blob: f0b979a7065521e67e07365bdeaa358909437253 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019 Intel Corporation */
#include "igc.h"
#include <linux/module.h>
#include <linux/device.h>
#include <linux/pci.h>
#include <linux/ptp_classify.h>
#include <linux/clocksource.h>
#include <linux/ktime.h>
#include <linux/delay.h>
#include <linux/iopoll.h>
#define INCVALUE_MASK 0x7fffffff
#define ISGN 0x80000000
#define IGC_PTP_TX_TIMEOUT (HZ * 15)
#define IGC_PTM_STAT_SLEEP 2
#define IGC_PTM_STAT_TIMEOUT 100
/* SYSTIM read access for I225 */
void igc_ptp_read(struct igc_adapter *adapter, struct timespec64 *ts)
{
struct igc_hw *hw = &adapter->hw;
u32 sec, nsec;
/* The timestamp is latched when SYSTIML is read. */
nsec = rd32(IGC_SYSTIML);
sec = rd32(IGC_SYSTIMH);
ts->tv_sec = sec;
ts->tv_nsec = nsec;
}
static void igc_ptp_write_i225(struct igc_adapter *adapter,
const struct timespec64 *ts)
{
struct igc_hw *hw = &adapter->hw;
wr32(IGC_SYSTIML, ts->tv_nsec);
wr32(IGC_SYSTIMH, ts->tv_sec);
}
static int igc_ptp_adjfine_i225(struct ptp_clock_info *ptp, long scaled_ppm)
{
struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
ptp_caps);
struct igc_hw *hw = &igc->hw;
int neg_adj = 0;
u64 rate;
u32 inca;
if (scaled_ppm < 0) {
neg_adj = 1;
scaled_ppm = -scaled_ppm;
}
rate = scaled_ppm;
rate <<= 14;
rate = div_u64(rate, 78125);
inca = rate & INCVALUE_MASK;
if (neg_adj)
inca |= ISGN;
wr32(IGC_TIMINCA, inca);
return 0;
}
static int igc_ptp_adjtime_i225(struct ptp_clock_info *ptp, s64 delta)
{
struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
ptp_caps);
struct timespec64 now, then = ns_to_timespec64(delta);
unsigned long flags;
spin_lock_irqsave(&igc->tmreg_lock, flags);
igc_ptp_read(igc, &now);
now = timespec64_add(now, then);
igc_ptp_write_i225(igc, (const struct timespec64 *)&now);
spin_unlock_irqrestore(&igc->tmreg_lock, flags);
return 0;
}
static int igc_ptp_gettimex64_i225(struct ptp_clock_info *ptp,
struct timespec64 *ts,
struct ptp_system_timestamp *sts)
{
struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
ptp_caps);
struct igc_hw *hw = &igc->hw;
unsigned long flags;
spin_lock_irqsave(&igc->tmreg_lock, flags);
ptp_read_system_prets(sts);
ts->tv_nsec = rd32(IGC_SYSTIML);
ts->tv_sec = rd32(IGC_SYSTIMH);
ptp_read_system_postts(sts);
spin_unlock_irqrestore(&igc->tmreg_lock, flags);
return 0;
}
static int igc_ptp_settime_i225(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
ptp_caps);
unsigned long flags;
spin_lock_irqsave(&igc->tmreg_lock, flags);
igc_ptp_write_i225(igc, ts);
spin_unlock_irqrestore(&igc->tmreg_lock, flags);
return 0;
}
static void igc_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
{
u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
static const u32 mask[IGC_N_SDP] = {
IGC_CTRL_SDP0_DIR,
IGC_CTRL_SDP1_DIR,
IGC_CTRL_EXT_SDP2_DIR,
IGC_CTRL_EXT_SDP3_DIR,
};
if (input)
*ptr &= ~mask[pin];
else
*ptr |= mask[pin];
}
static void igc_pin_perout(struct igc_adapter *igc, int chan, int pin, int freq)
{
static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
};
static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
};
static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
};
static const u32 igc_ts_sdp_sel_tt0[IGC_N_SDP] = {
IGC_TS_SDP0_SEL_TT0, IGC_TS_SDP1_SEL_TT0,
IGC_TS_SDP2_SEL_TT0, IGC_TS_SDP3_SEL_TT0,
};
static const u32 igc_ts_sdp_sel_tt1[IGC_N_SDP] = {
IGC_TS_SDP0_SEL_TT1, IGC_TS_SDP1_SEL_TT1,
IGC_TS_SDP2_SEL_TT1, IGC_TS_SDP3_SEL_TT1,
};
static const u32 igc_ts_sdp_sel_fc0[IGC_N_SDP] = {
IGC_TS_SDP0_SEL_FC0, IGC_TS_SDP1_SEL_FC0,
IGC_TS_SDP2_SEL_FC0, IGC_TS_SDP3_SEL_FC0,
};
static const u32 igc_ts_sdp_sel_fc1[IGC_N_SDP] = {
IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
};
static const u32 igc_ts_sdp_sel_clr[IGC_N_SDP] = {
IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
};
struct igc_hw *hw = &igc->hw;
u32 ctrl, ctrl_ext, tssdp = 0;
ctrl = rd32(IGC_CTRL);
ctrl_ext = rd32(IGC_CTRL_EXT);
tssdp = rd32(IGC_TSSDP);
igc_pin_direction(pin, 0, &ctrl, &ctrl_ext);
/* Make sure this pin is not enabled as an input. */
if ((tssdp & IGC_AUX0_SEL_SDP3) == igc_aux0_sel_sdp[pin])
tssdp &= ~IGC_AUX0_TS_SDP_EN;
if ((tssdp & IGC_AUX1_SEL_SDP3) == igc_aux1_sel_sdp[pin])
tssdp &= ~IGC_AUX1_TS_SDP_EN;
tssdp &= ~igc_ts_sdp_sel_clr[pin];
if (freq) {
if (chan == 1)
tssdp |= igc_ts_sdp_sel_fc1[pin];
else
tssdp |= igc_ts_sdp_sel_fc0[pin];
} else {
if (chan == 1)
tssdp |= igc_ts_sdp_sel_tt1[pin];
else
tssdp |= igc_ts_sdp_sel_tt0[pin];
}
tssdp |= igc_ts_sdp_en[pin];
wr32(IGC_TSSDP, tssdp);
wr32(IGC_CTRL, ctrl);
wr32(IGC_CTRL_EXT, ctrl_ext);
}
static void igc_pin_extts(struct igc_adapter *igc, int chan, int pin)
{
static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
};
static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
};
static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
};
struct igc_hw *hw = &igc->hw;
u32 ctrl, ctrl_ext, tssdp = 0;
ctrl = rd32(IGC_CTRL);
ctrl_ext = rd32(IGC_CTRL_EXT);
tssdp = rd32(IGC_TSSDP);
igc_pin_direction(pin, 1, &ctrl, &ctrl_ext);
/* Make sure this pin is not enabled as an output. */
tssdp &= ~igc_ts_sdp_en[pin];
if (chan == 1) {
tssdp &= ~IGC_AUX1_SEL_SDP3;
tssdp |= igc_aux1_sel_sdp[pin] | IGC_AUX1_TS_SDP_EN;
} else {
tssdp &= ~IGC_AUX0_SEL_SDP3;
tssdp |= igc_aux0_sel_sdp[pin] | IGC_AUX0_TS_SDP_EN;
}
wr32(IGC_TSSDP, tssdp);
wr32(IGC_CTRL, ctrl);
wr32(IGC_CTRL_EXT, ctrl_ext);
}
static int igc_ptp_feature_enable_i225(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq, int on)
{
struct igc_adapter *igc =
container_of(ptp, struct igc_adapter, ptp_caps);
struct igc_hw *hw = &igc->hw;
unsigned long flags;
struct timespec64 ts;
int use_freq = 0, pin = -1;
u32 tsim, tsauxc, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
s64 ns;
switch (rq->type) {
case PTP_CLK_REQ_EXTTS:
/* Reject requests with unsupported flags */
if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
PTP_RISING_EDGE |
PTP_FALLING_EDGE |
PTP_STRICT_FLAGS))
return -EOPNOTSUPP;
/* Reject requests failing to enable both edges. */
if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
(rq->extts.flags & PTP_ENABLE_FEATURE) &&
(rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
return -EOPNOTSUPP;
if (on) {
pin = ptp_find_pin(igc->ptp_clock, PTP_PF_EXTTS,
rq->extts.index);
if (pin < 0)
return -EBUSY;
}
if (rq->extts.index == 1) {
tsauxc_mask = IGC_TSAUXC_EN_TS1;
tsim_mask = IGC_TSICR_AUTT1;
} else {
tsauxc_mask = IGC_TSAUXC_EN_TS0;
tsim_mask = IGC_TSICR_AUTT0;
}
spin_lock_irqsave(&igc->tmreg_lock, flags);
tsauxc = rd32(IGC_TSAUXC);
tsim = rd32(IGC_TSIM);
if (on) {
igc_pin_extts(igc, rq->extts.index, pin);
tsauxc |= tsauxc_mask;
tsim |= tsim_mask;
} else {
tsauxc &= ~tsauxc_mask;
tsim &= ~tsim_mask;
}
wr32(IGC_TSAUXC, tsauxc);
wr32(IGC_TSIM, tsim);
spin_unlock_irqrestore(&igc->tmreg_lock, flags);
return 0;
case PTP_CLK_REQ_PEROUT:
/* Reject requests with unsupported flags */
if (rq->perout.flags)
return -EOPNOTSUPP;
if (on) {
pin = ptp_find_pin(igc->ptp_clock, PTP_PF_PEROUT,
rq->perout.index);
if (pin < 0)
return -EBUSY;
}
ts.tv_sec = rq->perout.period.sec;
ts.tv_nsec = rq->perout.period.nsec;
ns = timespec64_to_ns(&ts);
ns = ns >> 1;
if (on && (ns <= 70000000LL || ns == 125000000LL ||
ns == 250000000LL || ns == 500000000LL)) {
if (ns < 8LL)
return -EINVAL;
use_freq = 1;
}
ts = ns_to_timespec64(ns);
if (rq->perout.index == 1) {
if (use_freq) {
tsauxc_mask = IGC_TSAUXC_EN_CLK1 | IGC_TSAUXC_ST1;
tsim_mask = 0;
} else {
tsauxc_mask = IGC_TSAUXC_EN_TT1;
tsim_mask = IGC_TSICR_TT1;
}
trgttiml = IGC_TRGTTIML1;
trgttimh = IGC_TRGTTIMH1;
freqout = IGC_FREQOUT1;
} else {
if (use_freq) {
tsauxc_mask = IGC_TSAUXC_EN_CLK0 | IGC_TSAUXC_ST0;
tsim_mask = 0;
} else {
tsauxc_mask = IGC_TSAUXC_EN_TT0;
tsim_mask = IGC_TSICR_TT0;
}
trgttiml = IGC_TRGTTIML0;
trgttimh = IGC_TRGTTIMH0;
freqout = IGC_FREQOUT0;
}
spin_lock_irqsave(&igc->tmreg_lock, flags);
tsauxc = rd32(IGC_TSAUXC);
tsim = rd32(IGC_TSIM);
if (rq->perout.index == 1) {
tsauxc &= ~(IGC_TSAUXC_EN_TT1 | IGC_TSAUXC_EN_CLK1 |
IGC_TSAUXC_ST1);
tsim &= ~IGC_TSICR_TT1;
} else {
tsauxc &= ~(IGC_TSAUXC_EN_TT0 | IGC_TSAUXC_EN_CLK0 |
IGC_TSAUXC_ST0);
tsim &= ~IGC_TSICR_TT0;
}
if (on) {
struct timespec64 safe_start;
int i = rq->perout.index;
igc_pin_perout(igc, i, pin, use_freq);
igc_ptp_read(igc, &safe_start);
/* PPS output start time is triggered by Target time(TT)
* register. Programming any past time value into TT
* register will cause PPS to never start. Need to make
* sure we program the TT register a time ahead in
* future. There isn't a stringent need to fire PPS out
* right away. Adding +2 seconds should take care of
* corner cases. Let's say if the SYSTIML is close to
* wrap up and the timer keeps ticking as we program the
* register, adding +2seconds is safe bet.
*/
safe_start.tv_sec += 2;
if (rq->perout.start.sec < safe_start.tv_sec)
igc->perout[i].start.tv_sec = safe_start.tv_sec;
else
igc->perout[i].start.tv_sec = rq->perout.start.sec;
igc->perout[i].start.tv_nsec = rq->perout.start.nsec;
igc->perout[i].period.tv_sec = ts.tv_sec;
igc->perout[i].period.tv_nsec = ts.tv_nsec;
wr32(trgttimh, (u32)igc->perout[i].start.tv_sec);
/* For now, always select timer 0 as source. */
wr32(trgttiml, (u32)(igc->perout[i].start.tv_nsec |
IGC_TT_IO_TIMER_SEL_SYSTIM0));
if (use_freq)
wr32(freqout, ns);
tsauxc |= tsauxc_mask;
tsim |= tsim_mask;
}
wr32(IGC_TSAUXC, tsauxc);
wr32(IGC_TSIM, tsim);
spin_unlock_irqrestore(&igc->tmreg_lock, flags);
return 0;
case PTP_CLK_REQ_PPS:
spin_lock_irqsave(&igc->tmreg_lock, flags);
tsim = rd32(IGC_TSIM);
if (on)
tsim |= IGC_TSICR_SYS_WRAP;
else
tsim &= ~IGC_TSICR_SYS_WRAP;
igc->pps_sys_wrap_on = on;
wr32(IGC_TSIM, tsim);
spin_unlock_irqrestore(&igc->tmreg_lock, flags);
return 0;
default:
break;
}
return -EOPNOTSUPP;
}
static int igc_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
enum ptp_pin_function func, unsigned int chan)
{
switch (func) {
case PTP_PF_NONE:
case PTP_PF_EXTTS:
case PTP_PF_PEROUT:
break;
case PTP_PF_PHYSYNC:
return -1;
}
return 0;
}
/**
* igc_ptp_systim_to_hwtstamp - convert system time value to HW timestamp
* @adapter: board private structure
* @hwtstamps: timestamp structure to update
* @systim: unsigned 64bit system time value
*
* We need to convert the system time value stored in the RX/TXSTMP registers
* into a hwtstamp which can be used by the upper level timestamping functions.
*
* Returns 0 on success.
**/
static int igc_ptp_systim_to_hwtstamp(struct igc_adapter *adapter,
struct skb_shared_hwtstamps *hwtstamps,
u64 systim)
{
switch (adapter->hw.mac.type) {
case igc_i225:
memset(hwtstamps, 0, sizeof(*hwtstamps));
/* Upper 32 bits contain s, lower 32 bits contain ns. */
hwtstamps->hwtstamp = ktime_set(systim >> 32,
systim & 0xFFFFFFFF);
break;
default:
return -EINVAL;
}
return 0;
}
/**
* igc_ptp_rx_pktstamp - Retrieve timestamp from Rx packet buffer
* @adapter: Pointer to adapter the packet buffer belongs to
* @buf: Pointer to packet buffer
*
* This function retrieves the timestamp saved in the beginning of packet
* buffer. While two timestamps are available, one in timer0 reference and the
* other in timer1 reference, this function considers only the timestamp in
* timer0 reference.
*
* Returns timestamp value.
*/
ktime_t igc_ptp_rx_pktstamp(struct igc_adapter *adapter, __le32 *buf)
{
ktime_t timestamp;
u32 secs, nsecs;
int adjust;
/* Timestamps are saved in little endian at the beginning of the packet
* buffer following the layout:
*
* DWORD: | 0 | 1 | 2 | 3 |
* Field: | Timer1 SYSTIML | Timer1 SYSTIMH | Timer0 SYSTIML | Timer0 SYSTIMH |
*
* SYSTIML holds the nanoseconds part while SYSTIMH holds the seconds
* part of the timestamp.
*/
nsecs = le32_to_cpu(buf[2]);
secs = le32_to_cpu(buf[3]);
timestamp = ktime_set(secs, nsecs);
/* Adjust timestamp for the RX latency based on link speed */
switch (adapter->link_speed) {
case SPEED_10:
adjust = IGC_I225_RX_LATENCY_10;
break;
case SPEED_100:
adjust = IGC_I225_RX_LATENCY_100;
break;
case SPEED_1000:
adjust = IGC_I225_RX_LATENCY_1000;
break;
case SPEED_2500:
adjust = IGC_I225_RX_LATENCY_2500;
break;
default:
adjust = 0;
netdev_warn_once(adapter->netdev, "Imprecise timestamp\n");
break;
}
return ktime_sub_ns(timestamp, adjust);
}
static void igc_ptp_disable_rx_timestamp(struct igc_adapter *adapter)
{
struct igc_hw *hw = &adapter->hw;
u32 val;
int i;
wr32(IGC_TSYNCRXCTL, 0);
for (i = 0; i < adapter->num_rx_queues; i++) {
val = rd32(IGC_SRRCTL(i));
val &= ~IGC_SRRCTL_TIMESTAMP;
wr32(IGC_SRRCTL(i), val);
}
val = rd32(IGC_RXPBS);
val &= ~IGC_RXPBS_CFG_TS_EN;
wr32(IGC_RXPBS, val);
}
static void igc_ptp_enable_rx_timestamp(struct igc_adapter *adapter)
{
struct igc_hw *hw = &adapter->hw;
u32 val;
int i;
val = rd32(IGC_RXPBS);
val |= IGC_RXPBS_CFG_TS_EN;
wr32(IGC_RXPBS, val);
for (i = 0; i < adapter->num_rx_queues; i++) {
val = rd32(IGC_SRRCTL(i));
/* FIXME: For now, only support retrieving RX timestamps from
* timer 0.
*/
val |= IGC_SRRCTL_TIMER1SEL(0) | IGC_SRRCTL_TIMER0SEL(0) |
IGC_SRRCTL_TIMESTAMP;
wr32(IGC_SRRCTL(i), val);
}
val = IGC_TSYNCRXCTL_ENABLED | IGC_TSYNCRXCTL_TYPE_ALL |
IGC_TSYNCRXCTL_RXSYNSIG;
wr32(IGC_TSYNCRXCTL, val);
}
static void igc_ptp_clear_tx_tstamp(struct igc_adapter *adapter)
{
unsigned long flags;
spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
dev_kfree_skb_any(adapter->ptp_tx_skb);
adapter->ptp_tx_skb = NULL;
spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
}
static void igc_ptp_disable_tx_timestamp(struct igc_adapter *adapter)
{
struct igc_hw *hw = &adapter->hw;
int i;
/* Clear the flags first to avoid new packets to be enqueued
* for TX timestamping.
*/
for (i = 0; i < adapter->num_tx_queues; i++) {
struct igc_ring *tx_ring = adapter->tx_ring[i];
clear_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags);
}
/* Now we can clean the pending TX timestamp requests. */
igc_ptp_clear_tx_tstamp(adapter);
wr32(IGC_TSYNCTXCTL, 0);
}
static void igc_ptp_enable_tx_timestamp(struct igc_adapter *adapter)
{
struct igc_hw *hw = &adapter->hw;
int i;
wr32(IGC_TSYNCTXCTL, IGC_TSYNCTXCTL_ENABLED | IGC_TSYNCTXCTL_TXSYNSIG);
/* Read TXSTMP registers to discard any timestamp previously stored. */
rd32(IGC_TXSTMPL);
rd32(IGC_TXSTMPH);
/* The hardware is ready to accept TX timestamp requests,
* notify the transmit path.
*/
for (i = 0; i < adapter->num_tx_queues; i++) {
struct igc_ring *tx_ring = adapter->tx_ring[i];
set_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags);
}
}
/**
* igc_ptp_set_timestamp_mode - setup hardware for timestamping
* @adapter: networking device structure
* @config: hwtstamp configuration
*
* Return: 0 in case of success, negative errno code otherwise.
*/
static int igc_ptp_set_timestamp_mode(struct igc_adapter *adapter,
struct hwtstamp_config *config)
{
switch (config->tx_type) {
case HWTSTAMP_TX_OFF:
igc_ptp_disable_tx_timestamp(adapter);
break;
case HWTSTAMP_TX_ON:
igc_ptp_enable_tx_timestamp(adapter);
break;
default:
return -ERANGE;
}
switch (config->rx_filter) {
case HWTSTAMP_FILTER_NONE:
igc_ptp_disable_rx_timestamp(adapter);
break;
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
case HWTSTAMP_FILTER_NTP_ALL:
case HWTSTAMP_FILTER_ALL:
igc_ptp_enable_rx_timestamp(adapter);
config->rx_filter = HWTSTAMP_FILTER_ALL;
break;
default:
return -ERANGE;
}
return 0;
}
/* Requires adapter->ptp_tx_lock held by caller. */
static void igc_ptp_tx_timeout(struct igc_adapter *adapter)
{
struct igc_hw *hw = &adapter->hw;
dev_kfree_skb_any(adapter->ptp_tx_skb);
adapter->ptp_tx_skb = NULL;
adapter->tx_hwtstamp_timeouts++;
/* Clear the tx valid bit in TSYNCTXCTL register to enable interrupt. */
rd32(IGC_TXSTMPH);
netdev_warn(adapter->netdev, "Tx timestamp timeout\n");
}
void igc_ptp_tx_hang(struct igc_adapter *adapter)
{
unsigned long flags;
spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
if (!adapter->ptp_tx_skb)
goto unlock;
if (time_is_after_jiffies(adapter->ptp_tx_start + IGC_PTP_TX_TIMEOUT))
goto unlock;
igc_ptp_tx_timeout(adapter);
unlock:
spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
}
/**
* igc_ptp_tx_hwtstamp - utility function which checks for TX time stamp
* @adapter: Board private structure
*
* If we were asked to do hardware stamping and such a time stamp is
* available, then it must have been for this skb here because we only
* allow only one such packet into the queue.
*
* Context: Expects adapter->ptp_tx_lock to be held by caller.
*/
static void igc_ptp_tx_hwtstamp(struct igc_adapter *adapter)
{
struct sk_buff *skb = adapter->ptp_tx_skb;
struct skb_shared_hwtstamps shhwtstamps;
struct igc_hw *hw = &adapter->hw;
u32 tsynctxctl;
int adjust = 0;
u64 regval;
if (WARN_ON_ONCE(!skb))
return;
tsynctxctl = rd32(IGC_TSYNCTXCTL);
tsynctxctl &= IGC_TSYNCTXCTL_TXTT_0;
if (tsynctxctl) {
regval = rd32(IGC_TXSTMPL);
regval |= (u64)rd32(IGC_TXSTMPH) << 32;
} else {
/* There's a bug in the hardware that could cause
* missing interrupts for TX timestamping. The issue
* is that for new interrupts to be triggered, the
* IGC_TXSTMPH_0 register must be read.
*
* To avoid discarding a valid timestamp that just
* happened at the "wrong" time, we need to confirm
* that there was no timestamp captured, we do that by
* assuming that no two timestamps in sequence have
* the same nanosecond value.
*
* So, we read the "low" register, read the "high"
* register (to latch a new timestamp) and read the
* "low" register again, if "old" and "new" versions
* of the "low" register are different, a valid
* timestamp was captured, we can read the "high"
* register again.
*/
u32 txstmpl_old, txstmpl_new;
txstmpl_old = rd32(IGC_TXSTMPL);
rd32(IGC_TXSTMPH);
txstmpl_new = rd32(IGC_TXSTMPL);
if (txstmpl_old == txstmpl_new)
return;
regval = txstmpl_new;
regval |= (u64)rd32(IGC_TXSTMPH) << 32;
}
if (igc_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval))
return;
switch (adapter->link_speed) {
case SPEED_10:
adjust = IGC_I225_TX_LATENCY_10;
break;
case SPEED_100:
adjust = IGC_I225_TX_LATENCY_100;
break;
case SPEED_1000:
adjust = IGC_I225_TX_LATENCY_1000;
break;
case SPEED_2500:
adjust = IGC_I225_TX_LATENCY_2500;
break;
}
shhwtstamps.hwtstamp =
ktime_add_ns(shhwtstamps.hwtstamp, adjust);
adapter->ptp_tx_skb = NULL;
/* Notify the stack and free the skb after we've unlocked */
skb_tstamp_tx(skb, &shhwtstamps);
dev_kfree_skb_any(skb);
}
/**
* igc_ptp_tx_tstamp_event
* @adapter: board private structure
*
* Called when a TX timestamp interrupt happens to retrieve the
* timestamp and send it up to the socket.
*/
void igc_ptp_tx_tstamp_event(struct igc_adapter *adapter)
{
unsigned long flags;
spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
if (!adapter->ptp_tx_skb)
goto unlock;
igc_ptp_tx_hwtstamp(adapter);
unlock:
spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
}
/**
* igc_ptp_set_ts_config - set hardware time stamping config
* @netdev: network interface device structure
* @ifr: interface request data
*
**/
int igc_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
{
struct igc_adapter *adapter = netdev_priv(netdev);
struct hwtstamp_config config;
int err;
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
return -EFAULT;
err = igc_ptp_set_timestamp_mode(adapter, &config);
if (err)
return err;
/* save these settings for future reference */
memcpy(&adapter->tstamp_config, &config,
sizeof(adapter->tstamp_config));
return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
-EFAULT : 0;
}
/**
* igc_ptp_get_ts_config - get hardware time stamping config
* @netdev: network interface device structure
* @ifr: interface request data
*
* Get the hwtstamp_config settings to return to the user. Rather than attempt
* to deconstruct the settings from the registers, just return a shadow copy
* of the last known settings.
**/
int igc_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
{
struct igc_adapter *adapter = netdev_priv(netdev);
struct hwtstamp_config *config = &adapter->tstamp_config;
return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
-EFAULT : 0;
}
/* The two conditions below must be met for cross timestamping via
* PCIe PTM:
*
* 1. We have an way to convert the timestamps in the PTM messages
* to something related to the system clocks (right now, only
* X86 systems with support for the Always Running Timer allow that);
*
* 2. We have PTM enabled in the path from the device to the PCIe root port.
*/
static bool igc_is_crosststamp_supported(struct igc_adapter *adapter)
{
if (!IS_ENABLED(CONFIG_X86_TSC))
return false;
/* FIXME: it was noticed that enabling support for PCIe PTM in
* some i225-V models could cause lockups when bringing the
* interface up/down. There should be no downsides to
* disabling crosstimestamping support for i225-V, as it
* doesn't have any PTP support. That way we gain some time
* while root causing the issue.
*/
if (adapter->pdev->device == IGC_DEV_ID_I225_V)
return false;
return pcie_ptm_enabled(adapter->pdev);
}
static struct system_counterval_t igc_device_tstamp_to_system(u64 tstamp)
{
#if IS_ENABLED(CONFIG_X86_TSC) && !defined(CONFIG_UML)
return convert_art_ns_to_tsc(tstamp);
#else
return (struct system_counterval_t) { };
#endif
}
static void igc_ptm_log_error(struct igc_adapter *adapter, u32 ptm_stat)
{
struct net_device *netdev = adapter->netdev;
switch (ptm_stat) {
case IGC_PTM_STAT_RET_ERR:
netdev_err(netdev, "PTM Error: Root port timeout\n");
break;
case IGC_PTM_STAT_BAD_PTM_RES:
netdev_err(netdev, "PTM Error: Bad response, PTM Response Data expected\n");
break;
case IGC_PTM_STAT_T4M1_OVFL:
netdev_err(netdev, "PTM Error: T4 minus T1 overflow\n");
break;
case IGC_PTM_STAT_ADJUST_1ST:
netdev_err(netdev, "PTM Error: 1588 timer adjusted during first PTM cycle\n");
break;
case IGC_PTM_STAT_ADJUST_CYC:
netdev_err(netdev, "PTM Error: 1588 timer adjusted during non-first PTM cycle\n");
break;
default:
netdev_err(netdev, "PTM Error: Unknown error (%#x)\n", ptm_stat);
break;
}
}
static int igc_phc_get_syncdevicetime(ktime_t *device,
struct system_counterval_t *system,
void *ctx)
{
u32 stat, t2_curr_h, t2_curr_l, ctrl;
struct igc_adapter *adapter = ctx;
struct igc_hw *hw = &adapter->hw;
int err, count = 100;
ktime_t t1, t2_curr;
/* Get a snapshot of system clocks to use as historic value. */
ktime_get_snapshot(&adapter->snapshot);
do {
/* Doing this in a loop because in the event of a
* badly timed (ha!) system clock adjustment, we may
* get PTM errors from the PCI root, but these errors
* are transitory. Repeating the process returns valid
* data eventually.
*/
/* To "manually" start the PTM cycle we need to clear and
* then set again the TRIG bit.
*/
ctrl = rd32(IGC_PTM_CTRL);
ctrl &= ~IGC_PTM_CTRL_TRIG;
wr32(IGC_PTM_CTRL, ctrl);
ctrl |= IGC_PTM_CTRL_TRIG;
wr32(IGC_PTM_CTRL, ctrl);
/* The cycle only starts "for real" when software notifies
* that it has read the registers, this is done by setting
* VALID bit.
*/
wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
err = readx_poll_timeout(rd32, IGC_PTM_STAT, stat,
stat, IGC_PTM_STAT_SLEEP,
IGC_PTM_STAT_TIMEOUT);
if (err < 0) {
netdev_err(adapter->netdev, "Timeout reading IGC_PTM_STAT register\n");
return err;
}
if ((stat & IGC_PTM_STAT_VALID) == IGC_PTM_STAT_VALID)
break;
if (stat & ~IGC_PTM_STAT_VALID) {
/* An error occurred, log it. */
igc_ptm_log_error(adapter, stat);
/* The STAT register is write-1-to-clear (W1C),
* so write the previous error status to clear it.
*/
wr32(IGC_PTM_STAT, stat);
continue;
}
} while (--count);
if (!count) {
netdev_err(adapter->netdev, "Exceeded number of tries for PTM cycle\n");
return -ETIMEDOUT;
}
t1 = ktime_set(rd32(IGC_PTM_T1_TIM0_H), rd32(IGC_PTM_T1_TIM0_L));
t2_curr_l = rd32(IGC_PTM_CURR_T2_L);
t2_curr_h = rd32(IGC_PTM_CURR_T2_H);
/* FIXME: When the register that tells the endianness of the
* PTM registers are implemented, check them here and add the
* appropriate conversion.
*/
t2_curr_h = swab32(t2_curr_h);
t2_curr = ((s64)t2_curr_h << 32 | t2_curr_l);
*device = t1;
*system = igc_device_tstamp_to_system(t2_curr);
return 0;
}
static int igc_ptp_getcrosststamp(struct ptp_clock_info *ptp,
struct system_device_crosststamp *cts)
{
struct igc_adapter *adapter = container_of(ptp, struct igc_adapter,
ptp_caps);
return get_device_system_crosststamp(igc_phc_get_syncdevicetime,
adapter, &adapter->snapshot, cts);
}
/**
* igc_ptp_init - Initialize PTP functionality
* @adapter: Board private structure
*
* This function is called at device probe to initialize the PTP
* functionality.
*/
void igc_ptp_init(struct igc_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct igc_hw *hw = &adapter->hw;
int i;
switch (hw->mac.type) {
case igc_i225:
for (i = 0; i < IGC_N_SDP; i++) {
struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
ppd->index = i;
ppd->func = PTP_PF_NONE;
}
snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
adapter->ptp_caps.owner = THIS_MODULE;
adapter->ptp_caps.max_adj = 62499999;
adapter->ptp_caps.adjfine = igc_ptp_adjfine_i225;
adapter->ptp_caps.adjtime = igc_ptp_adjtime_i225;
adapter->ptp_caps.gettimex64 = igc_ptp_gettimex64_i225;
adapter->ptp_caps.settime64 = igc_ptp_settime_i225;
adapter->ptp_caps.enable = igc_ptp_feature_enable_i225;
adapter->ptp_caps.pps = 1;
adapter->ptp_caps.pin_config = adapter->sdp_config;
adapter->ptp_caps.n_ext_ts = IGC_N_EXTTS;
adapter->ptp_caps.n_per_out = IGC_N_PEROUT;
adapter->ptp_caps.n_pins = IGC_N_SDP;
adapter->ptp_caps.verify = igc_ptp_verify_pin;
if (!igc_is_crosststamp_supported(adapter))
break;
adapter->ptp_caps.getcrosststamp = igc_ptp_getcrosststamp;
break;
default:
adapter->ptp_clock = NULL;
return;
}
spin_lock_init(&adapter->ptp_tx_lock);
spin_lock_init(&adapter->tmreg_lock);
adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
adapter->prev_ptp_time = ktime_to_timespec64(ktime_get_real());
adapter->ptp_reset_start = ktime_get();
adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
&adapter->pdev->dev);
if (IS_ERR(adapter->ptp_clock)) {
adapter->ptp_clock = NULL;
netdev_err(netdev, "ptp_clock_register failed\n");
} else if (adapter->ptp_clock) {
netdev_info(netdev, "PHC added\n");
adapter->ptp_flags |= IGC_PTP_ENABLED;
}
}
static void igc_ptp_time_save(struct igc_adapter *adapter)
{
igc_ptp_read(adapter, &adapter->prev_ptp_time);
adapter->ptp_reset_start = ktime_get();
}
static void igc_ptp_time_restore(struct igc_adapter *adapter)
{
struct timespec64 ts = adapter->prev_ptp_time;
ktime_t delta;
delta = ktime_sub(ktime_get(), adapter->ptp_reset_start);
timespec64_add_ns(&ts, ktime_to_ns(delta));
igc_ptp_write_i225(adapter, &ts);
}
static void igc_ptm_stop(struct igc_adapter *adapter)
{
struct igc_hw *hw = &adapter->hw;
u32 ctrl;
ctrl = rd32(IGC_PTM_CTRL);
ctrl &= ~IGC_PTM_CTRL_EN;
wr32(IGC_PTM_CTRL, ctrl);
}
/**
* igc_ptp_suspend - Disable PTP work items and prepare for suspend
* @adapter: Board private structure
*
* This function stops the overflow check work and PTP Tx timestamp work, and
* will prepare the device for OS suspend.
*/
void igc_ptp_suspend(struct igc_adapter *adapter)
{
if (!(adapter->ptp_flags & IGC_PTP_ENABLED))
return;
igc_ptp_clear_tx_tstamp(adapter);
if (pci_device_is_present(adapter->pdev)) {
igc_ptp_time_save(adapter);
igc_ptm_stop(adapter);
}
}
/**
* igc_ptp_stop - Disable PTP device and stop the overflow check.
* @adapter: Board private structure.
*
* This function stops the PTP support and cancels the delayed work.
**/
void igc_ptp_stop(struct igc_adapter *adapter)
{
igc_ptp_suspend(adapter);
if (adapter->ptp_clock) {
ptp_clock_unregister(adapter->ptp_clock);
netdev_info(adapter->netdev, "PHC removed\n");
adapter->ptp_flags &= ~IGC_PTP_ENABLED;
}
}
/**
* igc_ptp_reset - Re-enable the adapter for PTP following a reset.
* @adapter: Board private structure.
*
* This function handles the reset work required to re-enable the PTP device.
**/
void igc_ptp_reset(struct igc_adapter *adapter)
{
struct igc_hw *hw = &adapter->hw;
u32 cycle_ctrl, ctrl;
unsigned long flags;
u32 timadj;
/* reset the tstamp_config */
igc_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
spin_lock_irqsave(&adapter->tmreg_lock, flags);
switch (adapter->hw.mac.type) {
case igc_i225:
timadj = rd32(IGC_TIMADJ);
timadj |= IGC_TIMADJ_ADJUST_METH;
wr32(IGC_TIMADJ, timadj);
wr32(IGC_TSAUXC, 0x0);
wr32(IGC_TSSDP, 0x0);
wr32(IGC_TSIM,
IGC_TSICR_INTERRUPTS |
(adapter->pps_sys_wrap_on ? IGC_TSICR_SYS_WRAP : 0));
wr32(IGC_IMS, IGC_IMS_TS);
if (!igc_is_crosststamp_supported(adapter))
break;
wr32(IGC_PCIE_DIG_DELAY, IGC_PCIE_DIG_DELAY_DEFAULT);
wr32(IGC_PCIE_PHY_DELAY, IGC_PCIE_PHY_DELAY_DEFAULT);
cycle_ctrl = IGC_PTM_CYCLE_CTRL_CYC_TIME(IGC_PTM_CYC_TIME_DEFAULT);
wr32(IGC_PTM_CYCLE_CTRL, cycle_ctrl);
ctrl = IGC_PTM_CTRL_EN |
IGC_PTM_CTRL_START_NOW |
IGC_PTM_CTRL_SHRT_CYC(IGC_PTM_SHORT_CYC_DEFAULT) |
IGC_PTM_CTRL_PTM_TO(IGC_PTM_TIMEOUT_DEFAULT) |
IGC_PTM_CTRL_TRIG;
wr32(IGC_PTM_CTRL, ctrl);
/* Force the first cycle to run. */
wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
break;
default:
/* No work to do. */
goto out;
}
/* Re-initialize the timer. */
if (hw->mac.type == igc_i225) {
igc_ptp_time_restore(adapter);
} else {
timecounter_init(&adapter->tc, &adapter->cc,
ktime_to_ns(ktime_get_real()));
}
out:
spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
wrfl();
}