4); |
| val |= (info->core_chipsel << 4) | BIT(12); |
| davinci_nand_writel(info, NANDFCR_OFFSET, val); |
| |
| info->is_readmode = (mode == NAND_ECC_READ); |
| |
| spin_unlock_irqrestore(&davinci_nand_lock, flags); |
| } |
| |
| /* Read raw ECC code after writing to NAND. */ |
| static void |
| nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4]) |
| { |
| const u32 mask = 0x03ff03ff; |
| |
| code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask; |
| code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask; |
| code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask; |
| code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask; |
| } |
| |
| /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */ |
| static int nand_davinci_calculate_4bit(struct nand_chip *chip, |
| const u_char *dat, u_char *ecc_code) |
| { |
| struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip)); |
| u32 raw_ecc[4], *p; |
| unsigned i; |
| |
| /* After a read, terminate ECC calculation by a dummy read |
| * of some 4-bit ECC register. ECC covers everything that |
| * was read; correct() just uses the hardware state, so |
| * ecc_code is not needed. |
| */ |
| if (info->is_readmode) { |
| davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET); |
| return 0; |
| } |
| |
| /* Pack eight raw 10-bit ecc values into ten bytes, making |
| * two passes which each convert four values (in upper and |
| * lower halves of two 32-bit words) into five bytes. The |
| * ROM boot loader uses this same packing scheme. |
| */ |
| nand_davinci_readecc_4bit(info, raw_ecc); |
| for (i = 0, p = raw_ecc; i < 2; i++, p += 2) { |
| *ecc_code++ = p[0] & 0xff; |
| *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc); |
| *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0); |
| *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0); |
| *ecc_code++ = (p[1] >> 18) & 0xff; |
| } |
| |
| return 0; |
| } |
| |
| /* Correct up to 4 bits in data we just read, using state left in the |
| * hardware plus the ecc_code computed when it was first written. |
| */ |
| static int nand_davinci_correct_4bit(struct nand_chip *chip, u_char *data, |
| u_char *ecc_code, u_char *null) |
| { |
| int i; |
| struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip)); |
| unsigned short ecc10[8]; |
| unsigned short *ecc16; |
| u32 syndrome[4]; |
| u32 ecc_state; |
| unsigned num_errors, corrected; |
| unsigned long timeo; |
| |
| /* Unpack ten bytes into eight 10 bit values. We know we're |
| * little-endian, and use type punning for less shifting/masking. |
| */ |
| if (WARN_ON(0x01 & (uintptr_t)ecc_code)) |
| return -EINVAL; |
| ecc16 = (unsigned short *)ecc_code; |
| |
| ecc10[0] = (ecc16[0] >> 0) & 0x3ff; |
| ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0); |
| ecc10[2] = (ecc16[1] >> 4) & 0x3ff; |
| ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc); |
| ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300); |
| ecc10[5] = (ecc16[3] >> 2) & 0x3ff; |
| ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0); |
| ecc10[7] = (ecc16[4] >> 6) & 0x3ff; |
| |
| /* Tell ECC controller about the expected ECC codes. */ |
| for (i = 7; i >= 0; i--) |
| davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]); |
| |
| /* Allow time for syndrome calculation ... then read it. |
| * A syndrome of all zeroes 0 means no detected errors. |
| */ |
| davinci_nand_readl(info, NANDFSR_OFFSET); |
| nand_davinci_readecc_4bit(info, syndrome); |
| if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3])) |
| return 0; |
| |
| /* |
| * Clear any previous address calculation by doing a dummy read of an |
| * error address register. |
| */ |
| davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET); |
| |
| /* Start address calculation, and wait for it to complete. |
| * We _could_ start reading more data while this is working, |
| * to speed up the overall page read. |
| */ |
| davinci_nand_writel(info, NANDFCR_OFFSET, |
| davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13)); |
| |
| /* |
| * ECC_STATE field reads 0x3 (Error correction complete) immediately |
| * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately |
| * begin trying to poll for the state, you may fall right out of your |
| * loop without any of the correction calculations having taken place. |
| * The recommendation from the hardware team is to initially delay as |
| * long as ECC_STATE reads less than 4. After that, ECC HW has entered |
| * correction state. |
| */ |
| timeo = jiffies + usecs_to_jiffies(100); |
| do { |
| ecc_state = (davinci_nand_readl(info, |
| NANDFSR_OFFSET) >> 8) & 0x0f; |
| cpu_relax(); |
| } while ((ecc_state < 4) && time_before(jiffies, timeo)); |
| |
| for (;;) { |
| u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET); |
| |
| switch ((fsr >> 8) & 0x0f) { |
| case 0: /* no error, should not happen */ |
| davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET); |
| return 0; |
| case 1: /* five or more errors detected */ |
| davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET); |
| return -EBADMSG; |
| case 2: /* error addresses computed */ |
| case 3: |
| num_errors = 1 + ((fsr >> 16) & 0x03); |
| goto correct; |
| default: /* still working on it */ |
| cpu_relax(); |
| continue; |
| } |
| } |
| |
| correct: |
| /* correct each error */ |
| for (i = 0, corrected = 0; i < num_errors; i++) { |
| int error_address, error_value; |
| |
| if (i > 1) { |
| error_address = davinci_nand_readl(info, |
| NAND_ERR_ADD2_OFFSET); |
| error_value = davinci_nand_readl(info, |
| NAND_ERR_ERRVAL2_OFFSET); |
| } else { |
| error_address = davinci_nand_readl(info, |
| NAND_ERR_ADD1_OFFSET); |
| error_value = davinci_nand_readl(info, |
| NAND_ERR_ERRVAL1_OFFSET); |
| } |
| |
| if (i & 1) { |
| error_address >>= 16; |
| error_value >>= 16; |
| } |
| error_address &= 0x3ff; |
| error_address = (512 + 7) - error_address; |
| |
| if (error_address < 512) { |
| data[error_address] ^= error_value; |
| corrected++; |
| } |
| } |
| |
| return corrected; |
| } |
| |
| /*----------------------------------------------------------------------*/ |
| |
| /* An ECC layout for using 4-bit ECC with small-page flash, storing |
| * ten ECC bytes plus the manufacturer's bad block marker byte, and |
| * and not overlapping the default BBT markers. |
| */ |
| static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| if (section > 2) |
| return -ERANGE; |
| |
| if (!section) { |
| oobregion->offset = 0; |
| oobregion->length = 5; |
| } else if (section == 1) { |
| oobregion->offset = 6; |
| oobregion->length = 2; |
| } else { |
| oobregion->offset = 13; |
| oobregion->length = 3; |
| } |
| |
| return 0; |
| } |
| |
| static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| if (section > 1) |
| return -ERANGE; |
| |
| if (!section) { |
| oobregion->offset = 8; |
| oobregion->length = 5; |
| } else { |
| oobregion->offset = 16; |
| oobregion->length = mtd->oobsize - 16; |
| } |
| |
| return 0; |
| } |
| |
| static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = { |
| .ecc = hwecc4_ooblayout_small_ecc, |
| .free = hwecc4_ooblayout_small_free, |
| }; |
| |
| #if defined(CONFIG_OF) |
| static const struct of_device_id davinci_nand_of_match[] = { |
| {.compatible = "ti,davinci-nand", }, |
| {.compatible = "ti,keystone-nand", }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, davinci_nand_of_match); |
| |
| static struct davinci_nand_pdata |
| *nand_davinci_get_pdata(struct platform_device *pdev) |
| { |
| if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) { |
| struct davinci_nand_pdata *pdata; |
| const char *mode; |
| u32 prop; |
| |
| pdata = devm_kzalloc(&pdev->dev, |
| sizeof(struct davinci_nand_pdata), |
| GFP_KERNEL); |
| pdev->dev.platform_data = pdata; |
| if (!pdata) |
| return ERR_PTR(-ENOMEM); |
| if (!of_property_read_u32(pdev->dev.of_node, |
| "ti,davinci-chipselect", &prop)) |
| pdata->core_chipsel = prop; |
| else |
| return ERR_PTR(-EINVAL); |
| |
| if (!of_property_read_u32(pdev->dev.of_node, |
| "ti,davinci-mask-ale", &prop)) |
| pdata->mask_ale = prop; |
| if (!of_property_read_u32(pdev->dev.of_node, |
| "ti,davinci-mask-cle", &prop)) |
| pdata->mask_cle = prop; |
| if (!of_property_read_u32(pdev->dev.of_node, |
| "ti,davinci-mask-chipsel", &prop)) |
| pdata->mask_chipsel = prop; |
| if (!of_property_read_string(pdev->dev.of_node, |
| "ti,davinci-ecc-mode", &mode)) { |
| if (!strncmp("none", mode, 4)) |
| pdata->engine_type = NAND_ECC_ENGINE_TYPE_NONE; |
| if (!strncmp("soft", mode, 4)) |
| pdata->engine_type = NAND_ECC_ENGINE_TYPE_SOFT; |
| if (!strncmp("hw", mode, 2)) |
| pdata->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; |
| } |
| if (!of_property_read_u32(pdev->dev.of_node, |
| "ti,davinci-ecc-bits", &prop)) |
| pdata->ecc_bits = prop; |
| |
| if (!of_property_read_u32(pdev->dev.of_node, |
| "ti,davinci-nand-buswidth", &prop) && prop == 16) |
| pdata->options |= NAND_BUSWIDTH_16; |
| |
| if (of_property_read_bool(pdev->dev.of_node, |
| "ti,davinci-nand-use-bbt")) |
| pdata->bbt_options = NAND_BBT_USE_FLASH; |
| |
| /* |
| * Since kernel v4.8, this driver has been fixed to enable |
| * use of 4-bit hardware ECC with subpages and verified on |
| * TI's keystone EVMs (K2L, K2HK and K2E). |
| * However, in the interest of not breaking systems using |
| * existing UBI partitions, sub-page writes are not being |
| * (re)enabled. If you want to use subpage writes on Keystone |
| * platforms (i.e. do not have any existing UBI partitions), |
| * then use "ti,davinci-nand" as the compatible in your |
| * device-tree file. |
| */ |
| if (of_device_is_compatible(pdev->dev.of_node, |
| "ti,keystone-nand")) { |
| pdata->options |= NAND_NO_SUBPAGE_WRITE; |
| } |
| } |
| |
| return dev_get_platdata(&pdev->dev); |
| } |
| #else |
| static struct davinci_nand_pdata |
| *nand_davinci_get_pdata(struct platform_device *pdev) |
| { |
| return dev_get_platdata(&pdev->dev); |
| } |
| #endif |
| |
| static int davinci_nand_attach_chip(struct nand_chip *chip) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct davinci_nand_info *info = to_davinci_nand(mtd); |
| struct davinci_nand_pdata *pdata = nand_davinci_get_pdata(info->pdev); |
| int ret = 0; |
| |
| if (IS_ERR(pdata)) |
| return PTR_ERR(pdata); |
| |
| /* Use board-specific ECC config */ |
| chip->ecc.engine_type = pdata->engine_type; |
| chip->ecc.placement = pdata->ecc_placement; |
| |
| switch (chip->ecc.engine_type) { |
| case NAND_ECC_ENGINE_TYPE_NONE: |
| pdata->ecc_bits = 0; |
| break; |
| case NAND_ECC_ENGINE_TYPE_SOFT: |
| pdata->ecc_bits = 0; |
| /* |
| * This driver expects Hamming based ECC when engine_type is set |
| * to NAND_ECC_ENGINE_TYPE_SOFT. Force ecc.algo to |
| * NAND_ECC_ALGO_HAMMING to avoid adding an extra ->ecc_algo |
| * field to davinci_nand_pdata. |
| */ |
| chip->ecc.algo = NAND_ECC_ALGO_HAMMING; |
| break; |
| case NAND_ECC_ENGINE_TYPE_ON_HOST: |
| if (pdata->ecc_bits == 4) { |
| int chunks = mtd->writesize / 512; |
| |
| if (!chunks || mtd->oobsize < 16) { |
| dev_dbg(&info->pdev->dev, "too small\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * No sanity checks: CPUs must support this, |
| * and the chips may not use NAND_BUSWIDTH_16. |
| */ |
| |
| /* No sharing 4-bit hardware between chipselects yet */ |
| spin_lock_irq(&davinci_nand_lock); |
| if (ecc4_busy) |
| ret = -EBUSY; |
| else |
| ecc4_busy = true; |
| spin_unlock_irq(&davinci_nand_lock); |
| |
| if (ret == -EBUSY) |
| return ret; |
| |
| chip->ecc.calculate = nand_davinci_calculate_4bit; |
| chip->ecc.correct = nand_davinci_correct_4bit; |
| chip->ecc.hwctl = nand_davinci_hwctl_4bit; |
| chip->ecc.bytes = 10; |
| chip->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK; |
| chip->ecc.algo = NAND_ECC_ALGO_BCH; |
| |
| /* |
| * Update ECC layout if needed ... for 1-bit HW ECC, the |
| * default is OK, but it allocates 6 bytes when only 3 |
| * are needed (for each 512 bytes). For 4-bit HW ECC, |
| * the default is not usable: 10 bytes needed, not 6. |
| * |
| * For small page chips, preserve the manufacturer's |
| * badblock marking data ... and make sure a flash BBT |
| * table marker fits in the free bytes. |
| */ |
| if (chunks == 1) { |
| mtd_set_ooblayout(mtd, |
| &hwecc4_small_ooblayout_ops); |
| } else if (chunks == 4 || chunks == 8) { |
| mtd_set_ooblayout(mtd, |
| nand_get_large_page_ooblayout()); |
| chip->ecc.read_page = nand_read_page_hwecc_oob_first; |
| } else { |
| return -EIO; |
| } |
| } else { |
| /* 1bit ecc hamming */ |
| chip->ecc.calculate = nand_davinci_calculate_1bit; |
| chip->ecc.correct = nand_davinci_correct_1bit; |
| chip->ecc.hwctl = nand_davinci_hwctl_1bit; |
| chip->ecc.bytes = 3; |
| chip->ecc.algo = NAND_ECC_ALGO_HAMMING; |
| } |
| chip->ecc.size = 512; |
| chip->ecc.strength = pdata->ecc_bits; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| static void nand_davinci_data_in(struct davinci_nand_info *info, void *buf, |
| unsigned int len, bool force_8bit) |
| { |
| u32 alignment = ((uintptr_t)buf | len) & 3; |
| |
| if (force_8bit || (alignment & 1)) |
| ioread8_rep(info->current_cs, buf, len); |
| else if (alignment & 3) |
| ioread16_rep(info->current_cs, buf, len >> 1); |
| else |
| ioread32_rep(info->current_cs, buf, len >> 2); |
| } |
| |
| static void nand_davinci_data_out(struct davinci_nand_info *info, |
| const void *buf, unsigned int len, |
| bool force_8bit) |
| { |
| u32 alignment = ((uintptr_t)buf | len) & 3; |
| |
| if (force_8bit || (alignment & 1)) |
| iowrite8_rep(info->current_cs, buf, len); |
| else if (alignment & 3) |
| iowrite16_rep(info->current_cs, buf, len >> 1); |
| else |
| iowrite32_rep(info->current_cs, buf, len >> 2); |
| } |
| |
| static int davinci_nand_exec_instr(struct davinci_nand_info *info, |
| const struct nand_op_instr *instr) |
| { |
| unsigned int i, timeout_us; |
| u32 status; |
| int ret; |
| |
| switch (instr->type) { |
| case NAND_OP_CMD_INSTR: |
| iowrite8(instr->ctx.cmd.opcode, |
| info->current_cs + info->mask_cle); |
| break; |
| |
| case NAND_OP_ADDR_INSTR: |
| for (i = 0; i < instr->ctx.addr.naddrs; i++) { |
| iowrite8(instr->ctx.addr.addrs[i], |
| info->current_cs + info->mask_ale); |
| } |
| break; |
| |
| case NAND_OP_DATA_IN_INSTR: |
| nand_davinci_data_in(info, instr->ctx.data.buf.in, |
| instr->ctx.data.len, |
| instr->ctx.data.force_8bit); |
| break; |
| |
| case NAND_OP_DATA_OUT_INSTR: |
| nand_davinci_data_out(info, instr->ctx.data.buf.out, |
| instr->ctx.data.len, |
| instr->ctx.data.force_8bit); |
| break; |
| |
| case NAND_OP_WAITRDY_INSTR: |
| timeout_us = instr->ctx.waitrdy.timeout_ms * 1000; |
| ret = readl_relaxed_poll_timeout(info->base + NANDFSR_OFFSET, |
| status, status & BIT(0), 100, |
| timeout_us); |
| if (ret) |
| return ret; |
| |
| break; |
| } |
| |
| if (instr->delay_ns) { |
| /* Dummy read to be sure that command is sent before ndelay starts */ |
| davinci_nand_readl(info, 0); |
| ndelay(instr->delay_ns); |
| } |
| |
| return 0; |
| } |
| |
| static int davinci_nand_exec_op(struct nand_chip *chip, |
| const struct nand_operation *op, |
| bool check_only) |
| { |
| struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip)); |
| unsigned int i; |
| |
| if (check_only) |
| return 0; |
| |
| info->current_cs = info->vaddr + (op->cs * info->mask_chipsel); |
| |
| for (i = 0; i < op->ninstrs; i++) { |
| int ret; |
| |
| ret = davinci_nand_exec_instr(info, &op->instrs[i]); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static const struct nand_controller_ops davinci_nand_controller_ops = { |
| .attach_chip = davinci_nand_attach_chip, |
| .exec_op = davinci_nand_exec_op, |
| }; |
| |
| static int nand_davinci_probe(struct platform_device *pdev) |
| { |
| struct davinci_nand_pdata *pdata; |
| struct davinci_nand_info *info; |
| struct resource *res1; |
| struct resource *res2; |
| void __iomem *vaddr; |
| void __iomem *base; |
| int ret; |
| uint32_t val; |
| struct mtd_info *mtd; |
| |
| pdata = nand_davinci_get_pdata(pdev); |
| if (IS_ERR(pdata)) |
| return PTR_ERR(pdata); |
| |
| /* insist on board-specific configuration */ |
| if (!pdata) |
| return -ENODEV; |
| |
| /* which external chipselect will we be managing? */ |
| if (pdata->core_chipsel > 3) |
| return -ENODEV; |
| |
| info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); |
| if (!info) |
| return -ENOMEM; |
| |
| platform_set_drvdata(pdev, info); |
| |
| res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1); |
| if (!res1 || !res2) { |
| dev_err(&pdev->dev, "resource missing\n"); |
| return -EINVAL; |
| } |
| |
| vaddr = devm_ioremap_resource(&pdev->dev, res1); |
| if (IS_ERR(vaddr)) |
| return PTR_ERR(vaddr); |
| |
| /* |
| * This registers range is used to setup NAND settings. In case with |
| * TI AEMIF driver, the same memory address range is requested already |
| * by AEMIF, so we cannot request it twice, just ioremap. |
| * The AEMIF and NAND drivers not use the same registers in this range. |
| */ |
| base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2)); |
| if (!base) { |
| dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2); |
| return -EADDRNOTAVAIL; |
| } |
| |
| info->pdev = pdev; |
| info->base = base; |
| info->vaddr = vaddr; |
| |
| mtd = nand_to_mtd(&info->chip); |
| mtd->dev.parent = &pdev->dev; |
| nand_set_flash_node(&info->chip, pdev->dev.of_node); |
| |
| /* options such as NAND_BBT_USE_FLASH */ |
| info->chip.bbt_options = pdata->bbt_options; |
| /* options such as 16-bit widths */ |
| info->chip.options = pdata->options; |
| info->chip.bbt_td = pdata->bbt_td; |
| info->chip.bbt_md = pdata->bbt_md; |
| info->timing = pdata->timing; |
| |
| info->current_cs = info->vaddr; |
| info->core_chipsel = pdata->core_chipsel; |
| info->mask_chipsel = pdata->mask_chipsel; |
| |
| /* use nandboot-capable ALE/CLE masks by default */ |
| info->mask_ale = pdata->mask_ale ? : MASK_ALE; |
| info->mask_cle = pdata->mask_cle ? : MASK_CLE; |
| |
| spin_lock_irq(&davinci_nand_lock); |
| |
| /* put CSxNAND into NAND mode */ |
| val = davinci_nand_readl(info, NANDFCR_OFFSET); |
| val |= BIT(info->core_chipsel); |
| davinci_nand_writel(info, NANDFCR_OFFSET, val); |
| |
| spin_unlock_irq(&davinci_nand_lock); |
| |
| /* Scan to find existence of the device(s) */ |
| nand_controller_init(&info->controller); |
| info->controller.ops = &davinci_nand_controller_ops; |
| info->chip.controller = &info->controller; |
| ret = nand_scan(&info->chip, pdata->mask_chipsel ? 2 : 1); |
| if (ret < 0) { |
| dev_dbg(&pdev->dev, "no NAND chip(s) found\n"); |
| return ret; |
| } |
| |
| if (pdata->parts) |
| ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts); |
| else |
| ret = mtd_device_register(mtd, NULL, 0); |
| if (ret < 0) |
| goto err_cleanup_nand; |
| |
| val = davinci_nand_readl(info, NRCSR_OFFSET); |
| dev_info(&pdev->dev, "controller rev. %d.%d\n", |
| (val >> 8) & 0xff, val & 0xff); |
| |
| return 0; |
| |
| err_cleanup_nand: |
| nand_cleanup(&info->chip); |
| |
| return ret; |
| } |
| |
| static void nand_davinci_remove(struct platform_device *pdev) |
| { |
| struct davinci_nand_info *info = platform_get_drvdata(pdev); |
| struct nand_chip *chip = &info->chip; |
| int ret; |
| |
| spin_lock_irq(&davinci_nand_lock); |
| if (chip->ecc.placement == NAND_ECC_PLACEMENT_INTERLEAVED) |
| ecc4_busy = false; |
| spin_unlock_irq(&davinci_nand_lock); |
| |
| ret = mtd_device_unregister(nand_to_mtd(chip)); |
| WARN_ON(ret); |
| nand_cleanup(chip); |
| } |
| |
| static struct platform_driver nand_davinci_driver = { |
| .probe = nand_davinci_probe, |
| .remove_new = nand_davinci_remove, |
| .driver = { |
| .name = "davinci_nand", |
| .of_match_table = of_match_ptr(davinci_nand_of_match), |
| }, |
| }; |
| MODULE_ALIAS("platform:davinci_nand"); |
| |
| module_platform_driver(nand_davinci_driver); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Texas Instruments"); |
| MODULE_DESCRIPTION("Davinci NAND flash driver"); |
| |