blob: 7b40c5886b75cc99a540ac058d79cb089549115e [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Marvell 88E6xxx Switch PTP support
*
* Copyright (c) 2008 Marvell Semiconductor
*
* Copyright (c) 2017 National Instruments
* Erik Hons <erik.hons@ni.com>
* Brandon Streiff <brandon.streiff@ni.com>
* Dane Wagner <dane.wagner@ni.com>
*/
#include "chip.h"
#include "global2.h"
#include "hwtstamp.h"
#include "ptp.h"
/* Raw timestamps are in units of 8-ns clock periods. */
#define CC_SHIFT 28
#define CC_MULT (8 << CC_SHIFT)
#define CC_MULT_NUM (1 << 9)
#define CC_MULT_DEM 15625ULL
#define TAI_EVENT_WORK_INTERVAL msecs_to_jiffies(100)
#define cc_to_chip(cc) container_of(cc, struct mv88e6xxx_chip, tstamp_cc)
#define dw_overflow_to_chip(dw) container_of(dw, struct mv88e6xxx_chip, \
overflow_work)
#define dw_tai_event_to_chip(dw) container_of(dw, struct mv88e6xxx_chip, \
tai_event_work)
static int mv88e6xxx_tai_read(struct mv88e6xxx_chip *chip, int addr,
u16 *data, int len)
{
if (!chip->info->ops->avb_ops->tai_read)
return -EOPNOTSUPP;
return chip->info->ops->avb_ops->tai_read(chip, addr, data, len);
}
static int mv88e6xxx_tai_write(struct mv88e6xxx_chip *chip, int addr, u16 data)
{
if (!chip->info->ops->avb_ops->tai_write)
return -EOPNOTSUPP;
return chip->info->ops->avb_ops->tai_write(chip, addr, data);
}
/* TODO: places where this are called should be using pinctrl */
static int mv88e6352_set_gpio_func(struct mv88e6xxx_chip *chip, int pin,
int func, int input)
{
int err;
if (!chip->info->ops->gpio_ops)
return -EOPNOTSUPP;
err = chip->info->ops->gpio_ops->set_dir(chip, pin, input);
if (err)
return err;
return chip->info->ops->gpio_ops->set_pctl(chip, pin, func);
}
static u64 mv88e6352_ptp_clock_read(const struct cyclecounter *cc)
{
struct mv88e6xxx_chip *chip = cc_to_chip(cc);
u16 phc_time[2];
int err;
err = mv88e6xxx_tai_read(chip, MV88E6XXX_TAI_TIME_LO, phc_time,
ARRAY_SIZE(phc_time));
if (err)
return 0;
else
return ((u32)phc_time[1] << 16) | phc_time[0];
}
static u64 mv88e6165_ptp_clock_read(const struct cyclecounter *cc)
{
struct mv88e6xxx_chip *chip = cc_to_chip(cc);
u16 phc_time[2];
int err;
err = mv88e6xxx_tai_read(chip, MV88E6XXX_PTP_GC_TIME_LO, phc_time,
ARRAY_SIZE(phc_time));
if (err)
return 0;
else
return ((u32)phc_time[1] << 16) | phc_time[0];
}
/* mv88e6352_config_eventcap - configure TAI event capture
* @event: PTP_CLOCK_PPS (internal) or PTP_CLOCK_EXTTS (external)
* @rising: zero for falling-edge trigger, else rising-edge trigger
*
* This will also reset the capture sequence counter.
*/
static int mv88e6352_config_eventcap(struct mv88e6xxx_chip *chip, int event,
int rising)
{
u16 global_config;
u16 cap_config;
int err;
chip->evcap_config = MV88E6XXX_TAI_CFG_CAP_OVERWRITE |
MV88E6XXX_TAI_CFG_CAP_CTR_START;
if (!rising)
chip->evcap_config |= MV88E6XXX_TAI_CFG_EVREQ_FALLING;
global_config = (chip->evcap_config | chip->trig_config);
err = mv88e6xxx_tai_write(chip, MV88E6XXX_TAI_CFG, global_config);
if (err)
return err;
if (event == PTP_CLOCK_PPS) {
cap_config = MV88E6XXX_TAI_EVENT_STATUS_CAP_TRIG;
} else if (event == PTP_CLOCK_EXTTS) {
/* if STATUS_CAP_TRIG is unset we capture PTP_EVREQ events */
cap_config = 0;
} else {
return -EINVAL;
}
/* Write the capture config; this also clears the capture counter */
err = mv88e6xxx_tai_write(chip, MV88E6XXX_TAI_EVENT_STATUS,
cap_config);
return err;
}
static void mv88e6352_tai_event_work(struct work_struct *ugly)
{
struct delayed_work *dw = to_delayed_work(ugly);
struct mv88e6xxx_chip *chip = dw_tai_event_to_chip(dw);
struct ptp_clock_event ev;
u16 status[4];
u32 raw_ts;
int err;
mutex_lock(&chip->reg_lock);
err = mv88e6xxx_tai_read(chip, MV88E6XXX_TAI_EVENT_STATUS,
status, ARRAY_SIZE(status));
mutex_unlock(&chip->reg_lock);
if (err) {
dev_err(chip->dev, "failed to read TAI status register\n");
return;
}
if (status[0] & MV88E6XXX_TAI_EVENT_STATUS_ERROR) {
dev_warn(chip->dev, "missed event capture\n");
return;
}
if (!(status[0] & MV88E6XXX_TAI_EVENT_STATUS_VALID))
goto out;
raw_ts = ((u32)status[2] << 16) | status[1];
/* Clear the valid bit so the next timestamp can come in */
status[0] &= ~MV88E6XXX_TAI_EVENT_STATUS_VALID;
mutex_lock(&chip->reg_lock);
err = mv88e6xxx_tai_write(chip, MV88E6XXX_TAI_EVENT_STATUS, status[0]);
mutex_unlock(&chip->reg_lock);
/* This is an external timestamp */
ev.type = PTP_CLOCK_EXTTS;
/* We only have one timestamping channel. */
ev.index = 0;
mutex_lock(&chip->reg_lock);
ev.timestamp = timecounter_cyc2time(&chip->tstamp_tc, raw_ts);
mutex_unlock(&chip->reg_lock);
ptp_clock_event(chip->ptp_clock, &ev);
out:
schedule_delayed_work(&chip->tai_event_work, TAI_EVENT_WORK_INTERVAL);
}
static int mv88e6xxx_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
{
struct mv88e6xxx_chip *chip = ptp_to_chip(ptp);
int neg_adj = 0;
u32 diff, mult;
u64 adj;
if (scaled_ppm < 0) {
neg_adj = 1;
scaled_ppm = -scaled_ppm;
}
mult = CC_MULT;
adj = CC_MULT_NUM;
adj *= scaled_ppm;
diff = div_u64(adj, CC_MULT_DEM);
mutex_lock(&chip->reg_lock);
timecounter_read(&chip->tstamp_tc);
chip->tstamp_cc.mult = neg_adj ? mult - diff : mult + diff;
mutex_unlock(&chip->reg_lock);
return 0;
}
static int mv88e6xxx_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
struct mv88e6xxx_chip *chip = ptp_to_chip(ptp);
mutex_lock(&chip->reg_lock);
timecounter_adjtime(&chip->tstamp_tc, delta);
mutex_unlock(&chip->reg_lock);
return 0;
}
static int mv88e6xxx_ptp_gettime(struct ptp_clock_info *ptp,
struct timespec64 *ts)
{
struct mv88e6xxx_chip *chip = ptp_to_chip(ptp);
u64 ns;
mutex_lock(&chip->reg_lock);
ns = timecounter_read(&chip->tstamp_tc);
mutex_unlock(&chip->reg_lock);
*ts = ns_to_timespec64(ns);
return 0;
}
static int mv88e6xxx_ptp_settime(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
struct mv88e6xxx_chip *chip = ptp_to_chip(ptp);
u64 ns;
ns = timespec64_to_ns(ts);
mutex_lock(&chip->reg_lock);
timecounter_init(&chip->tstamp_tc, &chip->tstamp_cc, ns);
mutex_unlock(&chip->reg_lock);
return 0;
}
static int mv88e6352_ptp_enable_extts(struct mv88e6xxx_chip *chip,
struct ptp_clock_request *rq, int on)
{
int rising = (rq->extts.flags & PTP_RISING_EDGE);
int func;
int pin;
int err;
pin = ptp_find_pin(chip->ptp_clock, PTP_PF_EXTTS, rq->extts.index);
if (pin < 0)
return -EBUSY;
mutex_lock(&chip->reg_lock);
if (on) {
func = MV88E6352_G2_SCRATCH_GPIO_PCTL_EVREQ;
err = mv88e6352_set_gpio_func(chip, pin, func, true);
if (err)
goto out;
schedule_delayed_work(&chip->tai_event_work,
TAI_EVENT_WORK_INTERVAL);
err = mv88e6352_config_eventcap(chip, PTP_CLOCK_EXTTS, rising);
} else {
func = MV88E6352_G2_SCRATCH_GPIO_PCTL_GPIO;
err = mv88e6352_set_gpio_func(chip, pin, func, true);
cancel_delayed_work_sync(&chip->tai_event_work);
}
out:
mutex_unlock(&chip->reg_lock);
return err;
}
static int mv88e6352_ptp_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq, int on)
{
struct mv88e6xxx_chip *chip = ptp_to_chip(ptp);
switch (rq->type) {
case PTP_CLK_REQ_EXTTS:
return mv88e6352_ptp_enable_extts(chip, rq, on);
default:
return -EOPNOTSUPP;
}
}
static int mv88e6352_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
enum ptp_pin_function func, unsigned int chan)
{
switch (func) {
case PTP_PF_NONE:
case PTP_PF_EXTTS:
break;
case PTP_PF_PEROUT:
case PTP_PF_PHYSYNC:
return -EOPNOTSUPP;
}
return 0;
}
const struct mv88e6xxx_ptp_ops mv88e6352_ptp_ops = {
.clock_read = mv88e6352_ptp_clock_read,
.ptp_enable = mv88e6352_ptp_enable,
.ptp_verify = mv88e6352_ptp_verify,
.event_work = mv88e6352_tai_event_work,
.port_enable = mv88e6352_hwtstamp_port_enable,
.port_disable = mv88e6352_hwtstamp_port_disable,
.n_ext_ts = 1,
.arr0_sts_reg = MV88E6XXX_PORT_PTP_ARR0_STS,
.arr1_sts_reg = MV88E6XXX_PORT_PTP_ARR1_STS,
.dep_sts_reg = MV88E6XXX_PORT_PTP_DEP_STS,
.rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
(1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
(1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
(1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
(1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
(1 << HWTSTAMP_FILTER_PTP_V2_EVENT) |
(1 << HWTSTAMP_FILTER_PTP_V2_SYNC) |
(1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ),
};
const struct mv88e6xxx_ptp_ops mv88e6165_ptp_ops = {
.clock_read = mv88e6165_ptp_clock_read,
.global_enable = mv88e6165_global_enable,
.global_disable = mv88e6165_global_disable,
.arr0_sts_reg = MV88E6165_PORT_PTP_ARR0_STS,
.arr1_sts_reg = MV88E6165_PORT_PTP_ARR1_STS,
.dep_sts_reg = MV88E6165_PORT_PTP_DEP_STS,
.rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
(1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
(1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
(1 << HWTSTAMP_FILTER_PTP_V2_EVENT) |
(1 << HWTSTAMP_FILTER_PTP_V2_SYNC) |
(1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ),
};
static u64 mv88e6xxx_ptp_clock_read(const struct cyclecounter *cc)
{
struct mv88e6xxx_chip *chip = cc_to_chip(cc);
if (chip->info->ops->ptp_ops->clock_read)
return chip->info->ops->ptp_ops->clock_read(cc);
return 0;
}
/* With a 125MHz input clock, the 32-bit timestamp counter overflows in ~34.3
* seconds; this task forces periodic reads so that we don't miss any.
*/
#define MV88E6XXX_TAI_OVERFLOW_PERIOD (HZ * 16)
static void mv88e6xxx_ptp_overflow_check(struct work_struct *work)
{
struct delayed_work *dw = to_delayed_work(work);
struct mv88e6xxx_chip *chip = dw_overflow_to_chip(dw);
struct timespec64 ts;
mv88e6xxx_ptp_gettime(&chip->ptp_clock_info, &ts);
schedule_delayed_work(&chip->overflow_work,
MV88E6XXX_TAI_OVERFLOW_PERIOD);
}
int mv88e6xxx_ptp_setup(struct mv88e6xxx_chip *chip)
{
const struct mv88e6xxx_ptp_ops *ptp_ops = chip->info->ops->ptp_ops;
int i;
/* Set up the cycle counter */
memset(&chip->tstamp_cc, 0, sizeof(chip->tstamp_cc));
chip->tstamp_cc.read = mv88e6xxx_ptp_clock_read;
chip->tstamp_cc.mask = CYCLECOUNTER_MASK(32);
chip->tstamp_cc.mult = CC_MULT;
chip->tstamp_cc.shift = CC_SHIFT;
timecounter_init(&chip->tstamp_tc, &chip->tstamp_cc,
ktime_to_ns(ktime_get_real()));
INIT_DELAYED_WORK(&chip->overflow_work, mv88e6xxx_ptp_overflow_check);
if (ptp_ops->event_work)
INIT_DELAYED_WORK(&chip->tai_event_work, ptp_ops->event_work);
chip->ptp_clock_info.owner = THIS_MODULE;
snprintf(chip->ptp_clock_info.name, sizeof(chip->ptp_clock_info.name),
"%s", dev_name(chip->dev));
chip->ptp_clock_info.max_adj = 1000000;
chip->ptp_clock_info.n_ext_ts = ptp_ops->n_ext_ts;
chip->ptp_clock_info.n_per_out = 0;
chip->ptp_clock_info.n_pins = mv88e6xxx_num_gpio(chip);
chip->ptp_clock_info.pps = 0;
for (i = 0; i < chip->ptp_clock_info.n_pins; ++i) {
struct ptp_pin_desc *ppd = &chip->pin_config[i];
snprintf(ppd->name, sizeof(ppd->name), "mv88e6xxx_gpio%d", i);
ppd->index = i;
ppd->func = PTP_PF_NONE;
}
chip->ptp_clock_info.pin_config = chip->pin_config;
chip->ptp_clock_info.adjfine = mv88e6xxx_ptp_adjfine;
chip->ptp_clock_info.adjtime = mv88e6xxx_ptp_adjtime;
chip->ptp_clock_info.gettime64 = mv88e6xxx_ptp_gettime;
chip->ptp_clock_info.settime64 = mv88e6xxx_ptp_settime;
chip->ptp_clock_info.enable = ptp_ops->ptp_enable;
chip->ptp_clock_info.verify = ptp_ops->ptp_verify;
chip->ptp_clock_info.do_aux_work = mv88e6xxx_hwtstamp_work;
chip->ptp_clock = ptp_clock_register(&chip->ptp_clock_info, chip->dev);
if (IS_ERR(chip->ptp_clock))
return PTR_ERR(chip->ptp_clock);
schedule_delayed_work(&chip->overflow_work,
MV88E6XXX_TAI_OVERFLOW_PERIOD);
return 0;
}
void mv88e6xxx_ptp_free(struct mv88e6xxx_chip *chip)
{
if (chip->ptp_clock) {
cancel_delayed_work_sync(&chip->overflow_work);
if (chip->info->ops->ptp_ops->event_work)
cancel_delayed_work_sync(&chip->tai_event_work);
ptp_clock_unregister(chip->ptp_clock);
chip->ptp_clock = NULL;
}
}