| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * NET3: Garbage Collector For AF_UNIX sockets |
| * |
| * Garbage Collector: |
| * Copyright (C) Barak A. Pearlmutter. |
| * |
| * Chopped about by Alan Cox 22/3/96 to make it fit the AF_UNIX socket problem. |
| * If it doesn't work blame me, it worked when Barak sent it. |
| * |
| * Assumptions: |
| * |
| * - object w/ a bit |
| * - free list |
| * |
| * Current optimizations: |
| * |
| * - explicit stack instead of recursion |
| * - tail recurse on first born instead of immediate push/pop |
| * - we gather the stuff that should not be killed into tree |
| * and stack is just a path from root to the current pointer. |
| * |
| * Future optimizations: |
| * |
| * - don't just push entire root set; process in place |
| * |
| * Fixes: |
| * Alan Cox 07 Sept 1997 Vmalloc internal stack as needed. |
| * Cope with changing max_files. |
| * Al Viro 11 Oct 1998 |
| * Graph may have cycles. That is, we can send the descriptor |
| * of foo to bar and vice versa. Current code chokes on that. |
| * Fix: move SCM_RIGHTS ones into the separate list and then |
| * skb_free() them all instead of doing explicit fput's. |
| * Another problem: since fput() may block somebody may |
| * create a new unix_socket when we are in the middle of sweep |
| * phase. Fix: revert the logic wrt MARKED. Mark everything |
| * upon the beginning and unmark non-junk ones. |
| * |
| * [12 Oct 1998] AAARGH! New code purges all SCM_RIGHTS |
| * sent to connect()'ed but still not accept()'ed sockets. |
| * Fixed. Old code had slightly different problem here: |
| * extra fput() in situation when we passed the descriptor via |
| * such socket and closed it (descriptor). That would happen on |
| * each unix_gc() until the accept(). Since the struct file in |
| * question would go to the free list and might be reused... |
| * That might be the reason of random oopses on filp_close() |
| * in unrelated processes. |
| * |
| * AV 28 Feb 1999 |
| * Kill the explicit allocation of stack. Now we keep the tree |
| * with root in dummy + pointer (gc_current) to one of the nodes. |
| * Stack is represented as path from gc_current to dummy. Unmark |
| * now means "add to tree". Push == "make it a son of gc_current". |
| * Pop == "move gc_current to parent". We keep only pointers to |
| * parents (->gc_tree). |
| * AV 1 Mar 1999 |
| * Damn. Added missing check for ->dead in listen queues scanning. |
| * |
| * Miklos Szeredi 25 Jun 2007 |
| * Reimplement with a cycle collecting algorithm. This should |
| * solve several problems with the previous code, like being racy |
| * wrt receive and holding up unrelated socket operations. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/socket.h> |
| #include <linux/un.h> |
| #include <linux/net.h> |
| #include <linux/fs.h> |
| #include <linux/skbuff.h> |
| #include <linux/netdevice.h> |
| #include <linux/file.h> |
| #include <linux/proc_fs.h> |
| #include <linux/mutex.h> |
| #include <linux/wait.h> |
| |
| #include <net/sock.h> |
| #include <net/af_unix.h> |
| #include <net/scm.h> |
| #include <net/tcp_states.h> |
| |
| struct unix_sock *unix_get_socket(struct file *filp) |
| { |
| struct inode *inode = file_inode(filp); |
| |
| /* Socket ? */ |
| if (S_ISSOCK(inode->i_mode) && !(filp->f_mode & FMODE_PATH)) { |
| struct socket *sock = SOCKET_I(inode); |
| const struct proto_ops *ops; |
| struct sock *sk = sock->sk; |
| |
| ops = READ_ONCE(sock->ops); |
| |
| /* PF_UNIX ? */ |
| if (sk && ops && ops->family == PF_UNIX) |
| return unix_sk(sk); |
| } |
| |
| return NULL; |
| } |
| |
| static struct unix_vertex *unix_edge_successor(struct unix_edge *edge) |
| { |
| /* If an embryo socket has a fd, |
| * the listener indirectly holds the fd's refcnt. |
| */ |
| if (edge->successor->listener) |
| return unix_sk(edge->successor->listener)->vertex; |
| |
| return edge->successor->vertex; |
| } |
| |
| static bool unix_graph_maybe_cyclic; |
| static bool unix_graph_grouped; |
| |
| static void unix_update_graph(struct unix_vertex *vertex) |
| { |
| /* If the receiver socket is not inflight, no cyclic |
| * reference could be formed. |
| */ |
| if (!vertex) |
| return; |
| |
| unix_graph_maybe_cyclic = true; |
| unix_graph_grouped = false; |
| } |
| |
| static LIST_HEAD(unix_unvisited_vertices); |
| |
| enum unix_vertex_index { |
| UNIX_VERTEX_INDEX_MARK1, |
| UNIX_VERTEX_INDEX_MARK2, |
| UNIX_VERTEX_INDEX_START, |
| }; |
| |
| static unsigned long unix_vertex_unvisited_index = UNIX_VERTEX_INDEX_MARK1; |
| |
| static void unix_add_edge(struct scm_fp_list *fpl, struct unix_edge *edge) |
| { |
| struct unix_vertex *vertex = edge->predecessor->vertex; |
| |
| if (!vertex) { |
| vertex = list_first_entry(&fpl->vertices, typeof(*vertex), entry); |
| vertex->index = unix_vertex_unvisited_index; |
| vertex->out_degree = 0; |
| INIT_LIST_HEAD(&vertex->edges); |
| INIT_LIST_HEAD(&vertex->scc_entry); |
| |
| list_move_tail(&vertex->entry, &unix_unvisited_vertices); |
| edge->predecessor->vertex = vertex; |
| } |
| |
| vertex->out_degree++; |
| list_add_tail(&edge->vertex_entry, &vertex->edges); |
| |
| unix_update_graph(unix_edge_successor(edge)); |
| } |
| |
| static void unix_del_edge(struct scm_fp_list *fpl, struct unix_edge *edge) |
| { |
| struct unix_vertex *vertex = edge->predecessor->vertex; |
| |
| if (!fpl->dead) |
| unix_update_graph(unix_edge_successor(edge)); |
| |
| list_del(&edge->vertex_entry); |
| vertex->out_degree--; |
| |
| if (!vertex->out_degree) { |
| edge->predecessor->vertex = NULL; |
| list_move_tail(&vertex->entry, &fpl->vertices); |
| } |
| } |
| |
| static void unix_free_vertices(struct scm_fp_list *fpl) |
| { |
| struct unix_vertex *vertex, *next_vertex; |
| |
| list_for_each_entry_safe(vertex, next_vertex, &fpl->vertices, entry) { |
| list_del(&vertex->entry); |
| kfree(vertex); |
| } |
| } |
| |
| static DEFINE_SPINLOCK(unix_gc_lock); |
| unsigned int unix_tot_inflight; |
| |
| void unix_add_edges(struct scm_fp_list *fpl, struct unix_sock *receiver) |
| { |
| int i = 0, j = 0; |
| |
| spin_lock(&unix_gc_lock); |
| |
| if (!fpl->count_unix) |
| goto out; |
| |
| do { |
| struct unix_sock *inflight = unix_get_socket(fpl->fp[j++]); |
| struct unix_edge *edge; |
| |
| if (!inflight) |
| continue; |
| |
| edge = fpl->edges + i++; |
| edge->predecessor = inflight; |
| edge->successor = receiver; |
| |
| unix_add_edge(fpl, edge); |
| } while (i < fpl->count_unix); |
| |
| receiver->scm_stat.nr_unix_fds += fpl->count_unix; |
| WRITE_ONCE(unix_tot_inflight, unix_tot_inflight + fpl->count_unix); |
| out: |
| WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight + fpl->count); |
| |
| spin_unlock(&unix_gc_lock); |
| |
| fpl->inflight = true; |
| |
| unix_free_vertices(fpl); |
| } |
| |
| void unix_del_edges(struct scm_fp_list *fpl) |
| { |
| struct unix_sock *receiver; |
| int i = 0; |
| |
| spin_lock(&unix_gc_lock); |
| |
| if (!fpl->count_unix) |
| goto out; |
| |
| do { |
| struct unix_edge *edge = fpl->edges + i++; |
| |
| unix_del_edge(fpl, edge); |
| } while (i < fpl->count_unix); |
| |
| if (!fpl->dead) { |
| receiver = fpl->edges[0].successor; |
| receiver->scm_stat.nr_unix_fds -= fpl->count_unix; |
| } |
| WRITE_ONCE(unix_tot_inflight, unix_tot_inflight - fpl->count_unix); |
| out: |
| WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight - fpl->count); |
| |
| spin_unlock(&unix_gc_lock); |
| |
| fpl->inflight = false; |
| } |
| |
| void unix_update_edges(struct unix_sock *receiver) |
| { |
| /* nr_unix_fds is only updated under unix_state_lock(). |
| * If it's 0 here, the embryo socket is not part of the |
| * inflight graph, and GC will not see it, so no lock needed. |
| */ |
| if (!receiver->scm_stat.nr_unix_fds) { |
| receiver->listener = NULL; |
| } else { |
| spin_lock(&unix_gc_lock); |
| unix_update_graph(unix_sk(receiver->listener)->vertex); |
| receiver->listener = NULL; |
| spin_unlock(&unix_gc_lock); |
| } |
| } |
| |
| int unix_prepare_fpl(struct scm_fp_list *fpl) |
| { |
| struct unix_vertex *vertex; |
| int i; |
| |
| if (!fpl->count_unix) |
| return 0; |
| |
| for (i = 0; i < fpl->count_unix; i++) { |
| vertex = kmalloc(sizeof(*vertex), GFP_KERNEL); |
| if (!vertex) |
| goto err; |
| |
| list_add(&vertex->entry, &fpl->vertices); |
| } |
| |
| fpl->edges = kvmalloc_array(fpl->count_unix, sizeof(*fpl->edges), |
| GFP_KERNEL_ACCOUNT); |
| if (!fpl->edges) |
| goto err; |
| |
| return 0; |
| |
| err: |
| unix_free_vertices(fpl); |
| return -ENOMEM; |
| } |
| |
| void unix_destroy_fpl(struct scm_fp_list *fpl) |
| { |
| if (fpl->inflight) |
| unix_del_edges(fpl); |
| |
| kvfree(fpl->edges); |
| unix_free_vertices(fpl); |
| } |
| |
| static bool unix_vertex_dead(struct unix_vertex *vertex) |
| { |
| struct unix_edge *edge; |
| struct unix_sock *u; |
| long total_ref; |
| |
| list_for_each_entry(edge, &vertex->edges, vertex_entry) { |
| struct unix_vertex *next_vertex = unix_edge_successor(edge); |
| |
| /* The vertex's fd can be received by a non-inflight socket. */ |
| if (!next_vertex) |
| return false; |
| |
| /* The vertex's fd can be received by an inflight socket in |
| * another SCC. |
| */ |
| if (next_vertex->scc_index != vertex->scc_index) |
| return false; |
| } |
| |
| /* No receiver exists out of the same SCC. */ |
| |
| edge = list_first_entry(&vertex->edges, typeof(*edge), vertex_entry); |
| u = edge->predecessor; |
| total_ref = file_count(u->sk.sk_socket->file); |
| |
| /* If not close()d, total_ref > out_degree. */ |
| if (total_ref != vertex->out_degree) |
| return false; |
| |
| return true; |
| } |
| |
| static void unix_collect_skb(struct list_head *scc, struct sk_buff_head *hitlist) |
| { |
| struct unix_vertex *vertex; |
| |
| list_for_each_entry_reverse(vertex, scc, scc_entry) { |
| struct sk_buff_head *queue; |
| struct unix_edge *edge; |
| struct unix_sock *u; |
| |
| edge = list_first_entry(&vertex->edges, typeof(*edge), vertex_entry); |
| u = edge->predecessor; |
| queue = &u->sk.sk_receive_queue; |
| |
| spin_lock(&queue->lock); |
| |
| if (u->sk.sk_state == TCP_LISTEN) { |
| struct sk_buff *skb; |
| |
| skb_queue_walk(queue, skb) { |
| struct sk_buff_head *embryo_queue = &skb->sk->sk_receive_queue; |
| |
| spin_lock(&embryo_queue->lock); |
| skb_queue_splice_init(embryo_queue, hitlist); |
| spin_unlock(&embryo_queue->lock); |
| } |
| } else { |
| skb_queue_splice_init(queue, hitlist); |
| } |
| |
| spin_unlock(&queue->lock); |
| } |
| } |
| |
| static bool unix_scc_cyclic(struct list_head *scc) |
| { |
| struct unix_vertex *vertex; |
| struct unix_edge *edge; |
| |
| /* SCC containing multiple vertices ? */ |
| if (!list_is_singular(scc)) |
| return true; |
| |
| vertex = list_first_entry(scc, typeof(*vertex), scc_entry); |
| |
| /* Self-reference or a embryo-listener circle ? */ |
| list_for_each_entry(edge, &vertex->edges, vertex_entry) { |
| if (unix_edge_successor(edge) == vertex) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static LIST_HEAD(unix_visited_vertices); |
| static unsigned long unix_vertex_grouped_index = UNIX_VERTEX_INDEX_MARK2; |
| |
| static void __unix_walk_scc(struct unix_vertex *vertex, unsigned long *last_index, |
| struct sk_buff_head *hitlist) |
| { |
| LIST_HEAD(vertex_stack); |
| struct unix_edge *edge; |
| LIST_HEAD(edge_stack); |
| |
| next_vertex: |
| /* Push vertex to vertex_stack and mark it as on-stack |
| * (index >= UNIX_VERTEX_INDEX_START). |
| * The vertex will be popped when finalising SCC later. |
| */ |
| list_add(&vertex->scc_entry, &vertex_stack); |
| |
| vertex->index = *last_index; |
| vertex->scc_index = *last_index; |
| (*last_index)++; |
| |
| /* Explore neighbour vertices (receivers of the current vertex's fd). */ |
| list_for_each_entry(edge, &vertex->edges, vertex_entry) { |
| struct unix_vertex *next_vertex = unix_edge_successor(edge); |
| |
| if (!next_vertex) |
| continue; |
| |
| if (next_vertex->index == unix_vertex_unvisited_index) { |
| /* Iterative deepening depth first search |
| * |
| * 1. Push a forward edge to edge_stack and set |
| * the successor to vertex for the next iteration. |
| */ |
| list_add(&edge->stack_entry, &edge_stack); |
| |
| vertex = next_vertex; |
| goto next_vertex; |
| |
| /* 2. Pop the edge directed to the current vertex |
| * and restore the ancestor for backtracking. |
| */ |
| prev_vertex: |
| edge = list_first_entry(&edge_stack, typeof(*edge), stack_entry); |
| list_del_init(&edge->stack_entry); |
| |
| next_vertex = vertex; |
| vertex = edge->predecessor->vertex; |
| |
| /* If the successor has a smaller scc_index, two vertices |
| * are in the same SCC, so propagate the smaller scc_index |
| * to skip SCC finalisation. |
| */ |
| vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index); |
| } else if (next_vertex->index != unix_vertex_grouped_index) { |
| /* Loop detected by a back/cross edge. |
| * |
| * The successor is on vertex_stack, so two vertices are in |
| * the same SCC. If the successor has a smaller *scc_index*, |
| * propagate it to skip SCC finalisation. |
| */ |
| vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index); |
| } else { |
| /* The successor was already grouped as another SCC */ |
| } |
| } |
| |
| if (vertex->index == vertex->scc_index) { |
| struct unix_vertex *v; |
| struct list_head scc; |
| bool scc_dead = true; |
| |
| /* SCC finalised. |
| * |
| * If the scc_index was not updated, all the vertices above on |
| * vertex_stack are in the same SCC. Group them using scc_entry. |
| */ |
| __list_cut_position(&scc, &vertex_stack, &vertex->scc_entry); |
| |
| list_for_each_entry_reverse(v, &scc, scc_entry) { |
| /* Don't restart DFS from this vertex in unix_walk_scc(). */ |
| list_move_tail(&v->entry, &unix_visited_vertices); |
| |
| /* Mark vertex as off-stack. */ |
| v->index = unix_vertex_grouped_index; |
| |
| if (scc_dead) |
| scc_dead = unix_vertex_dead(v); |
| } |
| |
| if (scc_dead) |
| unix_collect_skb(&scc, hitlist); |
| else if (!unix_graph_maybe_cyclic) |
| unix_graph_maybe_cyclic = unix_scc_cyclic(&scc); |
| |
| list_del(&scc); |
| } |
| |
| /* Need backtracking ? */ |
| if (!list_empty(&edge_stack)) |
| goto prev_vertex; |
| } |
| |
| static void unix_walk_scc(struct sk_buff_head *hitlist) |
| { |
| unsigned long last_index = UNIX_VERTEX_INDEX_START; |
| |
| unix_graph_maybe_cyclic = false; |
| |
| /* Visit every vertex exactly once. |
| * __unix_walk_scc() moves visited vertices to unix_visited_vertices. |
| */ |
| while (!list_empty(&unix_unvisited_vertices)) { |
| struct unix_vertex *vertex; |
| |
| vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry); |
| __unix_walk_scc(vertex, &last_index, hitlist); |
| } |
| |
| list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices); |
| swap(unix_vertex_unvisited_index, unix_vertex_grouped_index); |
| |
| unix_graph_grouped = true; |
| } |
| |
| static void unix_walk_scc_fast(struct sk_buff_head *hitlist) |
| { |
| unix_graph_maybe_cyclic = false; |
| |
| while (!list_empty(&unix_unvisited_vertices)) { |
| struct unix_vertex *vertex; |
| struct list_head scc; |
| bool scc_dead = true; |
| |
| vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry); |
| list_add(&scc, &vertex->scc_entry); |
| |
| list_for_each_entry_reverse(vertex, &scc, scc_entry) { |
| list_move_tail(&vertex->entry, &unix_visited_vertices); |
| |
| if (scc_dead) |
| scc_dead = unix_vertex_dead(vertex); |
| } |
| |
| if (scc_dead) |
| unix_collect_skb(&scc, hitlist); |
| else if (!unix_graph_maybe_cyclic) |
| unix_graph_maybe_cyclic = unix_scc_cyclic(&scc); |
| |
| list_del(&scc); |
| } |
| |
| list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices); |
| } |
| |
| static bool gc_in_progress; |
| |
| static void __unix_gc(struct work_struct *work) |
| { |
| struct sk_buff_head hitlist; |
| struct sk_buff *skb; |
| |
| spin_lock(&unix_gc_lock); |
| |
| if (!unix_graph_maybe_cyclic) { |
| spin_unlock(&unix_gc_lock); |
| goto skip_gc; |
| } |
| |
| __skb_queue_head_init(&hitlist); |
| |
| if (unix_graph_grouped) |
| unix_walk_scc_fast(&hitlist); |
| else |
| unix_walk_scc(&hitlist); |
| |
| spin_unlock(&unix_gc_lock); |
| |
| skb_queue_walk(&hitlist, skb) { |
| if (UNIXCB(skb).fp) |
| UNIXCB(skb).fp->dead = true; |
| } |
| |
| __skb_queue_purge(&hitlist); |
| skip_gc: |
| WRITE_ONCE(gc_in_progress, false); |
| } |
| |
| static DECLARE_WORK(unix_gc_work, __unix_gc); |
| |
| void unix_gc(void) |
| { |
| WRITE_ONCE(gc_in_progress, true); |
| queue_work(system_unbound_wq, &unix_gc_work); |
| } |
| |
| #define UNIX_INFLIGHT_TRIGGER_GC 16000 |
| #define UNIX_INFLIGHT_SANE_USER (SCM_MAX_FD * 8) |
| |
| void wait_for_unix_gc(struct scm_fp_list *fpl) |
| { |
| /* If number of inflight sockets is insane, |
| * force a garbage collect right now. |
| * |
| * Paired with the WRITE_ONCE() in unix_inflight(), |
| * unix_notinflight(), and __unix_gc(). |
| */ |
| if (READ_ONCE(unix_tot_inflight) > UNIX_INFLIGHT_TRIGGER_GC && |
| !READ_ONCE(gc_in_progress)) |
| unix_gc(); |
| |
| /* Penalise users who want to send AF_UNIX sockets |
| * but whose sockets have not been received yet. |
| */ |
| if (!fpl || !fpl->count_unix || |
| READ_ONCE(fpl->user->unix_inflight) < UNIX_INFLIGHT_SANE_USER) |
| return; |
| |
| if (READ_ONCE(gc_in_progress)) |
| flush_work(&unix_gc_work); |
| } |