blob: b4c0f10fc3b0f12eb9f114ac063ac5b0a85ecb1a [file] [log] [blame]
/*
* vsp1_drm.c -- R-Car VSP1 DRM API
*
* Copyright (C) 2015 Renesas Electronics Corporation
*
* Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/device.h>
#include <linux/slab.h>
#include <media/media-entity.h>
#include <media/v4l2-subdev.h>
#include <media/vsp1.h>
#include "vsp1.h"
#include "vsp1_bru.h"
#include "vsp1_dl.h"
#include "vsp1_drm.h"
#include "vsp1_lif.h"
#include "vsp1_pipe.h"
#include "vsp1_rwpf.h"
/* -----------------------------------------------------------------------------
* Interrupt Handling
*/
void vsp1_drm_display_start(struct vsp1_device *vsp1)
{
vsp1_dlm_irq_display_start(vsp1->drm->pipe.output->dlm);
}
/* -----------------------------------------------------------------------------
* DU Driver API
*/
int vsp1_du_init(struct device *dev)
{
struct vsp1_device *vsp1 = dev_get_drvdata(dev);
if (!vsp1)
return -EPROBE_DEFER;
return 0;
}
EXPORT_SYMBOL_GPL(vsp1_du_init);
/**
* vsp1_du_setup_lif - Setup the output part of the VSP pipeline
* @dev: the VSP device
* @cfg: the LIF configuration
*
* Configure the output part of VSP DRM pipeline for the given frame @cfg.width
* and @cfg.height. This sets up formats on the BRU source pad, the WPF0 sink
* and source pads, and the LIF sink pad.
*
* As the media bus code on the BRU source pad is conditioned by the
* configuration of the BRU sink 0 pad, we also set up the formats on all BRU
* sinks, even if the configuration will be overwritten later by
* vsp1_du_setup_rpf(). This ensures that the BRU configuration is set to a well
* defined state.
*
* Return 0 on success or a negative error code on failure.
*/
int vsp1_du_setup_lif(struct device *dev, const struct vsp1_du_lif_config *cfg)
{
struct vsp1_device *vsp1 = dev_get_drvdata(dev);
struct vsp1_pipeline *pipe = &vsp1->drm->pipe;
struct vsp1_bru *bru = vsp1->bru;
struct v4l2_subdev_format format;
unsigned int i;
int ret;
if (!cfg) {
/* NULL configuration means the CRTC is being disabled, stop
* the pipeline and turn the light off.
*/
ret = vsp1_pipeline_stop(pipe);
if (ret == -ETIMEDOUT)
dev_err(vsp1->dev, "DRM pipeline stop timeout\n");
media_pipeline_stop(&pipe->output->entity.subdev.entity);
for (i = 0; i < bru->entity.source_pad; ++i) {
vsp1->drm->inputs[i].enabled = false;
bru->inputs[i].rpf = NULL;
pipe->inputs[i] = NULL;
}
pipe->num_inputs = 0;
vsp1_dlm_reset(pipe->output->dlm);
vsp1_device_put(vsp1);
dev_dbg(vsp1->dev, "%s: pipeline disabled\n", __func__);
return 0;
}
dev_dbg(vsp1->dev, "%s: configuring LIF with format %ux%u\n",
__func__, cfg->width, cfg->height);
/* Configure the format at the BRU sinks and propagate it through the
* pipeline.
*/
memset(&format, 0, sizeof(format));
format.which = V4L2_SUBDEV_FORMAT_ACTIVE;
for (i = 0; i < bru->entity.source_pad; ++i) {
format.pad = i;
format.format.width = cfg->width;
format.format.height = cfg->height;
format.format.code = MEDIA_BUS_FMT_ARGB8888_1X32;
format.format.field = V4L2_FIELD_NONE;
ret = v4l2_subdev_call(&bru->entity.subdev, pad,
set_fmt, NULL, &format);
if (ret < 0)
return ret;
dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on BRU pad %u\n",
__func__, format.format.width, format.format.height,
format.format.code, i);
}
format.pad = bru->entity.source_pad;
format.format.width = cfg->width;
format.format.height = cfg->height;
format.format.code = MEDIA_BUS_FMT_ARGB8888_1X32;
format.format.field = V4L2_FIELD_NONE;
ret = v4l2_subdev_call(&bru->entity.subdev, pad, set_fmt, NULL,
&format);
if (ret < 0)
return ret;
dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on BRU pad %u\n",
__func__, format.format.width, format.format.height,
format.format.code, i);
format.pad = RWPF_PAD_SINK;
ret = v4l2_subdev_call(&vsp1->wpf[0]->entity.subdev, pad, set_fmt, NULL,
&format);
if (ret < 0)
return ret;
dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on WPF0 sink\n",
__func__, format.format.width, format.format.height,
format.format.code);
format.pad = RWPF_PAD_SOURCE;
ret = v4l2_subdev_call(&vsp1->wpf[0]->entity.subdev, pad, get_fmt, NULL,
&format);
if (ret < 0)
return ret;
dev_dbg(vsp1->dev, "%s: got format %ux%u (%x) on WPF0 source\n",
__func__, format.format.width, format.format.height,
format.format.code);
format.pad = LIF_PAD_SINK;
ret = v4l2_subdev_call(&vsp1->lif->entity.subdev, pad, set_fmt, NULL,
&format);
if (ret < 0)
return ret;
dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on LIF sink\n",
__func__, format.format.width, format.format.height,
format.format.code);
/* Verify that the format at the output of the pipeline matches the
* requested frame size and media bus code.
*/
if (format.format.width != cfg->width ||
format.format.height != cfg->height ||
format.format.code != MEDIA_BUS_FMT_ARGB8888_1X32) {
dev_dbg(vsp1->dev, "%s: format mismatch\n", __func__);
return -EPIPE;
}
/* Mark the pipeline as streaming and enable the VSP1. This will store
* the pipeline pointer in all entities, which the s_stream handlers
* will need. We don't start the entities themselves right at this point
* as there's no plane configured yet, so we can't start processing
* buffers.
*/
ret = vsp1_device_get(vsp1);
if (ret < 0)
return ret;
ret = media_pipeline_start(&pipe->output->entity.subdev.entity,
&pipe->pipe);
if (ret < 0) {
dev_dbg(vsp1->dev, "%s: pipeline start failed\n", __func__);
vsp1_device_put(vsp1);
return ret;
}
dev_dbg(vsp1->dev, "%s: pipeline enabled\n", __func__);
return 0;
}
EXPORT_SYMBOL_GPL(vsp1_du_setup_lif);
/**
* vsp1_du_atomic_begin - Prepare for an atomic update
* @dev: the VSP device
*/
void vsp1_du_atomic_begin(struct device *dev)
{
struct vsp1_device *vsp1 = dev_get_drvdata(dev);
struct vsp1_pipeline *pipe = &vsp1->drm->pipe;
vsp1->drm->num_inputs = pipe->num_inputs;
/* Prepare the display list. */
pipe->dl = vsp1_dl_list_get(pipe->output->dlm);
}
EXPORT_SYMBOL_GPL(vsp1_du_atomic_begin);
/**
* vsp1_du_atomic_update - Setup one RPF input of the VSP pipeline
* @dev: the VSP device
* @rpf_index: index of the RPF to setup (0-based)
* @cfg: the RPF configuration
*
* Configure the VSP to perform image composition through RPF @rpf_index as
* described by the @cfg configuration. The image to compose is referenced by
* @cfg.mem and composed using the @cfg.src crop rectangle and the @cfg.dst
* composition rectangle. The Z-order is configurable with higher @zpos values
* displayed on top.
*
* If the @cfg configuration is NULL, the RPF will be disabled. Calling the
* function on a disabled RPF is allowed.
*
* Image format as stored in memory is expressed as a V4L2 @cfg.pixelformat
* value. The memory pitch is configurable to allow for padding at end of lines,
* or simply for images that extend beyond the crop rectangle boundaries. The
* @cfg.pitch value is expressed in bytes and applies to all planes for
* multiplanar formats.
*
* The source memory buffer is referenced by the DMA address of its planes in
* the @cfg.mem array. Up to two planes are supported. The second plane DMA
* address is ignored for formats using a single plane.
*
* This function isn't reentrant, the caller needs to serialize calls.
*
* Return 0 on success or a negative error code on failure.
*/
int vsp1_du_atomic_update(struct device *dev, unsigned int rpf_index,
const struct vsp1_du_atomic_config *cfg)
{
struct vsp1_device *vsp1 = dev_get_drvdata(dev);
const struct vsp1_format_info *fmtinfo;
struct vsp1_rwpf *rpf;
if (rpf_index >= vsp1->info->rpf_count)
return -EINVAL;
rpf = vsp1->rpf[rpf_index];
if (!cfg) {
dev_dbg(vsp1->dev, "%s: RPF%u: disable requested\n", __func__,
rpf_index);
vsp1->drm->inputs[rpf_index].enabled = false;
return 0;
}
dev_dbg(vsp1->dev,
"%s: RPF%u: (%u,%u)/%ux%u -> (%u,%u)/%ux%u (%08x), pitch %u dma { %pad, %pad, %pad } zpos %u\n",
__func__, rpf_index,
cfg->src.left, cfg->src.top, cfg->src.width, cfg->src.height,
cfg->dst.left, cfg->dst.top, cfg->dst.width, cfg->dst.height,
cfg->pixelformat, cfg->pitch, &cfg->mem[0], &cfg->mem[1],
&cfg->mem[2], cfg->zpos);
/*
* Store the format, stride, memory buffer address, crop and compose
* rectangles and Z-order position and for the input.
*/
fmtinfo = vsp1_get_format_info(vsp1, cfg->pixelformat);
if (!fmtinfo) {
dev_dbg(vsp1->dev, "Unsupport pixel format %08x for RPF\n",
cfg->pixelformat);
return -EINVAL;
}
rpf->fmtinfo = fmtinfo;
rpf->format.num_planes = fmtinfo->planes;
rpf->format.plane_fmt[0].bytesperline = cfg->pitch;
rpf->format.plane_fmt[1].bytesperline = cfg->pitch;
rpf->alpha = cfg->alpha;
rpf->mem.addr[0] = cfg->mem[0];
rpf->mem.addr[1] = cfg->mem[1];
rpf->mem.addr[2] = cfg->mem[2];
vsp1->drm->inputs[rpf_index].crop = cfg->src;
vsp1->drm->inputs[rpf_index].compose = cfg->dst;
vsp1->drm->inputs[rpf_index].zpos = cfg->zpos;
vsp1->drm->inputs[rpf_index].enabled = true;
return 0;
}
EXPORT_SYMBOL_GPL(vsp1_du_atomic_update);
static int vsp1_du_setup_rpf_pipe(struct vsp1_device *vsp1,
struct vsp1_rwpf *rpf, unsigned int bru_input)
{
struct v4l2_subdev_selection sel;
struct v4l2_subdev_format format;
const struct v4l2_rect *crop;
int ret;
/* Configure the format on the RPF sink pad and propagate it up to the
* BRU sink pad.
*/
crop = &vsp1->drm->inputs[rpf->entity.index].crop;
memset(&format, 0, sizeof(format));
format.which = V4L2_SUBDEV_FORMAT_ACTIVE;
format.pad = RWPF_PAD_SINK;
format.format.width = crop->width + crop->left;
format.format.height = crop->height + crop->top;
format.format.code = rpf->fmtinfo->mbus;
format.format.field = V4L2_FIELD_NONE;
ret = v4l2_subdev_call(&rpf->entity.subdev, pad, set_fmt, NULL,
&format);
if (ret < 0)
return ret;
dev_dbg(vsp1->dev,
"%s: set format %ux%u (%x) on RPF%u sink\n",
__func__, format.format.width, format.format.height,
format.format.code, rpf->entity.index);
memset(&sel, 0, sizeof(sel));
sel.which = V4L2_SUBDEV_FORMAT_ACTIVE;
sel.pad = RWPF_PAD_SINK;
sel.target = V4L2_SEL_TGT_CROP;
sel.r = *crop;
ret = v4l2_subdev_call(&rpf->entity.subdev, pad, set_selection, NULL,
&sel);
if (ret < 0)
return ret;
dev_dbg(vsp1->dev,
"%s: set selection (%u,%u)/%ux%u on RPF%u sink\n",
__func__, sel.r.left, sel.r.top, sel.r.width, sel.r.height,
rpf->entity.index);
/* RPF source, hardcode the format to ARGB8888 to turn on format
* conversion if needed.
*/
format.pad = RWPF_PAD_SOURCE;
ret = v4l2_subdev_call(&rpf->entity.subdev, pad, get_fmt, NULL,
&format);
if (ret < 0)
return ret;
dev_dbg(vsp1->dev,
"%s: got format %ux%u (%x) on RPF%u source\n",
__func__, format.format.width, format.format.height,
format.format.code, rpf->entity.index);
format.format.code = MEDIA_BUS_FMT_ARGB8888_1X32;
ret = v4l2_subdev_call(&rpf->entity.subdev, pad, set_fmt, NULL,
&format);
if (ret < 0)
return ret;
/* BRU sink, propagate the format from the RPF source. */
format.pad = bru_input;
ret = v4l2_subdev_call(&vsp1->bru->entity.subdev, pad, set_fmt, NULL,
&format);
if (ret < 0)
return ret;
dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on BRU pad %u\n",
__func__, format.format.width, format.format.height,
format.format.code, format.pad);
sel.pad = bru_input;
sel.target = V4L2_SEL_TGT_COMPOSE;
sel.r = vsp1->drm->inputs[rpf->entity.index].compose;
ret = v4l2_subdev_call(&vsp1->bru->entity.subdev, pad, set_selection,
NULL, &sel);
if (ret < 0)
return ret;
dev_dbg(vsp1->dev,
"%s: set selection (%u,%u)/%ux%u on BRU pad %u\n",
__func__, sel.r.left, sel.r.top, sel.r.width, sel.r.height,
sel.pad);
return 0;
}
static unsigned int rpf_zpos(struct vsp1_device *vsp1, struct vsp1_rwpf *rpf)
{
return vsp1->drm->inputs[rpf->entity.index].zpos;
}
/**
* vsp1_du_atomic_flush - Commit an atomic update
* @dev: the VSP device
*/
void vsp1_du_atomic_flush(struct device *dev)
{
struct vsp1_device *vsp1 = dev_get_drvdata(dev);
struct vsp1_pipeline *pipe = &vsp1->drm->pipe;
struct vsp1_rwpf *inputs[VSP1_MAX_RPF] = { NULL, };
struct vsp1_entity *entity;
unsigned long flags;
unsigned int i;
int ret;
/* Count the number of enabled inputs and sort them by Z-order. */
pipe->num_inputs = 0;
for (i = 0; i < vsp1->info->rpf_count; ++i) {
struct vsp1_rwpf *rpf = vsp1->rpf[i];
unsigned int j;
if (!vsp1->drm->inputs[i].enabled) {
pipe->inputs[i] = NULL;
continue;
}
pipe->inputs[i] = rpf;
/* Insert the RPF in the sorted RPFs array. */
for (j = pipe->num_inputs++; j > 0; --j) {
if (rpf_zpos(vsp1, inputs[j-1]) <= rpf_zpos(vsp1, rpf))
break;
inputs[j] = inputs[j-1];
}
inputs[j] = rpf;
}
/* Setup the RPF input pipeline for every enabled input. */
for (i = 0; i < vsp1->info->num_bru_inputs; ++i) {
struct vsp1_rwpf *rpf = inputs[i];
if (!rpf) {
vsp1->bru->inputs[i].rpf = NULL;
continue;
}
vsp1->bru->inputs[i].rpf = rpf;
rpf->bru_input = i;
rpf->entity.sink_pad = i;
dev_dbg(vsp1->dev, "%s: connecting RPF.%u to BRU:%u\n",
__func__, rpf->entity.index, i);
ret = vsp1_du_setup_rpf_pipe(vsp1, rpf, i);
if (ret < 0)
dev_err(vsp1->dev,
"%s: failed to setup RPF.%u\n",
__func__, rpf->entity.index);
}
/* Configure all entities in the pipeline. */
list_for_each_entry(entity, &pipe->entities, list_pipe) {
/* Disconnect unused RPFs from the pipeline. */
if (entity->type == VSP1_ENTITY_RPF) {
struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
if (!pipe->inputs[rpf->entity.index]) {
vsp1_dl_list_write(pipe->dl, entity->route->reg,
VI6_DPR_NODE_UNUSED);
continue;
}
}
vsp1_entity_route_setup(entity, pipe->dl);
if (entity->ops->configure) {
entity->ops->configure(entity, pipe, pipe->dl,
VSP1_ENTITY_PARAMS_INIT);
entity->ops->configure(entity, pipe, pipe->dl,
VSP1_ENTITY_PARAMS_RUNTIME);
entity->ops->configure(entity, pipe, pipe->dl,
VSP1_ENTITY_PARAMS_PARTITION);
}
}
vsp1_dl_list_commit(pipe->dl);
pipe->dl = NULL;
/* Start or stop the pipeline if needed. */
if (!vsp1->drm->num_inputs && pipe->num_inputs) {
vsp1_write(vsp1, VI6_DISP_IRQ_STA, 0);
vsp1_write(vsp1, VI6_DISP_IRQ_ENB, VI6_DISP_IRQ_ENB_DSTE);
spin_lock_irqsave(&pipe->irqlock, flags);
vsp1_pipeline_run(pipe);
spin_unlock_irqrestore(&pipe->irqlock, flags);
} else if (vsp1->drm->num_inputs && !pipe->num_inputs) {
vsp1_write(vsp1, VI6_DISP_IRQ_ENB, 0);
vsp1_pipeline_stop(pipe);
}
}
EXPORT_SYMBOL_GPL(vsp1_du_atomic_flush);
/* -----------------------------------------------------------------------------
* Initialization
*/
int vsp1_drm_create_links(struct vsp1_device *vsp1)
{
const u32 flags = MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE;
unsigned int i;
int ret;
/* VSPD instances require a BRU to perform composition and a LIF to
* output to the DU.
*/
if (!vsp1->bru || !vsp1->lif)
return -ENXIO;
for (i = 0; i < vsp1->info->rpf_count; ++i) {
struct vsp1_rwpf *rpf = vsp1->rpf[i];
ret = media_create_pad_link(&rpf->entity.subdev.entity,
RWPF_PAD_SOURCE,
&vsp1->bru->entity.subdev.entity,
i, flags);
if (ret < 0)
return ret;
rpf->entity.sink = &vsp1->bru->entity.subdev.entity;
rpf->entity.sink_pad = i;
}
ret = media_create_pad_link(&vsp1->bru->entity.subdev.entity,
vsp1->bru->entity.source_pad,
&vsp1->wpf[0]->entity.subdev.entity,
RWPF_PAD_SINK, flags);
if (ret < 0)
return ret;
vsp1->bru->entity.sink = &vsp1->wpf[0]->entity.subdev.entity;
vsp1->bru->entity.sink_pad = RWPF_PAD_SINK;
ret = media_create_pad_link(&vsp1->wpf[0]->entity.subdev.entity,
RWPF_PAD_SOURCE,
&vsp1->lif->entity.subdev.entity,
LIF_PAD_SINK, flags);
if (ret < 0)
return ret;
return 0;
}
int vsp1_drm_init(struct vsp1_device *vsp1)
{
struct vsp1_pipeline *pipe;
unsigned int i;
vsp1->drm = devm_kzalloc(vsp1->dev, sizeof(*vsp1->drm), GFP_KERNEL);
if (!vsp1->drm)
return -ENOMEM;
pipe = &vsp1->drm->pipe;
vsp1_pipeline_init(pipe);
/* The DRM pipeline is static, add entities manually. */
for (i = 0; i < vsp1->info->rpf_count; ++i) {
struct vsp1_rwpf *input = vsp1->rpf[i];
list_add_tail(&input->entity.list_pipe, &pipe->entities);
}
list_add_tail(&vsp1->bru->entity.list_pipe, &pipe->entities);
list_add_tail(&vsp1->wpf[0]->entity.list_pipe, &pipe->entities);
list_add_tail(&vsp1->lif->entity.list_pipe, &pipe->entities);
pipe->bru = &vsp1->bru->entity;
pipe->lif = &vsp1->lif->entity;
pipe->output = vsp1->wpf[0];
return 0;
}
void vsp1_drm_cleanup(struct vsp1_device *vsp1)
{
}