| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2005 Intel Corporation |
| * Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> |
| * - Added _PDC for SMP C-states on Intel CPUs |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/export.h> |
| #include <linux/init.h> |
| #include <linux/acpi.h> |
| #include <linux/cpu.h> |
| #include <linux/sched.h> |
| |
| #include <acpi/processor.h> |
| #include <asm/mwait.h> |
| #include <asm/special_insns.h> |
| |
| /* |
| * Initialize bm_flags based on the CPU cache properties |
| * On SMP it depends on cache configuration |
| * - When cache is not shared among all CPUs, we flush cache |
| * before entering C3. |
| * - When cache is shared among all CPUs, we use bm_check |
| * mechanism as in UP case |
| * |
| * This routine is called only after all the CPUs are online |
| */ |
| void acpi_processor_power_init_bm_check(struct acpi_processor_flags *flags, |
| unsigned int cpu) |
| { |
| struct cpuinfo_x86 *c = &cpu_data(cpu); |
| |
| flags->bm_check = 0; |
| if (num_online_cpus() == 1) |
| flags->bm_check = 1; |
| else if (c->x86_vendor == X86_VENDOR_INTEL) { |
| /* |
| * Today all MP CPUs that support C3 share cache. |
| * And caches should not be flushed by software while |
| * entering C3 type state. |
| */ |
| flags->bm_check = 1; |
| } |
| |
| /* |
| * On all recent Intel platforms, ARB_DISABLE is a nop. |
| * So, set bm_control to zero to indicate that ARB_DISABLE |
| * is not required while entering C3 type state on |
| * P4, Core and beyond CPUs |
| */ |
| if (c->x86_vendor == X86_VENDOR_INTEL && |
| (c->x86 > 0xf || (c->x86 == 6 && c->x86_model >= 0x0f))) |
| flags->bm_control = 0; |
| /* |
| * For all recent Centaur CPUs, the ucode will make sure that each |
| * core can keep cache coherence with each other while entering C3 |
| * type state. So, set bm_check to 1 to indicate that the kernel |
| * doesn't need to execute a cache flush operation (WBINVD) when |
| * entering C3 type state. |
| */ |
| if (c->x86_vendor == X86_VENDOR_CENTAUR) { |
| if (c->x86 > 6 || (c->x86 == 6 && c->x86_model == 0x0f && |
| c->x86_stepping >= 0x0e)) |
| flags->bm_check = 1; |
| } |
| |
| if (c->x86_vendor == X86_VENDOR_ZHAOXIN) { |
| /* |
| * All Zhaoxin CPUs that support C3 share cache. |
| * And caches should not be flushed by software while |
| * entering C3 type state. |
| */ |
| flags->bm_check = 1; |
| /* |
| * On all recent Zhaoxin platforms, ARB_DISABLE is a nop. |
| * So, set bm_control to zero to indicate that ARB_DISABLE |
| * is not required while entering C3 type state. |
| */ |
| flags->bm_control = 0; |
| } |
| if (c->x86_vendor == X86_VENDOR_AMD && c->x86 >= 0x17) { |
| /* |
| * For all AMD Zen or newer CPUs that support C3, caches |
| * should not be flushed by software while entering C3 |
| * type state. Set bm->check to 1 so that kernel doesn't |
| * need to execute cache flush operation. |
| */ |
| flags->bm_check = 1; |
| /* |
| * In current AMD C state implementation ARB_DIS is no longer |
| * used. So set bm_control to zero to indicate ARB_DIS is not |
| * required while entering C3 type state. |
| */ |
| flags->bm_control = 0; |
| } |
| } |
| EXPORT_SYMBOL(acpi_processor_power_init_bm_check); |
| |
| /* The code below handles cstate entry with monitor-mwait pair on Intel*/ |
| |
| struct cstate_entry { |
| struct { |
| unsigned int eax; |
| unsigned int ecx; |
| } states[ACPI_PROCESSOR_MAX_POWER]; |
| }; |
| static struct cstate_entry __percpu *cpu_cstate_entry; /* per CPU ptr */ |
| |
| static short mwait_supported[ACPI_PROCESSOR_MAX_POWER]; |
| |
| #define NATIVE_CSTATE_BEYOND_HALT (2) |
| |
| static long acpi_processor_ffh_cstate_probe_cpu(void *_cx) |
| { |
| struct acpi_processor_cx *cx = _cx; |
| long retval; |
| unsigned int eax, ebx, ecx, edx; |
| unsigned int edx_part; |
| unsigned int cstate_type; /* C-state type and not ACPI C-state type */ |
| unsigned int num_cstate_subtype; |
| |
| cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx); |
| |
| /* Check whether this particular cx_type (in CST) is supported or not */ |
| cstate_type = ((cx->address >> MWAIT_SUBSTATE_SIZE) & |
| MWAIT_CSTATE_MASK) + 1; |
| edx_part = edx >> (cstate_type * MWAIT_SUBSTATE_SIZE); |
| num_cstate_subtype = edx_part & MWAIT_SUBSTATE_MASK; |
| |
| retval = 0; |
| /* If the HW does not support any sub-states in this C-state */ |
| if (num_cstate_subtype == 0) { |
| pr_warn(FW_BUG "ACPI MWAIT C-state 0x%x not supported by HW (0x%x)\n", |
| cx->address, edx_part); |
| retval = -1; |
| goto out; |
| } |
| |
| /* mwait ecx extensions INTERRUPT_BREAK should be supported for C2/C3 */ |
| if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) || |
| !(ecx & CPUID5_ECX_INTERRUPT_BREAK)) { |
| retval = -1; |
| goto out; |
| } |
| |
| if (!mwait_supported[cstate_type]) { |
| mwait_supported[cstate_type] = 1; |
| printk(KERN_DEBUG |
| "Monitor-Mwait will be used to enter C-%d state\n", |
| cx->type); |
| } |
| snprintf(cx->desc, |
| ACPI_CX_DESC_LEN, "ACPI FFH MWAIT 0x%x", |
| cx->address); |
| out: |
| return retval; |
| } |
| |
| int acpi_processor_ffh_cstate_probe(unsigned int cpu, |
| struct acpi_processor_cx *cx, struct acpi_power_register *reg) |
| { |
| struct cstate_entry *percpu_entry; |
| struct cpuinfo_x86 *c = &cpu_data(cpu); |
| long retval; |
| |
| if (!cpu_cstate_entry || c->cpuid_level < CPUID_MWAIT_LEAF) |
| return -1; |
| |
| if (reg->bit_offset != NATIVE_CSTATE_BEYOND_HALT) |
| return -1; |
| |
| percpu_entry = per_cpu_ptr(cpu_cstate_entry, cpu); |
| percpu_entry->states[cx->index].eax = 0; |
| percpu_entry->states[cx->index].ecx = 0; |
| |
| /* Make sure we are running on right CPU */ |
| |
| retval = call_on_cpu(cpu, acpi_processor_ffh_cstate_probe_cpu, cx, |
| false); |
| if (retval == 0) { |
| /* Use the hint in CST */ |
| percpu_entry->states[cx->index].eax = cx->address; |
| percpu_entry->states[cx->index].ecx = MWAIT_ECX_INTERRUPT_BREAK; |
| } |
| |
| /* |
| * For _CST FFH on Intel, if GAS.access_size bit 1 is cleared, |
| * then we should skip checking BM_STS for this C-state. |
| * ref: "Intel Processor Vendor-Specific ACPI Interface Specification" |
| */ |
| if ((c->x86_vendor == X86_VENDOR_INTEL) && !(reg->access_size & 0x2)) |
| cx->bm_sts_skip = 1; |
| |
| return retval; |
| } |
| EXPORT_SYMBOL_GPL(acpi_processor_ffh_cstate_probe); |
| |
| void __cpuidle acpi_processor_ffh_cstate_enter(struct acpi_processor_cx *cx) |
| { |
| unsigned int cpu = smp_processor_id(); |
| struct cstate_entry *percpu_entry; |
| |
| percpu_entry = per_cpu_ptr(cpu_cstate_entry, cpu); |
| mwait_idle_with_hints(percpu_entry->states[cx->index].eax, |
| percpu_entry->states[cx->index].ecx); |
| } |
| EXPORT_SYMBOL_GPL(acpi_processor_ffh_cstate_enter); |
| |
| static int __init ffh_cstate_init(void) |
| { |
| struct cpuinfo_x86 *c = &boot_cpu_data; |
| |
| if (c->x86_vendor != X86_VENDOR_INTEL && |
| c->x86_vendor != X86_VENDOR_AMD && |
| c->x86_vendor != X86_VENDOR_HYGON) |
| return -1; |
| |
| cpu_cstate_entry = alloc_percpu(struct cstate_entry); |
| return 0; |
| } |
| |
| static void __exit ffh_cstate_exit(void) |
| { |
| free_percpu(cpu_cstate_entry); |
| cpu_cstate_entry = NULL; |
| } |
| |
| arch_initcall(ffh_cstate_init); |
| __exitcall(ffh_cstate_exit); |