blob: 33a15d4c642c0a6b3ee9c7238e3d1a90e09a2c2c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* MPRLS0025PA - Honeywell MicroPressure pressure sensor series driver
*
* Copyright (c) Andreas Klinger <ak@it-klinger.de>
*
* Data sheet:
* https://prod-edam.honeywell.com/content/dam/honeywell-edam/sps/siot/en-us/products/sensors/pressure-sensors/board-mount-pressure-sensors/micropressure-mpr-series/documents/sps-siot-mpr-series-datasheet-32332628-ciid-172626.pdf
*
*/
#include <linux/array_size.h>
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/math64.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/property.h>
#include <linux/units.h>
#include <linux/gpio/consumer.h>
#include <linux/iio/buffer.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/regulator/consumer.h>
#include <asm/unaligned.h>
#include "mprls0025pa.h"
/* bits in status byte */
#define MPR_ST_POWER BIT(6) /* device is powered */
#define MPR_ST_BUSY BIT(5) /* device is busy */
#define MPR_ST_MEMORY BIT(2) /* integrity test passed */
#define MPR_ST_MATH BIT(0) /* internal math saturation */
#define MPR_ST_ERR_FLAG (MPR_ST_BUSY | MPR_ST_MEMORY | MPR_ST_MATH)
/*
* support _RAW sysfs interface:
*
* Calculation formula from the datasheet:
* pressure = (press_cnt - outputmin) * scale + pmin
* with:
* * pressure - measured pressure in Pascal
* * press_cnt - raw value read from sensor
* * pmin - minimum pressure range value of sensor (data->pmin)
* * pmax - maximum pressure range value of sensor (data->pmax)
* * outputmin - minimum numerical range raw value delivered by sensor
* (mpr_func_spec.output_min)
* * outputmax - maximum numerical range raw value delivered by sensor
* (mpr_func_spec.output_max)
* * scale - (pmax - pmin) / (outputmax - outputmin)
*
* formula of the userspace:
* pressure = (raw + offset) * scale
*
* Values given to the userspace in sysfs interface:
* * raw - press_cnt
* * offset - (-1 * outputmin) - pmin / scale
* note: With all sensors from the datasheet pmin = 0
* which reduces the offset to (-1 * outputmin)
*/
/*
* transfer function A: 10% to 90% of 2^24
* transfer function B: 2.5% to 22.5% of 2^24
* transfer function C: 20% to 80% of 2^24
*/
struct mpr_func_spec {
u32 output_min;
u32 output_max;
};
static const struct mpr_func_spec mpr_func_spec[] = {
[MPR_FUNCTION_A] = { .output_min = 1677722, .output_max = 15099494 },
[MPR_FUNCTION_B] = { .output_min = 419430, .output_max = 3774874 },
[MPR_FUNCTION_C] = { .output_min = 3355443, .output_max = 13421773 },
};
enum mpr_variants {
MPR0001BA = 0x00, MPR01_6BA = 0x01, MPR02_5BA = 0x02, MPR0060MG = 0x03,
MPR0100MG = 0x04, MPR0160MG = 0x05, MPR0250MG = 0x06, MPR0400MG = 0x07,
MPR0600MG = 0x08, MPR0001BG = 0x09, MPR01_6BG = 0x0a, MPR02_5BG = 0x0b,
MPR0100KA = 0x0c, MPR0160KA = 0x0d, MPR0250KA = 0x0e, MPR0006KG = 0x0f,
MPR0010KG = 0x10, MPR0016KG = 0x11, MPR0025KG = 0x12, MPR0040KG = 0x13,
MPR0060KG = 0x14, MPR0100KG = 0x15, MPR0160KG = 0x16, MPR0250KG = 0x17,
MPR0015PA = 0x18, MPR0025PA = 0x19, MPR0030PA = 0x1a, MPR0001PG = 0x1b,
MPR0005PG = 0x1c, MPR0015PG = 0x1d, MPR0030PG = 0x1e, MPR0300YG = 0x1f,
MPR_VARIANTS_MAX
};
static const char * const mpr_triplet_variants[MPR_VARIANTS_MAX] = {
[MPR0001BA] = "0001BA", [MPR01_6BA] = "01.6BA", [MPR02_5BA] = "02.5BA",
[MPR0060MG] = "0060MG", [MPR0100MG] = "0100MG", [MPR0160MG] = "0160MG",
[MPR0250MG] = "0250MG", [MPR0400MG] = "0400MG", [MPR0600MG] = "0600MG",
[MPR0001BG] = "0001BG", [MPR01_6BG] = "01.6BG", [MPR02_5BG] = "02.5BG",
[MPR0100KA] = "0100KA", [MPR0160KA] = "0160KA", [MPR0250KA] = "0250KA",
[MPR0006KG] = "0006KG", [MPR0010KG] = "0010KG", [MPR0016KG] = "0016KG",
[MPR0025KG] = "0025KG", [MPR0040KG] = "0040KG", [MPR0060KG] = "0060KG",
[MPR0100KG] = "0100KG", [MPR0160KG] = "0160KG", [MPR0250KG] = "0250KG",
[MPR0015PA] = "0015PA", [MPR0025PA] = "0025PA", [MPR0030PA] = "0030PA",
[MPR0001PG] = "0001PG", [MPR0005PG] = "0005PG", [MPR0015PG] = "0015PG",
[MPR0030PG] = "0030PG", [MPR0300YG] = "0300YG"
};
/**
* struct mpr_range_config - list of pressure ranges based on nomenclature
* @pmin: lowest pressure that can be measured
* @pmax: highest pressure that can be measured
*/
struct mpr_range_config {
const s32 pmin;
const s32 pmax;
};
/* All min max limits have been converted to pascals */
static const struct mpr_range_config mpr_range_config[MPR_VARIANTS_MAX] = {
[MPR0001BA] = { .pmin = 0, .pmax = 100000 },
[MPR01_6BA] = { .pmin = 0, .pmax = 160000 },
[MPR02_5BA] = { .pmin = 0, .pmax = 250000 },
[MPR0060MG] = { .pmin = 0, .pmax = 6000 },
[MPR0100MG] = { .pmin = 0, .pmax = 10000 },
[MPR0160MG] = { .pmin = 0, .pmax = 16000 },
[MPR0250MG] = { .pmin = 0, .pmax = 25000 },
[MPR0400MG] = { .pmin = 0, .pmax = 40000 },
[MPR0600MG] = { .pmin = 0, .pmax = 60000 },
[MPR0001BG] = { .pmin = 0, .pmax = 100000 },
[MPR01_6BG] = { .pmin = 0, .pmax = 160000 },
[MPR02_5BG] = { .pmin = 0, .pmax = 250000 },
[MPR0100KA] = { .pmin = 0, .pmax = 100000 },
[MPR0160KA] = { .pmin = 0, .pmax = 160000 },
[MPR0250KA] = { .pmin = 0, .pmax = 250000 },
[MPR0006KG] = { .pmin = 0, .pmax = 6000 },
[MPR0010KG] = { .pmin = 0, .pmax = 10000 },
[MPR0016KG] = { .pmin = 0, .pmax = 16000 },
[MPR0025KG] = { .pmin = 0, .pmax = 25000 },
[MPR0040KG] = { .pmin = 0, .pmax = 40000 },
[MPR0060KG] = { .pmin = 0, .pmax = 60000 },
[MPR0100KG] = { .pmin = 0, .pmax = 100000 },
[MPR0160KG] = { .pmin = 0, .pmax = 160000 },
[MPR0250KG] = { .pmin = 0, .pmax = 250000 },
[MPR0015PA] = { .pmin = 0, .pmax = 103421 },
[MPR0025PA] = { .pmin = 0, .pmax = 172369 },
[MPR0030PA] = { .pmin = 0, .pmax = 206843 },
[MPR0001PG] = { .pmin = 0, .pmax = 6895 },
[MPR0005PG] = { .pmin = 0, .pmax = 34474 },
[MPR0015PG] = { .pmin = 0, .pmax = 103421 },
[MPR0030PG] = { .pmin = 0, .pmax = 206843 },
[MPR0300YG] = { .pmin = 0, .pmax = 39997 }
};
static const struct iio_chan_spec mpr_channels[] = {
{
.type = IIO_PRESSURE,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_OFFSET),
.scan_index = 0,
.scan_type = {
.sign = 's',
.realbits = 32,
.storagebits = 32,
.endianness = IIO_CPU,
},
},
IIO_CHAN_SOFT_TIMESTAMP(1),
};
static void mpr_reset(struct mpr_data *data)
{
if (data->gpiod_reset) {
gpiod_set_value(data->gpiod_reset, 0);
udelay(10);
gpiod_set_value(data->gpiod_reset, 1);
}
}
/**
* mpr_read_pressure() - Read pressure value from sensor
* @data: Pointer to private data struct.
* @press: Output value read from sensor.
*
* Reading from the sensor by sending and receiving telegrams.
*
* If there is an end of conversion (EOC) interrupt registered the function
* waits for a maximum of one second for the interrupt.
*
* Context: The function can sleep and data->lock should be held when calling it
* Return:
* * 0 - OK, the pressure value could be read
* * -ETIMEDOUT - Timeout while waiting for the EOC interrupt or busy flag is
* still set after nloops attempts of reading
*/
static int mpr_read_pressure(struct mpr_data *data, s32 *press)
{
struct device *dev = data->dev;
int ret, i;
int nloops = 10;
reinit_completion(&data->completion);
ret = data->ops->write(data, MPR_CMD_SYNC, MPR_PKT_SYNC_LEN);
if (ret < 0) {
dev_err(dev, "error while writing ret: %d\n", ret);
return ret;
}
if (data->irq > 0) {
ret = wait_for_completion_timeout(&data->completion, HZ);
if (!ret) {
dev_err(dev, "timeout while waiting for eoc irq\n");
return -ETIMEDOUT;
}
} else {
/* wait until status indicates data is ready */
for (i = 0; i < nloops; i++) {
/*
* datasheet only says to wait at least 5 ms for the
* data but leave the maximum response time open
* --> let's try it nloops (10) times which seems to be
* quite long
*/
usleep_range(5000, 10000);
ret = data->ops->read(data, MPR_CMD_NOP, 1);
if (ret < 0) {
dev_err(dev,
"error while reading, status: %d\n",
ret);
return ret;
}
if (!(data->buffer[0] & MPR_ST_ERR_FLAG))
break;
}
if (i == nloops) {
dev_err(dev, "timeout while reading\n");
return -ETIMEDOUT;
}
}
ret = data->ops->read(data, MPR_CMD_NOP, MPR_PKT_NOP_LEN);
if (ret < 0)
return ret;
if (data->buffer[0] & MPR_ST_ERR_FLAG) {
dev_err(data->dev,
"unexpected status byte %02x\n", data->buffer[0]);
return -ETIMEDOUT;
}
*press = get_unaligned_be24(&data->buffer[1]);
dev_dbg(dev, "received: %*ph cnt: %d\n", ret, data->buffer, *press);
return 0;
}
static irqreturn_t mpr_eoc_handler(int irq, void *p)
{
struct mpr_data *data = p;
complete(&data->completion);
return IRQ_HANDLED;
}
static irqreturn_t mpr_trigger_handler(int irq, void *p)
{
int ret;
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct mpr_data *data = iio_priv(indio_dev);
mutex_lock(&data->lock);
ret = mpr_read_pressure(data, &data->chan.pres);
if (ret < 0)
goto err;
iio_push_to_buffers_with_timestamp(indio_dev, &data->chan,
iio_get_time_ns(indio_dev));
err:
mutex_unlock(&data->lock);
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int mpr_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val, int *val2, long mask)
{
int ret;
s32 pressure;
struct mpr_data *data = iio_priv(indio_dev);
if (chan->type != IIO_PRESSURE)
return -EINVAL;
switch (mask) {
case IIO_CHAN_INFO_RAW:
mutex_lock(&data->lock);
ret = mpr_read_pressure(data, &pressure);
mutex_unlock(&data->lock);
if (ret < 0)
return ret;
*val = pressure;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
*val = data->scale;
*val2 = data->scale2;
return IIO_VAL_INT_PLUS_NANO;
case IIO_CHAN_INFO_OFFSET:
*val = data->offset;
*val2 = data->offset2;
return IIO_VAL_INT_PLUS_NANO;
default:
return -EINVAL;
}
}
static const struct iio_info mpr_info = {
.read_raw = &mpr_read_raw,
};
int mpr_common_probe(struct device *dev, const struct mpr_ops *ops, int irq)
{
int ret;
struct mpr_data *data;
struct iio_dev *indio_dev;
const char *triplet;
s64 scale, offset;
u32 func;
indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
data->dev = dev;
data->ops = ops;
data->irq = irq;
mutex_init(&data->lock);
init_completion(&data->completion);
indio_dev->name = "mprls0025pa";
indio_dev->info = &mpr_info;
indio_dev->channels = mpr_channels;
indio_dev->num_channels = ARRAY_SIZE(mpr_channels);
indio_dev->modes = INDIO_DIRECT_MODE;
ret = devm_regulator_get_enable(dev, "vdd");
if (ret)
return dev_err_probe(dev, ret,
"can't get and enable vdd supply\n");
ret = data->ops->init(data->dev);
if (ret)
return ret;
ret = device_property_read_u32(dev,
"honeywell,transfer-function", &func);
if (ret)
return dev_err_probe(dev, ret,
"honeywell,transfer-function could not be read\n");
data->function = func - 1;
if (data->function > MPR_FUNCTION_C)
return dev_err_probe(dev, -EINVAL,
"honeywell,transfer-function %d invalid\n",
data->function);
ret = device_property_read_string(dev, "honeywell,pressure-triplet",
&triplet);
if (ret) {
ret = device_property_read_u32(dev, "honeywell,pmin-pascal",
&data->pmin);
if (ret)
return dev_err_probe(dev, ret,
"honeywell,pmin-pascal could not be read\n");
ret = device_property_read_u32(dev, "honeywell,pmax-pascal",
&data->pmax);
if (ret)
return dev_err_probe(dev, ret,
"honeywell,pmax-pascal could not be read\n");
} else {
ret = device_property_match_property_string(dev,
"honeywell,pressure-triplet",
mpr_triplet_variants,
MPR_VARIANTS_MAX);
if (ret < 0)
return dev_err_probe(dev, -EINVAL,
"honeywell,pressure-triplet is invalid\n");
data->pmin = mpr_range_config[ret].pmin;
data->pmax = mpr_range_config[ret].pmax;
}
if (data->pmin >= data->pmax)
return dev_err_probe(dev, -EINVAL,
"pressure limits are invalid\n");
data->outmin = mpr_func_spec[data->function].output_min;
data->outmax = mpr_func_spec[data->function].output_max;
/* use 64 bit calculation for preserving a reasonable precision */
scale = div_s64(((s64)(data->pmax - data->pmin)) * NANO,
data->outmax - data->outmin);
data->scale = div_s64_rem(scale, NANO, &data->scale2);
/*
* multiply with NANO before dividing by scale and later divide by NANO
* again.
*/
offset = ((-1LL) * (s64)data->outmin) * NANO -
div_s64(div_s64((s64)data->pmin * NANO, scale), NANO);
data->offset = div_s64_rem(offset, NANO, &data->offset2);
if (data->irq > 0) {
ret = devm_request_irq(dev, data->irq, mpr_eoc_handler,
IRQF_TRIGGER_RISING,
dev_name(dev),
data);
if (ret)
return dev_err_probe(dev, ret,
"request irq %d failed\n", data->irq);
}
data->gpiod_reset = devm_gpiod_get_optional(dev, "reset",
GPIOD_OUT_HIGH);
if (IS_ERR(data->gpiod_reset))
return dev_err_probe(dev, PTR_ERR(data->gpiod_reset),
"request reset-gpio failed\n");
mpr_reset(data);
ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL,
mpr_trigger_handler, NULL);
if (ret)
return dev_err_probe(dev, ret,
"iio triggered buffer setup failed\n");
ret = devm_iio_device_register(dev, indio_dev);
if (ret)
return dev_err_probe(dev, ret,
"unable to register iio device\n");
return 0;
}
EXPORT_SYMBOL_NS(mpr_common_probe, IIO_HONEYWELL_MPRLS0025PA);
MODULE_AUTHOR("Andreas Klinger <ak@it-klinger.de>");
MODULE_DESCRIPTION("Honeywell MPR pressure sensor core driver");
MODULE_LICENSE("GPL");