| /******************************************************************************* |
| * |
| * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver |
| * Copyright(c) 2013 - 2016 Intel Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program. If not, see <http://www.gnu.org/licenses/>. |
| * |
| * The full GNU General Public License is included in this distribution in |
| * the file called "COPYING". |
| * |
| * Contact Information: |
| * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| * |
| ******************************************************************************/ |
| |
| #ifndef _I40E_TXRX_H_ |
| #define _I40E_TXRX_H_ |
| |
| /* Interrupt Throttling and Rate Limiting Goodies */ |
| |
| #define I40E_MAX_ITR 0x0FF0 /* reg uses 2 usec resolution */ |
| #define I40E_MIN_ITR 0x0001 /* reg uses 2 usec resolution */ |
| #define I40E_ITR_100K 0x0005 |
| #define I40E_ITR_50K 0x000A |
| #define I40E_ITR_20K 0x0019 |
| #define I40E_ITR_18K 0x001B |
| #define I40E_ITR_8K 0x003E |
| #define I40E_ITR_4K 0x007A |
| #define I40E_MAX_INTRL 0x3B /* reg uses 4 usec resolution */ |
| #define I40E_ITR_RX_DEF (ITR_REG_TO_USEC(I40E_ITR_20K) | \ |
| I40E_ITR_DYNAMIC) |
| #define I40E_ITR_TX_DEF (ITR_REG_TO_USEC(I40E_ITR_20K) | \ |
| I40E_ITR_DYNAMIC) |
| #define I40E_ITR_DYNAMIC 0x8000 /* use top bit as a flag */ |
| #define I40E_MIN_INT_RATE 250 /* ~= 1000000 / (I40E_MAX_ITR * 2) */ |
| #define I40E_MAX_INT_RATE 500000 /* == 1000000 / (I40E_MIN_ITR * 2) */ |
| #define I40E_DEFAULT_IRQ_WORK 256 |
| #define ITR_TO_REG(setting) ((setting & ~I40E_ITR_DYNAMIC) >> 1) |
| #define ITR_IS_DYNAMIC(setting) (!!(setting & I40E_ITR_DYNAMIC)) |
| #define ITR_REG_TO_USEC(itr_reg) (itr_reg << 1) |
| /* 0x40 is the enable bit for interrupt rate limiting, and must be set if |
| * the value of the rate limit is non-zero |
| */ |
| #define INTRL_ENA BIT(6) |
| #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2) |
| #define INTRL_USEC_TO_REG(set) ((set) ? ((set) >> 2) | INTRL_ENA : 0) |
| #define I40E_INTRL_8K 125 /* 8000 ints/sec */ |
| #define I40E_INTRL_62K 16 /* 62500 ints/sec */ |
| #define I40E_INTRL_83K 12 /* 83333 ints/sec */ |
| |
| #define I40E_QUEUE_END_OF_LIST 0x7FF |
| |
| /* this enum matches hardware bits and is meant to be used by DYN_CTLN |
| * registers and QINT registers or more generally anywhere in the manual |
| * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any |
| * register but instead is a special value meaning "don't update" ITR0/1/2. |
| */ |
| enum i40e_dyn_idx_t { |
| I40E_IDX_ITR0 = 0, |
| I40E_IDX_ITR1 = 1, |
| I40E_IDX_ITR2 = 2, |
| I40E_ITR_NONE = 3 /* ITR_NONE must not be used as an index */ |
| }; |
| |
| /* these are indexes into ITRN registers */ |
| #define I40E_RX_ITR I40E_IDX_ITR0 |
| #define I40E_TX_ITR I40E_IDX_ITR1 |
| #define I40E_PE_ITR I40E_IDX_ITR2 |
| |
| /* Supported RSS offloads */ |
| #define I40E_DEFAULT_RSS_HENA ( \ |
| BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD)) |
| |
| #define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP)) |
| |
| /* Supported Rx Buffer Sizes (a multiple of 128) */ |
| #define I40E_RXBUFFER_256 256 |
| #define I40E_RXBUFFER_1536 1536 /* 128B aligned standard Ethernet frame */ |
| #define I40E_RXBUFFER_2048 2048 |
| #define I40E_RXBUFFER_3072 3072 /* Used for large frames w/ padding */ |
| #define I40E_MAX_RXBUFFER 9728 /* largest size for single descriptor */ |
| |
| /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we |
| * reserve 2 more, and skb_shared_info adds an additional 384 bytes more, |
| * this adds up to 512 bytes of extra data meaning the smallest allocation |
| * we could have is 1K. |
| * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab) |
| * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab) |
| */ |
| #define I40E_RX_HDR_SIZE I40E_RXBUFFER_256 |
| #define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2)) |
| #define i40e_rx_desc i40e_32byte_rx_desc |
| |
| #define I40E_RX_DMA_ATTR \ |
| (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING) |
| |
| /* Attempt to maximize the headroom available for incoming frames. We |
| * use a 2K buffer for receives and need 1536/1534 to store the data for |
| * the frame. This leaves us with 512 bytes of room. From that we need |
| * to deduct the space needed for the shared info and the padding needed |
| * to IP align the frame. |
| * |
| * Note: For cache line sizes 256 or larger this value is going to end |
| * up negative. In these cases we should fall back to the legacy |
| * receive path. |
| */ |
| #if (PAGE_SIZE < 8192) |
| #define I40E_2K_TOO_SMALL_WITH_PADDING \ |
| ((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048)) |
| |
| static inline int i40e_compute_pad(int rx_buf_len) |
| { |
| int page_size, pad_size; |
| |
| page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2); |
| pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len; |
| |
| return pad_size; |
| } |
| |
| static inline int i40e_skb_pad(void) |
| { |
| int rx_buf_len; |
| |
| /* If a 2K buffer cannot handle a standard Ethernet frame then |
| * optimize padding for a 3K buffer instead of a 1.5K buffer. |
| * |
| * For a 3K buffer we need to add enough padding to allow for |
| * tailroom due to NET_IP_ALIGN possibly shifting us out of |
| * cache-line alignment. |
| */ |
| if (I40E_2K_TOO_SMALL_WITH_PADDING) |
| rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN); |
| else |
| rx_buf_len = I40E_RXBUFFER_1536; |
| |
| /* if needed make room for NET_IP_ALIGN */ |
| rx_buf_len -= NET_IP_ALIGN; |
| |
| return i40e_compute_pad(rx_buf_len); |
| } |
| |
| #define I40E_SKB_PAD i40e_skb_pad() |
| #else |
| #define I40E_2K_TOO_SMALL_WITH_PADDING false |
| #define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN) |
| #endif |
| |
| /** |
| * i40e_test_staterr - tests bits in Rx descriptor status and error fields |
| * @rx_desc: pointer to receive descriptor (in le64 format) |
| * @stat_err_bits: value to mask |
| * |
| * This function does some fast chicanery in order to return the |
| * value of the mask which is really only used for boolean tests. |
| * The status_error_len doesn't need to be shifted because it begins |
| * at offset zero. |
| */ |
| static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc, |
| const u64 stat_err_bits) |
| { |
| return !!(rx_desc->wb.qword1.status_error_len & |
| cpu_to_le64(stat_err_bits)); |
| } |
| |
| /* How many Rx Buffers do we bundle into one write to the hardware ? */ |
| #define I40E_RX_BUFFER_WRITE 32 /* Must be power of 2 */ |
| #define I40E_RX_INCREMENT(r, i) \ |
| do { \ |
| (i)++; \ |
| if ((i) == (r)->count) \ |
| i = 0; \ |
| r->next_to_clean = i; \ |
| } while (0) |
| |
| #define I40E_RX_NEXT_DESC(r, i, n) \ |
| do { \ |
| (i)++; \ |
| if ((i) == (r)->count) \ |
| i = 0; \ |
| (n) = I40E_RX_DESC((r), (i)); \ |
| } while (0) |
| |
| #define I40E_RX_NEXT_DESC_PREFETCH(r, i, n) \ |
| do { \ |
| I40E_RX_NEXT_DESC((r), (i), (n)); \ |
| prefetch((n)); \ |
| } while (0) |
| |
| #define I40E_MAX_BUFFER_TXD 8 |
| #define I40E_MIN_TX_LEN 17 |
| |
| /* The size limit for a transmit buffer in a descriptor is (16K - 1). |
| * In order to align with the read requests we will align the value to |
| * the nearest 4K which represents our maximum read request size. |
| */ |
| #define I40E_MAX_READ_REQ_SIZE 4096 |
| #define I40E_MAX_DATA_PER_TXD (16 * 1024 - 1) |
| #define I40E_MAX_DATA_PER_TXD_ALIGNED \ |
| (I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1)) |
| |
| /** |
| * i40e_txd_use_count - estimate the number of descriptors needed for Tx |
| * @size: transmit request size in bytes |
| * |
| * Due to hardware alignment restrictions (4K alignment), we need to |
| * assume that we can have no more than 12K of data per descriptor, even |
| * though each descriptor can take up to 16K - 1 bytes of aligned memory. |
| * Thus, we need to divide by 12K. But division is slow! Instead, |
| * we decompose the operation into shifts and one relatively cheap |
| * multiply operation. |
| * |
| * To divide by 12K, we first divide by 4K, then divide by 3: |
| * To divide by 4K, shift right by 12 bits |
| * To divide by 3, multiply by 85, then divide by 256 |
| * (Divide by 256 is done by shifting right by 8 bits) |
| * Finally, we add one to round up. Because 256 isn't an exact multiple of |
| * 3, we'll underestimate near each multiple of 12K. This is actually more |
| * accurate as we have 4K - 1 of wiggle room that we can fit into the last |
| * segment. For our purposes this is accurate out to 1M which is orders of |
| * magnitude greater than our largest possible GSO size. |
| * |
| * This would then be implemented as: |
| * return (((size >> 12) * 85) >> 8) + 1; |
| * |
| * Since multiplication and division are commutative, we can reorder |
| * operations into: |
| * return ((size * 85) >> 20) + 1; |
| */ |
| static inline unsigned int i40e_txd_use_count(unsigned int size) |
| { |
| return ((size * 85) >> 20) + 1; |
| } |
| |
| /* Tx Descriptors needed, worst case */ |
| #define DESC_NEEDED (MAX_SKB_FRAGS + 4) |
| #define I40E_MIN_DESC_PENDING 4 |
| |
| #define I40E_TX_FLAGS_HW_VLAN BIT(1) |
| #define I40E_TX_FLAGS_SW_VLAN BIT(2) |
| #define I40E_TX_FLAGS_TSO BIT(3) |
| #define I40E_TX_FLAGS_IPV4 BIT(4) |
| #define I40E_TX_FLAGS_IPV6 BIT(5) |
| #define I40E_TX_FLAGS_FCCRC BIT(6) |
| #define I40E_TX_FLAGS_FSO BIT(7) |
| #define I40E_TX_FLAGS_FD_SB BIT(9) |
| #define I40E_TX_FLAGS_VXLAN_TUNNEL BIT(10) |
| #define I40E_TX_FLAGS_VLAN_MASK 0xffff0000 |
| #define I40E_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000 |
| #define I40E_TX_FLAGS_VLAN_PRIO_SHIFT 29 |
| #define I40E_TX_FLAGS_VLAN_SHIFT 16 |
| |
| struct i40e_tx_buffer { |
| struct i40e_tx_desc *next_to_watch; |
| union { |
| struct sk_buff *skb; |
| void *raw_buf; |
| }; |
| unsigned int bytecount; |
| unsigned short gso_segs; |
| |
| DEFINE_DMA_UNMAP_ADDR(dma); |
| DEFINE_DMA_UNMAP_LEN(len); |
| u32 tx_flags; |
| }; |
| |
| struct i40e_rx_buffer { |
| dma_addr_t dma; |
| struct page *page; |
| #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) |
| __u32 page_offset; |
| #else |
| __u16 page_offset; |
| #endif |
| __u16 pagecnt_bias; |
| }; |
| |
| struct i40e_queue_stats { |
| u64 packets; |
| u64 bytes; |
| }; |
| |
| struct i40e_tx_queue_stats { |
| u64 restart_queue; |
| u64 tx_busy; |
| u64 tx_done_old; |
| u64 tx_linearize; |
| u64 tx_force_wb; |
| u64 tx_lost_interrupt; |
| }; |
| |
| struct i40e_rx_queue_stats { |
| u64 non_eop_descs; |
| u64 alloc_page_failed; |
| u64 alloc_buff_failed; |
| u64 page_reuse_count; |
| u64 realloc_count; |
| }; |
| |
| enum i40e_ring_state_t { |
| __I40E_TX_FDIR_INIT_DONE, |
| __I40E_TX_XPS_INIT_DONE, |
| __I40E_RING_STATE_NBITS /* must be last */ |
| }; |
| |
| /* some useful defines for virtchannel interface, which |
| * is the only remaining user of header split |
| */ |
| #define I40E_RX_DTYPE_NO_SPLIT 0 |
| #define I40E_RX_DTYPE_HEADER_SPLIT 1 |
| #define I40E_RX_DTYPE_SPLIT_ALWAYS 2 |
| #define I40E_RX_SPLIT_L2 0x1 |
| #define I40E_RX_SPLIT_IP 0x2 |
| #define I40E_RX_SPLIT_TCP_UDP 0x4 |
| #define I40E_RX_SPLIT_SCTP 0x8 |
| |
| /* struct that defines a descriptor ring, associated with a VSI */ |
| struct i40e_ring { |
| struct i40e_ring *next; /* pointer to next ring in q_vector */ |
| void *desc; /* Descriptor ring memory */ |
| struct device *dev; /* Used for DMA mapping */ |
| struct net_device *netdev; /* netdev ring maps to */ |
| union { |
| struct i40e_tx_buffer *tx_bi; |
| struct i40e_rx_buffer *rx_bi; |
| }; |
| DECLARE_BITMAP(state, __I40E_RING_STATE_NBITS); |
| u16 queue_index; /* Queue number of ring */ |
| u8 dcb_tc; /* Traffic class of ring */ |
| u8 __iomem *tail; |
| |
| /* high bit set means dynamic, use accessors routines to read/write. |
| * hardware only supports 2us resolution for the ITR registers. |
| * these values always store the USER setting, and must be converted |
| * before programming to a register. |
| */ |
| u16 rx_itr_setting; |
| u16 tx_itr_setting; |
| |
| u16 count; /* Number of descriptors */ |
| u16 reg_idx; /* HW register index of the ring */ |
| u16 rx_buf_len; |
| |
| /* used in interrupt processing */ |
| u16 next_to_use; |
| u16 next_to_clean; |
| |
| u8 atr_sample_rate; |
| u8 atr_count; |
| |
| bool ring_active; /* is ring online or not */ |
| bool arm_wb; /* do something to arm write back */ |
| u8 packet_stride; |
| |
| u16 flags; |
| #define I40E_TXR_FLAGS_WB_ON_ITR BIT(0) |
| #define I40E_RXR_FLAGS_BUILD_SKB_ENABLED BIT(1) |
| |
| /* stats structs */ |
| struct i40e_queue_stats stats; |
| struct u64_stats_sync syncp; |
| union { |
| struct i40e_tx_queue_stats tx_stats; |
| struct i40e_rx_queue_stats rx_stats; |
| }; |
| |
| unsigned int size; /* length of descriptor ring in bytes */ |
| dma_addr_t dma; /* physical address of ring */ |
| |
| struct i40e_vsi *vsi; /* Backreference to associated VSI */ |
| struct i40e_q_vector *q_vector; /* Backreference to associated vector */ |
| |
| struct rcu_head rcu; /* to avoid race on free */ |
| u16 next_to_alloc; |
| struct sk_buff *skb; /* When i40evf_clean_rx_ring_irq() must |
| * return before it sees the EOP for |
| * the current packet, we save that skb |
| * here and resume receiving this |
| * packet the next time |
| * i40evf_clean_rx_ring_irq() is called |
| * for this ring. |
| */ |
| } ____cacheline_internodealigned_in_smp; |
| |
| static inline bool ring_uses_build_skb(struct i40e_ring *ring) |
| { |
| return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED); |
| } |
| |
| static inline void set_ring_build_skb_enabled(struct i40e_ring *ring) |
| { |
| ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED; |
| } |
| |
| static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring) |
| { |
| ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED; |
| } |
| |
| enum i40e_latency_range { |
| I40E_LOWEST_LATENCY = 0, |
| I40E_LOW_LATENCY = 1, |
| I40E_BULK_LATENCY = 2, |
| }; |
| |
| struct i40e_ring_container { |
| /* array of pointers to rings */ |
| struct i40e_ring *ring; |
| unsigned int total_bytes; /* total bytes processed this int */ |
| unsigned int total_packets; /* total packets processed this int */ |
| unsigned long last_itr_update; /* jiffies of last ITR update */ |
| u16 count; |
| enum i40e_latency_range latency_range; |
| u16 itr; |
| }; |
| |
| /* iterator for handling rings in ring container */ |
| #define i40e_for_each_ring(pos, head) \ |
| for (pos = (head).ring; pos != NULL; pos = pos->next) |
| |
| static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring) |
| { |
| #if (PAGE_SIZE < 8192) |
| if (ring->rx_buf_len > (PAGE_SIZE / 2)) |
| return 1; |
| #endif |
| return 0; |
| } |
| |
| #define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring)) |
| |
| bool i40evf_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count); |
| netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev); |
| void i40evf_clean_tx_ring(struct i40e_ring *tx_ring); |
| void i40evf_clean_rx_ring(struct i40e_ring *rx_ring); |
| int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring); |
| int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring); |
| void i40evf_free_tx_resources(struct i40e_ring *tx_ring); |
| void i40evf_free_rx_resources(struct i40e_ring *rx_ring); |
| int i40evf_napi_poll(struct napi_struct *napi, int budget); |
| void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector); |
| u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw); |
| int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size); |
| bool __i40evf_chk_linearize(struct sk_buff *skb); |
| |
| /** |
| * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed |
| * @skb: send buffer |
| * @tx_ring: ring to send buffer on |
| * |
| * Returns number of data descriptors needed for this skb. Returns 0 to indicate |
| * there is not enough descriptors available in this ring since we need at least |
| * one descriptor. |
| **/ |
| static inline int i40e_xmit_descriptor_count(struct sk_buff *skb) |
| { |
| const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; |
| unsigned int nr_frags = skb_shinfo(skb)->nr_frags; |
| int count = 0, size = skb_headlen(skb); |
| |
| for (;;) { |
| count += i40e_txd_use_count(size); |
| |
| if (!nr_frags--) |
| break; |
| |
| size = skb_frag_size(frag++); |
| } |
| |
| return count; |
| } |
| |
| /** |
| * i40e_maybe_stop_tx - 1st level check for Tx stop conditions |
| * @tx_ring: the ring to be checked |
| * @size: the size buffer we want to assure is available |
| * |
| * Returns 0 if stop is not needed |
| **/ |
| static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) |
| { |
| if (likely(I40E_DESC_UNUSED(tx_ring) >= size)) |
| return 0; |
| return __i40evf_maybe_stop_tx(tx_ring, size); |
| } |
| |
| /** |
| * i40e_chk_linearize - Check if there are more than 8 fragments per packet |
| * @skb: send buffer |
| * @count: number of buffers used |
| * |
| * Note: Our HW can't scatter-gather more than 8 fragments to build |
| * a packet on the wire and so we need to figure out the cases where we |
| * need to linearize the skb. |
| **/ |
| static inline bool i40e_chk_linearize(struct sk_buff *skb, int count) |
| { |
| /* Both TSO and single send will work if count is less than 8 */ |
| if (likely(count < I40E_MAX_BUFFER_TXD)) |
| return false; |
| |
| if (skb_is_gso(skb)) |
| return __i40evf_chk_linearize(skb); |
| |
| /* we can support up to 8 data buffers for a single send */ |
| return count != I40E_MAX_BUFFER_TXD; |
| } |
| /** |
| * @ring: Tx ring to find the netdev equivalent of |
| **/ |
| static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring) |
| { |
| return netdev_get_tx_queue(ring->netdev, ring->queue_index); |
| } |
| #endif /* _I40E_TXRX_H_ */ |