| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2016 Facebook |
| * Copyright (C) 2013-2014 Jens Axboe |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/random.h> |
| #include <linux/sbitmap.h> |
| #include <linux/seq_file.h> |
| |
| static int init_alloc_hint(struct sbitmap *sb, gfp_t flags) |
| { |
| unsigned depth = sb->depth; |
| |
| sb->alloc_hint = alloc_percpu_gfp(unsigned int, flags); |
| if (!sb->alloc_hint) |
| return -ENOMEM; |
| |
| if (depth && !sb->round_robin) { |
| int i; |
| |
| for_each_possible_cpu(i) |
| *per_cpu_ptr(sb->alloc_hint, i) = prandom_u32() % depth; |
| } |
| return 0; |
| } |
| |
| static inline unsigned update_alloc_hint_before_get(struct sbitmap *sb, |
| unsigned int depth) |
| { |
| unsigned hint; |
| |
| hint = this_cpu_read(*sb->alloc_hint); |
| if (unlikely(hint >= depth)) { |
| hint = depth ? prandom_u32() % depth : 0; |
| this_cpu_write(*sb->alloc_hint, hint); |
| } |
| |
| return hint; |
| } |
| |
| static inline void update_alloc_hint_after_get(struct sbitmap *sb, |
| unsigned int depth, |
| unsigned int hint, |
| unsigned int nr) |
| { |
| if (nr == -1) { |
| /* If the map is full, a hint won't do us much good. */ |
| this_cpu_write(*sb->alloc_hint, 0); |
| } else if (nr == hint || unlikely(sb->round_robin)) { |
| /* Only update the hint if we used it. */ |
| hint = nr + 1; |
| if (hint >= depth - 1) |
| hint = 0; |
| this_cpu_write(*sb->alloc_hint, hint); |
| } |
| } |
| |
| /* |
| * See if we have deferred clears that we can batch move |
| */ |
| static inline bool sbitmap_deferred_clear(struct sbitmap_word *map) |
| { |
| unsigned long mask; |
| |
| if (!READ_ONCE(map->cleared)) |
| return false; |
| |
| /* |
| * First get a stable cleared mask, setting the old mask to 0. |
| */ |
| mask = xchg(&map->cleared, 0); |
| |
| /* |
| * Now clear the masked bits in our free word |
| */ |
| atomic_long_andnot(mask, (atomic_long_t *)&map->word); |
| BUILD_BUG_ON(sizeof(atomic_long_t) != sizeof(map->word)); |
| return true; |
| } |
| |
| int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift, |
| gfp_t flags, int node, bool round_robin, |
| bool alloc_hint) |
| { |
| unsigned int bits_per_word; |
| unsigned int i; |
| |
| if (shift < 0) |
| shift = sbitmap_calculate_shift(depth); |
| |
| bits_per_word = 1U << shift; |
| if (bits_per_word > BITS_PER_LONG) |
| return -EINVAL; |
| |
| sb->shift = shift; |
| sb->depth = depth; |
| sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word); |
| sb->round_robin = round_robin; |
| |
| if (depth == 0) { |
| sb->map = NULL; |
| return 0; |
| } |
| |
| if (alloc_hint) { |
| if (init_alloc_hint(sb, flags)) |
| return -ENOMEM; |
| } else { |
| sb->alloc_hint = NULL; |
| } |
| |
| sb->map = kcalloc_node(sb->map_nr, sizeof(*sb->map), flags, node); |
| if (!sb->map) { |
| free_percpu(sb->alloc_hint); |
| return -ENOMEM; |
| } |
| |
| for (i = 0; i < sb->map_nr; i++) { |
| sb->map[i].depth = min(depth, bits_per_word); |
| depth -= sb->map[i].depth; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_init_node); |
| |
| void sbitmap_resize(struct sbitmap *sb, unsigned int depth) |
| { |
| unsigned int bits_per_word = 1U << sb->shift; |
| unsigned int i; |
| |
| for (i = 0; i < sb->map_nr; i++) |
| sbitmap_deferred_clear(&sb->map[i]); |
| |
| sb->depth = depth; |
| sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word); |
| |
| for (i = 0; i < sb->map_nr; i++) { |
| sb->map[i].depth = min(depth, bits_per_word); |
| depth -= sb->map[i].depth; |
| } |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_resize); |
| |
| static int __sbitmap_get_word(unsigned long *word, unsigned long depth, |
| unsigned int hint, bool wrap) |
| { |
| int nr; |
| |
| /* don't wrap if starting from 0 */ |
| wrap = wrap && hint; |
| |
| while (1) { |
| nr = find_next_zero_bit(word, depth, hint); |
| if (unlikely(nr >= depth)) { |
| /* |
| * We started with an offset, and we didn't reset the |
| * offset to 0 in a failure case, so start from 0 to |
| * exhaust the map. |
| */ |
| if (hint && wrap) { |
| hint = 0; |
| continue; |
| } |
| return -1; |
| } |
| |
| if (!test_and_set_bit_lock(nr, word)) |
| break; |
| |
| hint = nr + 1; |
| if (hint >= depth - 1) |
| hint = 0; |
| } |
| |
| return nr; |
| } |
| |
| static int sbitmap_find_bit_in_index(struct sbitmap *sb, int index, |
| unsigned int alloc_hint) |
| { |
| struct sbitmap_word *map = &sb->map[index]; |
| int nr; |
| |
| do { |
| nr = __sbitmap_get_word(&map->word, map->depth, alloc_hint, |
| !sb->round_robin); |
| if (nr != -1) |
| break; |
| if (!sbitmap_deferred_clear(map)) |
| break; |
| } while (1); |
| |
| return nr; |
| } |
| |
| static int __sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint) |
| { |
| unsigned int i, index; |
| int nr = -1; |
| |
| index = SB_NR_TO_INDEX(sb, alloc_hint); |
| |
| /* |
| * Unless we're doing round robin tag allocation, just use the |
| * alloc_hint to find the right word index. No point in looping |
| * twice in find_next_zero_bit() for that case. |
| */ |
| if (sb->round_robin) |
| alloc_hint = SB_NR_TO_BIT(sb, alloc_hint); |
| else |
| alloc_hint = 0; |
| |
| for (i = 0; i < sb->map_nr; i++) { |
| nr = sbitmap_find_bit_in_index(sb, index, alloc_hint); |
| if (nr != -1) { |
| nr += index << sb->shift; |
| break; |
| } |
| |
| /* Jump to next index. */ |
| alloc_hint = 0; |
| if (++index >= sb->map_nr) |
| index = 0; |
| } |
| |
| return nr; |
| } |
| |
| int sbitmap_get(struct sbitmap *sb) |
| { |
| int nr; |
| unsigned int hint, depth; |
| |
| if (WARN_ON_ONCE(unlikely(!sb->alloc_hint))) |
| return -1; |
| |
| depth = READ_ONCE(sb->depth); |
| hint = update_alloc_hint_before_get(sb, depth); |
| nr = __sbitmap_get(sb, hint); |
| update_alloc_hint_after_get(sb, depth, hint, nr); |
| |
| return nr; |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_get); |
| |
| static int __sbitmap_get_shallow(struct sbitmap *sb, |
| unsigned int alloc_hint, |
| unsigned long shallow_depth) |
| { |
| unsigned int i, index; |
| int nr = -1; |
| |
| index = SB_NR_TO_INDEX(sb, alloc_hint); |
| |
| for (i = 0; i < sb->map_nr; i++) { |
| again: |
| nr = __sbitmap_get_word(&sb->map[index].word, |
| min(sb->map[index].depth, shallow_depth), |
| SB_NR_TO_BIT(sb, alloc_hint), true); |
| if (nr != -1) { |
| nr += index << sb->shift; |
| break; |
| } |
| |
| if (sbitmap_deferred_clear(&sb->map[index])) |
| goto again; |
| |
| /* Jump to next index. */ |
| index++; |
| alloc_hint = index << sb->shift; |
| |
| if (index >= sb->map_nr) { |
| index = 0; |
| alloc_hint = 0; |
| } |
| } |
| |
| return nr; |
| } |
| |
| int sbitmap_get_shallow(struct sbitmap *sb, unsigned long shallow_depth) |
| { |
| int nr; |
| unsigned int hint, depth; |
| |
| if (WARN_ON_ONCE(unlikely(!sb->alloc_hint))) |
| return -1; |
| |
| depth = READ_ONCE(sb->depth); |
| hint = update_alloc_hint_before_get(sb, depth); |
| nr = __sbitmap_get_shallow(sb, hint, shallow_depth); |
| update_alloc_hint_after_get(sb, depth, hint, nr); |
| |
| return nr; |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_get_shallow); |
| |
| bool sbitmap_any_bit_set(const struct sbitmap *sb) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < sb->map_nr; i++) { |
| if (sb->map[i].word & ~sb->map[i].cleared) |
| return true; |
| } |
| return false; |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_any_bit_set); |
| |
| static unsigned int __sbitmap_weight(const struct sbitmap *sb, bool set) |
| { |
| unsigned int i, weight = 0; |
| |
| for (i = 0; i < sb->map_nr; i++) { |
| const struct sbitmap_word *word = &sb->map[i]; |
| |
| if (set) |
| weight += bitmap_weight(&word->word, word->depth); |
| else |
| weight += bitmap_weight(&word->cleared, word->depth); |
| } |
| return weight; |
| } |
| |
| static unsigned int sbitmap_cleared(const struct sbitmap *sb) |
| { |
| return __sbitmap_weight(sb, false); |
| } |
| |
| unsigned int sbitmap_weight(const struct sbitmap *sb) |
| { |
| return __sbitmap_weight(sb, true) - sbitmap_cleared(sb); |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_weight); |
| |
| void sbitmap_show(struct sbitmap *sb, struct seq_file *m) |
| { |
| seq_printf(m, "depth=%u\n", sb->depth); |
| seq_printf(m, "busy=%u\n", sbitmap_weight(sb)); |
| seq_printf(m, "cleared=%u\n", sbitmap_cleared(sb)); |
| seq_printf(m, "bits_per_word=%u\n", 1U << sb->shift); |
| seq_printf(m, "map_nr=%u\n", sb->map_nr); |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_show); |
| |
| static inline void emit_byte(struct seq_file *m, unsigned int offset, u8 byte) |
| { |
| if ((offset & 0xf) == 0) { |
| if (offset != 0) |
| seq_putc(m, '\n'); |
| seq_printf(m, "%08x:", offset); |
| } |
| if ((offset & 0x1) == 0) |
| seq_putc(m, ' '); |
| seq_printf(m, "%02x", byte); |
| } |
| |
| void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m) |
| { |
| u8 byte = 0; |
| unsigned int byte_bits = 0; |
| unsigned int offset = 0; |
| int i; |
| |
| for (i = 0; i < sb->map_nr; i++) { |
| unsigned long word = READ_ONCE(sb->map[i].word); |
| unsigned long cleared = READ_ONCE(sb->map[i].cleared); |
| unsigned int word_bits = READ_ONCE(sb->map[i].depth); |
| |
| word &= ~cleared; |
| |
| while (word_bits > 0) { |
| unsigned int bits = min(8 - byte_bits, word_bits); |
| |
| byte |= (word & (BIT(bits) - 1)) << byte_bits; |
| byte_bits += bits; |
| if (byte_bits == 8) { |
| emit_byte(m, offset, byte); |
| byte = 0; |
| byte_bits = 0; |
| offset++; |
| } |
| word >>= bits; |
| word_bits -= bits; |
| } |
| } |
| if (byte_bits) { |
| emit_byte(m, offset, byte); |
| offset++; |
| } |
| if (offset) |
| seq_putc(m, '\n'); |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_bitmap_show); |
| |
| static unsigned int sbq_calc_wake_batch(struct sbitmap_queue *sbq, |
| unsigned int depth) |
| { |
| unsigned int wake_batch; |
| unsigned int shallow_depth; |
| |
| /* |
| * For each batch, we wake up one queue. We need to make sure that our |
| * batch size is small enough that the full depth of the bitmap, |
| * potentially limited by a shallow depth, is enough to wake up all of |
| * the queues. |
| * |
| * Each full word of the bitmap has bits_per_word bits, and there might |
| * be a partial word. There are depth / bits_per_word full words and |
| * depth % bits_per_word bits left over. In bitwise arithmetic: |
| * |
| * bits_per_word = 1 << shift |
| * depth / bits_per_word = depth >> shift |
| * depth % bits_per_word = depth & ((1 << shift) - 1) |
| * |
| * Each word can be limited to sbq->min_shallow_depth bits. |
| */ |
| shallow_depth = min(1U << sbq->sb.shift, sbq->min_shallow_depth); |
| depth = ((depth >> sbq->sb.shift) * shallow_depth + |
| min(depth & ((1U << sbq->sb.shift) - 1), shallow_depth)); |
| wake_batch = clamp_t(unsigned int, depth / SBQ_WAIT_QUEUES, 1, |
| SBQ_WAKE_BATCH); |
| |
| return wake_batch; |
| } |
| |
| int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth, |
| int shift, bool round_robin, gfp_t flags, int node) |
| { |
| int ret; |
| int i; |
| |
| ret = sbitmap_init_node(&sbq->sb, depth, shift, flags, node, |
| round_robin, true); |
| if (ret) |
| return ret; |
| |
| sbq->min_shallow_depth = UINT_MAX; |
| sbq->wake_batch = sbq_calc_wake_batch(sbq, depth); |
| atomic_set(&sbq->wake_index, 0); |
| atomic_set(&sbq->ws_active, 0); |
| |
| sbq->ws = kzalloc_node(SBQ_WAIT_QUEUES * sizeof(*sbq->ws), flags, node); |
| if (!sbq->ws) { |
| sbitmap_free(&sbq->sb); |
| return -ENOMEM; |
| } |
| |
| for (i = 0; i < SBQ_WAIT_QUEUES; i++) { |
| init_waitqueue_head(&sbq->ws[i].wait); |
| atomic_set(&sbq->ws[i].wait_cnt, sbq->wake_batch); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_queue_init_node); |
| |
| static void sbitmap_queue_update_wake_batch(struct sbitmap_queue *sbq, |
| unsigned int depth) |
| { |
| unsigned int wake_batch = sbq_calc_wake_batch(sbq, depth); |
| int i; |
| |
| if (sbq->wake_batch != wake_batch) { |
| WRITE_ONCE(sbq->wake_batch, wake_batch); |
| /* |
| * Pairs with the memory barrier in sbitmap_queue_wake_up() |
| * to ensure that the batch size is updated before the wait |
| * counts. |
| */ |
| smp_mb(); |
| for (i = 0; i < SBQ_WAIT_QUEUES; i++) |
| atomic_set(&sbq->ws[i].wait_cnt, 1); |
| } |
| } |
| |
| void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth) |
| { |
| sbitmap_queue_update_wake_batch(sbq, depth); |
| sbitmap_resize(&sbq->sb, depth); |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_queue_resize); |
| |
| int __sbitmap_queue_get(struct sbitmap_queue *sbq) |
| { |
| return sbitmap_get(&sbq->sb); |
| } |
| EXPORT_SYMBOL_GPL(__sbitmap_queue_get); |
| |
| unsigned long __sbitmap_queue_get_batch(struct sbitmap_queue *sbq, int nr_tags, |
| unsigned int *offset) |
| { |
| struct sbitmap *sb = &sbq->sb; |
| unsigned int hint, depth; |
| unsigned long index, nr; |
| int i; |
| |
| if (unlikely(sb->round_robin)) |
| return 0; |
| |
| depth = READ_ONCE(sb->depth); |
| hint = update_alloc_hint_before_get(sb, depth); |
| |
| index = SB_NR_TO_INDEX(sb, hint); |
| |
| for (i = 0; i < sb->map_nr; i++) { |
| struct sbitmap_word *map = &sb->map[index]; |
| unsigned long get_mask; |
| |
| sbitmap_deferred_clear(map); |
| if (map->word == (1UL << (map->depth - 1)) - 1) |
| continue; |
| |
| nr = find_first_zero_bit(&map->word, map->depth); |
| if (nr + nr_tags <= map->depth) { |
| atomic_long_t *ptr = (atomic_long_t *) &map->word; |
| int map_tags = min_t(int, nr_tags, map->depth); |
| unsigned long val, ret; |
| |
| get_mask = ((1UL << map_tags) - 1) << nr; |
| do { |
| val = READ_ONCE(map->word); |
| ret = atomic_long_cmpxchg(ptr, val, get_mask | val); |
| } while (ret != val); |
| get_mask = (get_mask & ~ret) >> nr; |
| if (get_mask) { |
| *offset = nr + (index << sb->shift); |
| update_alloc_hint_after_get(sb, depth, hint, |
| *offset + map_tags - 1); |
| return get_mask; |
| } |
| } |
| /* Jump to next index. */ |
| if (++index >= sb->map_nr) |
| index = 0; |
| } |
| |
| return 0; |
| } |
| |
| int __sbitmap_queue_get_shallow(struct sbitmap_queue *sbq, |
| unsigned int shallow_depth) |
| { |
| WARN_ON_ONCE(shallow_depth < sbq->min_shallow_depth); |
| |
| return sbitmap_get_shallow(&sbq->sb, shallow_depth); |
| } |
| EXPORT_SYMBOL_GPL(__sbitmap_queue_get_shallow); |
| |
| void sbitmap_queue_min_shallow_depth(struct sbitmap_queue *sbq, |
| unsigned int min_shallow_depth) |
| { |
| sbq->min_shallow_depth = min_shallow_depth; |
| sbitmap_queue_update_wake_batch(sbq, sbq->sb.depth); |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_queue_min_shallow_depth); |
| |
| static struct sbq_wait_state *sbq_wake_ptr(struct sbitmap_queue *sbq) |
| { |
| int i, wake_index; |
| |
| if (!atomic_read(&sbq->ws_active)) |
| return NULL; |
| |
| wake_index = atomic_read(&sbq->wake_index); |
| for (i = 0; i < SBQ_WAIT_QUEUES; i++) { |
| struct sbq_wait_state *ws = &sbq->ws[wake_index]; |
| |
| if (waitqueue_active(&ws->wait)) { |
| if (wake_index != atomic_read(&sbq->wake_index)) |
| atomic_set(&sbq->wake_index, wake_index); |
| return ws; |
| } |
| |
| wake_index = sbq_index_inc(wake_index); |
| } |
| |
| return NULL; |
| } |
| |
| static bool __sbq_wake_up(struct sbitmap_queue *sbq) |
| { |
| struct sbq_wait_state *ws; |
| unsigned int wake_batch; |
| int wait_cnt; |
| |
| ws = sbq_wake_ptr(sbq); |
| if (!ws) |
| return false; |
| |
| wait_cnt = atomic_dec_return(&ws->wait_cnt); |
| if (wait_cnt <= 0) { |
| int ret; |
| |
| wake_batch = READ_ONCE(sbq->wake_batch); |
| |
| /* |
| * Pairs with the memory barrier in sbitmap_queue_resize() to |
| * ensure that we see the batch size update before the wait |
| * count is reset. |
| */ |
| smp_mb__before_atomic(); |
| |
| /* |
| * For concurrent callers of this, the one that failed the |
| * atomic_cmpxhcg() race should call this function again |
| * to wakeup a new batch on a different 'ws'. |
| */ |
| ret = atomic_cmpxchg(&ws->wait_cnt, wait_cnt, wake_batch); |
| if (ret == wait_cnt) { |
| sbq_index_atomic_inc(&sbq->wake_index); |
| wake_up_nr(&ws->wait, wake_batch); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void sbitmap_queue_wake_up(struct sbitmap_queue *sbq) |
| { |
| while (__sbq_wake_up(sbq)) |
| ; |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_queue_wake_up); |
| |
| static inline void sbitmap_update_cpu_hint(struct sbitmap *sb, int cpu, int tag) |
| { |
| if (likely(!sb->round_robin && tag < sb->depth)) |
| data_race(*per_cpu_ptr(sb->alloc_hint, cpu) = tag); |
| } |
| |
| void sbitmap_queue_clear_batch(struct sbitmap_queue *sbq, int offset, |
| int *tags, int nr_tags) |
| { |
| struct sbitmap *sb = &sbq->sb; |
| unsigned long *addr = NULL; |
| unsigned long mask = 0; |
| int i; |
| |
| smp_mb__before_atomic(); |
| for (i = 0; i < nr_tags; i++) { |
| const int tag = tags[i] - offset; |
| unsigned long *this_addr; |
| |
| /* since we're clearing a batch, skip the deferred map */ |
| this_addr = &sb->map[SB_NR_TO_INDEX(sb, tag)].word; |
| if (!addr) { |
| addr = this_addr; |
| } else if (addr != this_addr) { |
| atomic_long_andnot(mask, (atomic_long_t *) addr); |
| mask = 0; |
| addr = this_addr; |
| } |
| mask |= (1UL << SB_NR_TO_BIT(sb, tag)); |
| } |
| |
| if (mask) |
| atomic_long_andnot(mask, (atomic_long_t *) addr); |
| |
| smp_mb__after_atomic(); |
| sbitmap_queue_wake_up(sbq); |
| sbitmap_update_cpu_hint(&sbq->sb, raw_smp_processor_id(), |
| tags[nr_tags - 1] - offset); |
| } |
| |
| void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr, |
| unsigned int cpu) |
| { |
| /* |
| * Once the clear bit is set, the bit may be allocated out. |
| * |
| * Orders READ/WRITE on the associated instance(such as request |
| * of blk_mq) by this bit for avoiding race with re-allocation, |
| * and its pair is the memory barrier implied in __sbitmap_get_word. |
| * |
| * One invariant is that the clear bit has to be zero when the bit |
| * is in use. |
| */ |
| smp_mb__before_atomic(); |
| sbitmap_deferred_clear_bit(&sbq->sb, nr); |
| |
| /* |
| * Pairs with the memory barrier in set_current_state() to ensure the |
| * proper ordering of clear_bit_unlock()/waitqueue_active() in the waker |
| * and test_and_set_bit_lock()/prepare_to_wait()/finish_wait() in the |
| * waiter. See the comment on waitqueue_active(). |
| */ |
| smp_mb__after_atomic(); |
| sbitmap_queue_wake_up(sbq); |
| sbitmap_update_cpu_hint(&sbq->sb, cpu, nr); |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_queue_clear); |
| |
| void sbitmap_queue_wake_all(struct sbitmap_queue *sbq) |
| { |
| int i, wake_index; |
| |
| /* |
| * Pairs with the memory barrier in set_current_state() like in |
| * sbitmap_queue_wake_up(). |
| */ |
| smp_mb(); |
| wake_index = atomic_read(&sbq->wake_index); |
| for (i = 0; i < SBQ_WAIT_QUEUES; i++) { |
| struct sbq_wait_state *ws = &sbq->ws[wake_index]; |
| |
| if (waitqueue_active(&ws->wait)) |
| wake_up(&ws->wait); |
| |
| wake_index = sbq_index_inc(wake_index); |
| } |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_queue_wake_all); |
| |
| void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m) |
| { |
| bool first; |
| int i; |
| |
| sbitmap_show(&sbq->sb, m); |
| |
| seq_puts(m, "alloc_hint={"); |
| first = true; |
| for_each_possible_cpu(i) { |
| if (!first) |
| seq_puts(m, ", "); |
| first = false; |
| seq_printf(m, "%u", *per_cpu_ptr(sbq->sb.alloc_hint, i)); |
| } |
| seq_puts(m, "}\n"); |
| |
| seq_printf(m, "wake_batch=%u\n", sbq->wake_batch); |
| seq_printf(m, "wake_index=%d\n", atomic_read(&sbq->wake_index)); |
| seq_printf(m, "ws_active=%d\n", atomic_read(&sbq->ws_active)); |
| |
| seq_puts(m, "ws={\n"); |
| for (i = 0; i < SBQ_WAIT_QUEUES; i++) { |
| struct sbq_wait_state *ws = &sbq->ws[i]; |
| |
| seq_printf(m, "\t{.wait_cnt=%d, .wait=%s},\n", |
| atomic_read(&ws->wait_cnt), |
| waitqueue_active(&ws->wait) ? "active" : "inactive"); |
| } |
| seq_puts(m, "}\n"); |
| |
| seq_printf(m, "round_robin=%d\n", sbq->sb.round_robin); |
| seq_printf(m, "min_shallow_depth=%u\n", sbq->min_shallow_depth); |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_queue_show); |
| |
| void sbitmap_add_wait_queue(struct sbitmap_queue *sbq, |
| struct sbq_wait_state *ws, |
| struct sbq_wait *sbq_wait) |
| { |
| if (!sbq_wait->sbq) { |
| sbq_wait->sbq = sbq; |
| atomic_inc(&sbq->ws_active); |
| add_wait_queue(&ws->wait, &sbq_wait->wait); |
| } |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_add_wait_queue); |
| |
| void sbitmap_del_wait_queue(struct sbq_wait *sbq_wait) |
| { |
| list_del_init(&sbq_wait->wait.entry); |
| if (sbq_wait->sbq) { |
| atomic_dec(&sbq_wait->sbq->ws_active); |
| sbq_wait->sbq = NULL; |
| } |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_del_wait_queue); |
| |
| void sbitmap_prepare_to_wait(struct sbitmap_queue *sbq, |
| struct sbq_wait_state *ws, |
| struct sbq_wait *sbq_wait, int state) |
| { |
| if (!sbq_wait->sbq) { |
| atomic_inc(&sbq->ws_active); |
| sbq_wait->sbq = sbq; |
| } |
| prepare_to_wait_exclusive(&ws->wait, &sbq_wait->wait, state); |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_prepare_to_wait); |
| |
| void sbitmap_finish_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws, |
| struct sbq_wait *sbq_wait) |
| { |
| finish_wait(&ws->wait, &sbq_wait->wait); |
| if (sbq_wait->sbq) { |
| atomic_dec(&sbq->ws_active); |
| sbq_wait->sbq = NULL; |
| } |
| } |
| EXPORT_SYMBOL_GPL(sbitmap_finish_wait); |