| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/list_sort.h> |
| #include <linux/slab.h> |
| #include <linux/list.h> |
| |
| #define MAX_LIST_LENGTH_BITS 20 |
| |
| /* |
| * Returns a list organized in an intermediate format suited |
| * to chaining of merge() calls: null-terminated, no reserved or |
| * sentinel head node, "prev" links not maintained. |
| */ |
| static struct list_head *merge(void *priv, |
| int (*cmp)(void *priv, struct list_head *a, |
| struct list_head *b), |
| struct list_head *a, struct list_head *b) |
| { |
| struct list_head head, *tail = &head; |
| |
| while (a && b) { |
| /* if equal, take 'a' -- important for sort stability */ |
| if ((*cmp)(priv, a, b) <= 0) { |
| tail->next = a; |
| a = a->next; |
| } else { |
| tail->next = b; |
| b = b->next; |
| } |
| tail = tail->next; |
| } |
| tail->next = a?:b; |
| return head.next; |
| } |
| |
| /* |
| * Combine final list merge with restoration of standard doubly-linked |
| * list structure. This approach duplicates code from merge(), but |
| * runs faster than the tidier alternatives of either a separate final |
| * prev-link restoration pass, or maintaining the prev links |
| * throughout. |
| */ |
| static void merge_and_restore_back_links(void *priv, |
| int (*cmp)(void *priv, struct list_head *a, |
| struct list_head *b), |
| struct list_head *head, |
| struct list_head *a, struct list_head *b) |
| { |
| struct list_head *tail = head; |
| |
| while (a && b) { |
| /* if equal, take 'a' -- important for sort stability */ |
| if ((*cmp)(priv, a, b) <= 0) { |
| tail->next = a; |
| a->prev = tail; |
| a = a->next; |
| } else { |
| tail->next = b; |
| b->prev = tail; |
| b = b->next; |
| } |
| tail = tail->next; |
| } |
| tail->next = a ? : b; |
| |
| do { |
| /* |
| * In worst cases this loop may run many iterations. |
| * Continue callbacks to the client even though no |
| * element comparison is needed, so the client's cmp() |
| * routine can invoke cond_resched() periodically. |
| */ |
| (*cmp)(priv, tail->next, tail->next); |
| |
| tail->next->prev = tail; |
| tail = tail->next; |
| } while (tail->next); |
| |
| tail->next = head; |
| head->prev = tail; |
| } |
| |
| /** |
| * list_sort - sort a list |
| * @priv: private data, opaque to list_sort(), passed to @cmp |
| * @head: the list to sort |
| * @cmp: the elements comparison function |
| * |
| * This function implements "merge sort", which has O(nlog(n)) |
| * complexity. |
| * |
| * The comparison function @cmp must return a negative value if @a |
| * should sort before @b, and a positive value if @a should sort after |
| * @b. If @a and @b are equivalent, and their original relative |
| * ordering is to be preserved, @cmp must return 0. |
| */ |
| void list_sort(void *priv, struct list_head *head, |
| int (*cmp)(void *priv, struct list_head *a, |
| struct list_head *b)) |
| { |
| struct list_head *part[MAX_LIST_LENGTH_BITS+1]; /* sorted partial lists |
| -- last slot is a sentinel */ |
| int lev; /* index into part[] */ |
| int max_lev = 0; |
| struct list_head *list; |
| |
| if (list_empty(head)) |
| return; |
| |
| memset(part, 0, sizeof(part)); |
| |
| head->prev->next = NULL; |
| list = head->next; |
| |
| while (list) { |
| struct list_head *cur = list; |
| list = list->next; |
| cur->next = NULL; |
| |
| for (lev = 0; part[lev]; lev++) { |
| cur = merge(priv, cmp, part[lev], cur); |
| part[lev] = NULL; |
| } |
| if (lev > max_lev) { |
| if (unlikely(lev >= ARRAY_SIZE(part)-1)) { |
| printk_once(KERN_DEBUG "list passed to" |
| " list_sort() too long for" |
| " efficiency\n"); |
| lev--; |
| } |
| max_lev = lev; |
| } |
| part[lev] = cur; |
| } |
| |
| for (lev = 0; lev < max_lev; lev++) |
| if (part[lev]) |
| list = merge(priv, cmp, part[lev], list); |
| |
| merge_and_restore_back_links(priv, cmp, head, part[max_lev], list); |
| } |
| EXPORT_SYMBOL(list_sort); |
| |
| #ifdef CONFIG_TEST_LIST_SORT |
| |
| #include <linux/random.h> |
| |
| /* |
| * The pattern of set bits in the list length determines which cases |
| * are hit in list_sort(). |
| */ |
| #define TEST_LIST_LEN (512+128+2) /* not including head */ |
| |
| #define TEST_POISON1 0xDEADBEEF |
| #define TEST_POISON2 0xA324354C |
| |
| struct debug_el { |
| unsigned int poison1; |
| struct list_head list; |
| unsigned int poison2; |
| int value; |
| unsigned serial; |
| }; |
| |
| /* Array, containing pointers to all elements in the test list */ |
| static struct debug_el **elts __initdata; |
| |
| static int __init check(struct debug_el *ela, struct debug_el *elb) |
| { |
| if (ela->serial >= TEST_LIST_LEN) { |
| printk(KERN_ERR "list_sort_test: error: incorrect serial %d\n", |
| ela->serial); |
| return -EINVAL; |
| } |
| if (elb->serial >= TEST_LIST_LEN) { |
| printk(KERN_ERR "list_sort_test: error: incorrect serial %d\n", |
| elb->serial); |
| return -EINVAL; |
| } |
| if (elts[ela->serial] != ela || elts[elb->serial] != elb) { |
| printk(KERN_ERR "list_sort_test: error: phantom element\n"); |
| return -EINVAL; |
| } |
| if (ela->poison1 != TEST_POISON1 || ela->poison2 != TEST_POISON2) { |
| printk(KERN_ERR "list_sort_test: error: bad poison: %#x/%#x\n", |
| ela->poison1, ela->poison2); |
| return -EINVAL; |
| } |
| if (elb->poison1 != TEST_POISON1 || elb->poison2 != TEST_POISON2) { |
| printk(KERN_ERR "list_sort_test: error: bad poison: %#x/%#x\n", |
| elb->poison1, elb->poison2); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static int __init cmp(void *priv, struct list_head *a, struct list_head *b) |
| { |
| struct debug_el *ela, *elb; |
| |
| ela = container_of(a, struct debug_el, list); |
| elb = container_of(b, struct debug_el, list); |
| |
| check(ela, elb); |
| return ela->value - elb->value; |
| } |
| |
| static int __init list_sort_test(void) |
| { |
| int i, count = 1, err = -EINVAL; |
| struct debug_el *el; |
| struct list_head *cur, *tmp; |
| LIST_HEAD(head); |
| |
| printk(KERN_DEBUG "list_sort_test: start testing list_sort()\n"); |
| |
| elts = kmalloc(sizeof(void *) * TEST_LIST_LEN, GFP_KERNEL); |
| if (!elts) { |
| printk(KERN_ERR "list_sort_test: error: cannot allocate " |
| "memory\n"); |
| goto exit; |
| } |
| |
| for (i = 0; i < TEST_LIST_LEN; i++) { |
| el = kmalloc(sizeof(*el), GFP_KERNEL); |
| if (!el) { |
| printk(KERN_ERR "list_sort_test: error: cannot " |
| "allocate memory\n"); |
| goto exit; |
| } |
| /* force some equivalencies */ |
| el->value = prandom_u32() % (TEST_LIST_LEN / 3); |
| el->serial = i; |
| el->poison1 = TEST_POISON1; |
| el->poison2 = TEST_POISON2; |
| elts[i] = el; |
| list_add_tail(&el->list, &head); |
| } |
| |
| list_sort(NULL, &head, cmp); |
| |
| for (cur = head.next; cur->next != &head; cur = cur->next) { |
| struct debug_el *el1; |
| int cmp_result; |
| |
| if (cur->next->prev != cur) { |
| printk(KERN_ERR "list_sort_test: error: list is " |
| "corrupted\n"); |
| goto exit; |
| } |
| |
| cmp_result = cmp(NULL, cur, cur->next); |
| if (cmp_result > 0) { |
| printk(KERN_ERR "list_sort_test: error: list is not " |
| "sorted\n"); |
| goto exit; |
| } |
| |
| el = container_of(cur, struct debug_el, list); |
| el1 = container_of(cur->next, struct debug_el, list); |
| if (cmp_result == 0 && el->serial >= el1->serial) { |
| printk(KERN_ERR "list_sort_test: error: order of " |
| "equivalent elements not preserved\n"); |
| goto exit; |
| } |
| |
| if (check(el, el1)) { |
| printk(KERN_ERR "list_sort_test: error: element check " |
| "failed\n"); |
| goto exit; |
| } |
| count++; |
| } |
| |
| if (count != TEST_LIST_LEN) { |
| printk(KERN_ERR "list_sort_test: error: bad list length %d", |
| count); |
| goto exit; |
| } |
| |
| err = 0; |
| exit: |
| kfree(elts); |
| list_for_each_safe(cur, tmp, &head) { |
| list_del(cur); |
| kfree(container_of(cur, struct debug_el, list)); |
| } |
| return err; |
| } |
| module_init(list_sort_test); |
| #endif /* CONFIG_TEST_LIST_SORT */ |