| // SPDX-License-Identifier: GPL-2.0 |
| #include "bpf_misc.h" |
| #include "bpf_experimental.h" |
| |
| struct { |
| __uint(type, BPF_MAP_TYPE_ARRAY); |
| __uint(max_entries, 8); |
| __type(key, __u32); |
| __type(value, __u64); |
| } map SEC(".maps"); |
| |
| struct { |
| __uint(type, BPF_MAP_TYPE_USER_RINGBUF); |
| __uint(max_entries, 8); |
| } ringbuf SEC(".maps"); |
| |
| struct vm_area_struct; |
| struct bpf_map; |
| |
| struct buf_context { |
| char *buf; |
| }; |
| |
| struct num_context { |
| __u64 i; |
| __u64 j; |
| }; |
| |
| __u8 choice_arr[2] = { 0, 1 }; |
| |
| static int unsafe_on_2nd_iter_cb(__u32 idx, struct buf_context *ctx) |
| { |
| if (idx == 0) { |
| ctx->buf = (char *)(0xDEAD); |
| return 0; |
| } |
| |
| if (bpf_probe_read_user(ctx->buf, 8, (void *)(0xBADC0FFEE))) |
| return 1; |
| |
| return 0; |
| } |
| |
| SEC("?raw_tp") |
| __failure __msg("R1 type=scalar expected=fp") |
| int unsafe_on_2nd_iter(void *unused) |
| { |
| char buf[4]; |
| struct buf_context loop_ctx = { .buf = buf }; |
| |
| bpf_loop(100, unsafe_on_2nd_iter_cb, &loop_ctx, 0); |
| return 0; |
| } |
| |
| static int unsafe_on_zero_iter_cb(__u32 idx, struct num_context *ctx) |
| { |
| ctx->i = 0; |
| return 0; |
| } |
| |
| SEC("?raw_tp") |
| __failure __msg("invalid access to map value, value_size=2 off=32 size=1") |
| int unsafe_on_zero_iter(void *unused) |
| { |
| struct num_context loop_ctx = { .i = 32 }; |
| |
| bpf_loop(100, unsafe_on_zero_iter_cb, &loop_ctx, 0); |
| return choice_arr[loop_ctx.i]; |
| } |
| |
| static int widening_cb(__u32 idx, struct num_context *ctx) |
| { |
| ++ctx->i; |
| return 0; |
| } |
| |
| SEC("?raw_tp") |
| __success |
| int widening(void *unused) |
| { |
| struct num_context loop_ctx = { .i = 0, .j = 1 }; |
| |
| bpf_loop(100, widening_cb, &loop_ctx, 0); |
| /* loop_ctx.j is not changed during callback iteration, |
| * verifier should not apply widening to it. |
| */ |
| return choice_arr[loop_ctx.j]; |
| } |
| |
| static int loop_detection_cb(__u32 idx, struct num_context *ctx) |
| { |
| for (;;) {} |
| return 0; |
| } |
| |
| SEC("?raw_tp") |
| __failure __msg("infinite loop detected") |
| int loop_detection(void *unused) |
| { |
| struct num_context loop_ctx = { .i = 0 }; |
| |
| bpf_loop(100, loop_detection_cb, &loop_ctx, 0); |
| return 0; |
| } |
| |
| static __always_inline __u64 oob_state_machine(struct num_context *ctx) |
| { |
| switch (ctx->i) { |
| case 0: |
| ctx->i = 1; |
| break; |
| case 1: |
| ctx->i = 32; |
| break; |
| } |
| return 0; |
| } |
| |
| static __u64 for_each_map_elem_cb(struct bpf_map *map, __u32 *key, __u64 *val, void *data) |
| { |
| return oob_state_machine(data); |
| } |
| |
| SEC("?raw_tp") |
| __failure __msg("invalid access to map value, value_size=2 off=32 size=1") |
| int unsafe_for_each_map_elem(void *unused) |
| { |
| struct num_context loop_ctx = { .i = 0 }; |
| |
| bpf_for_each_map_elem(&map, for_each_map_elem_cb, &loop_ctx, 0); |
| return choice_arr[loop_ctx.i]; |
| } |
| |
| static __u64 ringbuf_drain_cb(struct bpf_dynptr *dynptr, void *data) |
| { |
| return oob_state_machine(data); |
| } |
| |
| SEC("?raw_tp") |
| __failure __msg("invalid access to map value, value_size=2 off=32 size=1") |
| int unsafe_ringbuf_drain(void *unused) |
| { |
| struct num_context loop_ctx = { .i = 0 }; |
| |
| bpf_user_ringbuf_drain(&ringbuf, ringbuf_drain_cb, &loop_ctx, 0); |
| return choice_arr[loop_ctx.i]; |
| } |
| |
| static __u64 find_vma_cb(struct task_struct *task, struct vm_area_struct *vma, void *data) |
| { |
| return oob_state_machine(data); |
| } |
| |
| SEC("?raw_tp") |
| __failure __msg("invalid access to map value, value_size=2 off=32 size=1") |
| int unsafe_find_vma(void *unused) |
| { |
| struct task_struct *task = bpf_get_current_task_btf(); |
| struct num_context loop_ctx = { .i = 0 }; |
| |
| bpf_find_vma(task, 0, find_vma_cb, &loop_ctx, 0); |
| return choice_arr[loop_ctx.i]; |
| } |
| |
| static int iter_limit_cb(__u32 idx, struct num_context *ctx) |
| { |
| ctx->i++; |
| return 0; |
| } |
| |
| SEC("?raw_tp") |
| __success |
| int bpf_loop_iter_limit_ok(void *unused) |
| { |
| struct num_context ctx = { .i = 0 }; |
| |
| bpf_loop(1, iter_limit_cb, &ctx, 0); |
| return choice_arr[ctx.i]; |
| } |
| |
| SEC("?raw_tp") |
| __failure __msg("invalid access to map value, value_size=2 off=2 size=1") |
| int bpf_loop_iter_limit_overflow(void *unused) |
| { |
| struct num_context ctx = { .i = 0 }; |
| |
| bpf_loop(2, iter_limit_cb, &ctx, 0); |
| return choice_arr[ctx.i]; |
| } |
| |
| static int iter_limit_level2a_cb(__u32 idx, struct num_context *ctx) |
| { |
| ctx->i += 100; |
| return 0; |
| } |
| |
| static int iter_limit_level2b_cb(__u32 idx, struct num_context *ctx) |
| { |
| ctx->i += 10; |
| return 0; |
| } |
| |
| static int iter_limit_level1_cb(__u32 idx, struct num_context *ctx) |
| { |
| ctx->i += 1; |
| bpf_loop(1, iter_limit_level2a_cb, ctx, 0); |
| bpf_loop(1, iter_limit_level2b_cb, ctx, 0); |
| return 0; |
| } |
| |
| /* Check that path visiting every callback function once had been |
| * reached by verifier. Variables 'ctx{1,2}i' below serve as flags, |
| * with each decimal digit corresponding to a callback visit marker. |
| */ |
| SEC("socket") |
| __success __retval(111111) |
| int bpf_loop_iter_limit_nested(void *unused) |
| { |
| struct num_context ctx1 = { .i = 0 }; |
| struct num_context ctx2 = { .i = 0 }; |
| __u64 a, b, c; |
| |
| bpf_loop(1, iter_limit_level1_cb, &ctx1, 0); |
| bpf_loop(1, iter_limit_level1_cb, &ctx2, 0); |
| a = ctx1.i; |
| b = ctx2.i; |
| /* Force 'ctx1.i' and 'ctx2.i' precise. */ |
| c = choice_arr[(a + b) % 2]; |
| /* This makes 'c' zero, but neither clang nor verifier know it. */ |
| c /= 10; |
| /* Make sure that verifier does not visit 'impossible' states: |
| * enumerate all possible callback visit masks. |
| */ |
| if (a != 0 && a != 1 && a != 11 && a != 101 && a != 111 && |
| b != 0 && b != 1 && b != 11 && b != 101 && b != 111) |
| asm volatile ("r0 /= 0;" ::: "r0"); |
| return 1000 * a + b + c; |
| } |
| |
| struct iter_limit_bug_ctx { |
| __u64 a; |
| __u64 b; |
| __u64 c; |
| }; |
| |
| static __naked void iter_limit_bug_cb(void) |
| { |
| /* This is the same as C code below, but written |
| * in assembly to control which branches are fall-through. |
| * |
| * switch (bpf_get_prandom_u32()) { |
| * case 1: ctx->a = 42; break; |
| * case 2: ctx->b = 42; break; |
| * default: ctx->c = 42; break; |
| * } |
| */ |
| asm volatile ( |
| "r9 = r2;" |
| "call %[bpf_get_prandom_u32];" |
| "r1 = r0;" |
| "r2 = 42;" |
| "r0 = 0;" |
| "if r1 == 0x1 goto 1f;" |
| "if r1 == 0x2 goto 2f;" |
| "*(u64 *)(r9 + 16) = r2;" |
| "exit;" |
| "1: *(u64 *)(r9 + 0) = r2;" |
| "exit;" |
| "2: *(u64 *)(r9 + 8) = r2;" |
| "exit;" |
| : |
| : __imm(bpf_get_prandom_u32) |
| : __clobber_all |
| ); |
| } |
| |
| SEC("tc") |
| __failure |
| __flag(BPF_F_TEST_STATE_FREQ) |
| int iter_limit_bug(struct __sk_buff *skb) |
| { |
| struct iter_limit_bug_ctx ctx = { 7, 7, 7 }; |
| |
| bpf_loop(2, iter_limit_bug_cb, &ctx, 0); |
| |
| /* This is the same as C code below, |
| * written in assembly to guarantee checks order. |
| * |
| * if (ctx.a == 42 && ctx.b == 42 && ctx.c == 7) |
| * asm volatile("r1 /= 0;":::"r1"); |
| */ |
| asm volatile ( |
| "r1 = *(u64 *)%[ctx_a];" |
| "if r1 != 42 goto 1f;" |
| "r1 = *(u64 *)%[ctx_b];" |
| "if r1 != 42 goto 1f;" |
| "r1 = *(u64 *)%[ctx_c];" |
| "if r1 != 7 goto 1f;" |
| "r1 /= 0;" |
| "1:" |
| : |
| : [ctx_a]"m"(ctx.a), |
| [ctx_b]"m"(ctx.b), |
| [ctx_c]"m"(ctx.c) |
| : "r1" |
| ); |
| return 0; |
| } |
| |
| #define ARR_SZ 1000000 |
| int zero; |
| char arr[ARR_SZ]; |
| |
| SEC("socket") |
| __success __retval(0xd495cdc0) |
| int cond_break1(const void *ctx) |
| { |
| unsigned long i; |
| unsigned int sum = 0; |
| |
| for (i = zero; i < ARR_SZ && can_loop; i++) |
| sum += i; |
| for (i = zero; i < ARR_SZ; i++) { |
| barrier_var(i); |
| sum += i + arr[i]; |
| cond_break; |
| } |
| |
| return sum; |
| } |
| |
| SEC("socket") |
| __success __retval(999000000) |
| int cond_break2(const void *ctx) |
| { |
| int i, j; |
| int sum = 0; |
| |
| for (i = zero; i < 1000 && can_loop; i++) |
| for (j = zero; j < 1000; j++) { |
| sum += i + j; |
| cond_break; |
| } |
| return sum; |
| } |
| |
| static __noinline int loop(void) |
| { |
| int i, sum = 0; |
| |
| for (i = zero; i <= 1000000 && can_loop; i++) |
| sum += i; |
| |
| return sum; |
| } |
| |
| SEC("socket") |
| __success __retval(0x6a5a2920) |
| int cond_break3(const void *ctx) |
| { |
| return loop(); |
| } |
| |
| SEC("socket") |
| __success __retval(1) |
| int cond_break4(const void *ctx) |
| { |
| int cnt = zero; |
| |
| for (;;) { |
| /* should eventually break out of the loop */ |
| cond_break; |
| cnt++; |
| } |
| /* if we looped a bit, it's a success */ |
| return cnt > 1 ? 1 : 0; |
| } |
| |
| static __noinline int static_subprog(void) |
| { |
| int cnt = zero; |
| |
| for (;;) { |
| cond_break; |
| cnt++; |
| } |
| |
| return cnt; |
| } |
| |
| SEC("socket") |
| __success __retval(1) |
| int cond_break5(const void *ctx) |
| { |
| int cnt1 = zero, cnt2; |
| |
| for (;;) { |
| cond_break; |
| cnt1++; |
| } |
| |
| cnt2 = static_subprog(); |
| |
| /* main and subprog have to loop a bit */ |
| return cnt1 > 1 && cnt2 > 1 ? 1 : 0; |
| } |
| |
| char _license[] SEC("license") = "GPL"; |