blob: 976b9ab7617cd81018f9cf5474ea204ab1d47fe8 [file] [log] [blame]
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only)
/* Copyright(c) 2015 - 2020 Intel Corporation */
#include <linux/delay.h>
#include "adf_accel_devices.h"
#include "adf_common_drv.h"
#include "adf_pf2vf_msg.h"
#define ADF_DH895XCC_EP_OFFSET 0x3A000
#define ADF_DH895XCC_ERRMSK3 (ADF_DH895XCC_EP_OFFSET + 0x1C)
#define ADF_DH895XCC_ERRMSK3_VF2PF_L_MASK(vf_mask) ((vf_mask & 0xFFFF) << 9)
#define ADF_DH895XCC_ERRMSK5 (ADF_DH895XCC_EP_OFFSET + 0xDC)
#define ADF_DH895XCC_ERRMSK5_VF2PF_U_MASK(vf_mask) (vf_mask >> 16)
static void __adf_enable_vf2pf_interrupts(struct adf_accel_dev *accel_dev,
u32 vf_mask)
{
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
struct adf_bar *pmisc =
&GET_BARS(accel_dev)[hw_data->get_misc_bar_id(hw_data)];
void __iomem *pmisc_addr = pmisc->virt_addr;
u32 reg;
/* Enable VF2PF Messaging Ints - VFs 1 through 16 per vf_mask[15:0] */
if (vf_mask & 0xFFFF) {
reg = ADF_CSR_RD(pmisc_addr, ADF_DH895XCC_ERRMSK3);
reg &= ~ADF_DH895XCC_ERRMSK3_VF2PF_L_MASK(vf_mask);
ADF_CSR_WR(pmisc_addr, ADF_DH895XCC_ERRMSK3, reg);
}
/* Enable VF2PF Messaging Ints - VFs 17 through 32 per vf_mask[31:16] */
if (vf_mask >> 16) {
reg = ADF_CSR_RD(pmisc_addr, ADF_DH895XCC_ERRMSK5);
reg &= ~ADF_DH895XCC_ERRMSK5_VF2PF_U_MASK(vf_mask);
ADF_CSR_WR(pmisc_addr, ADF_DH895XCC_ERRMSK5, reg);
}
}
void adf_enable_vf2pf_interrupts(struct adf_accel_dev *accel_dev, u32 vf_mask)
{
unsigned long flags;
spin_lock_irqsave(&accel_dev->pf.vf2pf_ints_lock, flags);
__adf_enable_vf2pf_interrupts(accel_dev, vf_mask);
spin_unlock_irqrestore(&accel_dev->pf.vf2pf_ints_lock, flags);
}
static void __adf_disable_vf2pf_interrupts(struct adf_accel_dev *accel_dev,
u32 vf_mask)
{
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
struct adf_bar *pmisc =
&GET_BARS(accel_dev)[hw_data->get_misc_bar_id(hw_data)];
void __iomem *pmisc_addr = pmisc->virt_addr;
u32 reg;
/* Disable VF2PF interrupts for VFs 1 through 16 per vf_mask[15:0] */
if (vf_mask & 0xFFFF) {
reg = ADF_CSR_RD(pmisc_addr, ADF_DH895XCC_ERRMSK3) |
ADF_DH895XCC_ERRMSK3_VF2PF_L_MASK(vf_mask);
ADF_CSR_WR(pmisc_addr, ADF_DH895XCC_ERRMSK3, reg);
}
/* Disable VF2PF interrupts for VFs 17 through 32 per vf_mask[31:16] */
if (vf_mask >> 16) {
reg = ADF_CSR_RD(pmisc_addr, ADF_DH895XCC_ERRMSK5) |
ADF_DH895XCC_ERRMSK5_VF2PF_U_MASK(vf_mask);
ADF_CSR_WR(pmisc_addr, ADF_DH895XCC_ERRMSK5, reg);
}
}
void adf_disable_vf2pf_interrupts(struct adf_accel_dev *accel_dev, u32 vf_mask)
{
unsigned long flags;
spin_lock_irqsave(&accel_dev->pf.vf2pf_ints_lock, flags);
__adf_disable_vf2pf_interrupts(accel_dev, vf_mask);
spin_unlock_irqrestore(&accel_dev->pf.vf2pf_ints_lock, flags);
}
void adf_disable_vf2pf_interrupts_irq(struct adf_accel_dev *accel_dev, u32 vf_mask)
{
spin_lock(&accel_dev->pf.vf2pf_ints_lock);
__adf_disable_vf2pf_interrupts(accel_dev, vf_mask);
spin_unlock(&accel_dev->pf.vf2pf_ints_lock);
}
static int __adf_iov_putmsg(struct adf_accel_dev *accel_dev, u32 msg, u8 vf_nr)
{
struct adf_accel_pci *pci_info = &accel_dev->accel_pci_dev;
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
void __iomem *pmisc_bar_addr =
pci_info->pci_bars[hw_data->get_misc_bar_id(hw_data)].virt_addr;
u32 val, pf2vf_offset, count = 0;
u32 local_in_use_mask, local_in_use_pattern;
u32 remote_in_use_mask, remote_in_use_pattern;
struct mutex *lock; /* lock preventing concurrent acces of CSR */
u32 int_bit;
int ret = 0;
if (accel_dev->is_vf) {
pf2vf_offset = hw_data->get_pf2vf_offset(0);
lock = &accel_dev->vf.vf2pf_lock;
local_in_use_mask = ADF_VF2PF_IN_USE_BY_VF_MASK;
local_in_use_pattern = ADF_VF2PF_IN_USE_BY_VF;
remote_in_use_mask = ADF_PF2VF_IN_USE_BY_PF_MASK;
remote_in_use_pattern = ADF_PF2VF_IN_USE_BY_PF;
int_bit = ADF_VF2PF_INT;
} else {
pf2vf_offset = hw_data->get_pf2vf_offset(vf_nr);
lock = &accel_dev->pf.vf_info[vf_nr].pf2vf_lock;
local_in_use_mask = ADF_PF2VF_IN_USE_BY_PF_MASK;
local_in_use_pattern = ADF_PF2VF_IN_USE_BY_PF;
remote_in_use_mask = ADF_VF2PF_IN_USE_BY_VF_MASK;
remote_in_use_pattern = ADF_VF2PF_IN_USE_BY_VF;
int_bit = ADF_PF2VF_INT;
}
mutex_lock(lock);
/* Check if PF2VF CSR is in use by remote function */
val = ADF_CSR_RD(pmisc_bar_addr, pf2vf_offset);
if ((val & remote_in_use_mask) == remote_in_use_pattern) {
dev_dbg(&GET_DEV(accel_dev),
"PF2VF CSR in use by remote function\n");
ret = -EBUSY;
goto out;
}
/* Attempt to get ownership of PF2VF CSR */
msg &= ~local_in_use_mask;
msg |= local_in_use_pattern;
ADF_CSR_WR(pmisc_bar_addr, pf2vf_offset, msg);
/* Wait in case remote func also attempting to get ownership */
msleep(ADF_IOV_MSG_COLLISION_DETECT_DELAY);
val = ADF_CSR_RD(pmisc_bar_addr, pf2vf_offset);
if ((val & local_in_use_mask) != local_in_use_pattern) {
dev_dbg(&GET_DEV(accel_dev),
"PF2VF CSR in use by remote - collision detected\n");
ret = -EBUSY;
goto out;
}
/*
* This function now owns the PV2VF CSR. The IN_USE_BY pattern must
* remain in the PF2VF CSR for all writes including ACK from remote
* until this local function relinquishes the CSR. Send the message
* by interrupting the remote.
*/
ADF_CSR_WR(pmisc_bar_addr, pf2vf_offset, msg | int_bit);
/* Wait for confirmation from remote func it received the message */
do {
msleep(ADF_IOV_MSG_ACK_DELAY);
val = ADF_CSR_RD(pmisc_bar_addr, pf2vf_offset);
} while ((val & int_bit) && (count++ < ADF_IOV_MSG_ACK_MAX_RETRY));
if (val & int_bit) {
dev_dbg(&GET_DEV(accel_dev), "ACK not received from remote\n");
val &= ~int_bit;
ret = -EIO;
}
/* Finished with PF2VF CSR; relinquish it and leave msg in CSR */
ADF_CSR_WR(pmisc_bar_addr, pf2vf_offset, val & ~local_in_use_mask);
out:
mutex_unlock(lock);
return ret;
}
/**
* adf_iov_putmsg() - send PF2VF message
* @accel_dev: Pointer to acceleration device.
* @msg: Message to send
* @vf_nr: VF number to which the message will be sent
*
* Function sends a message from the PF to a VF
*
* Return: 0 on success, error code otherwise.
*/
int adf_iov_putmsg(struct adf_accel_dev *accel_dev, u32 msg, u8 vf_nr)
{
u32 count = 0;
int ret;
do {
ret = __adf_iov_putmsg(accel_dev, msg, vf_nr);
if (ret)
msleep(ADF_IOV_MSG_RETRY_DELAY);
} while (ret && (count++ < ADF_IOV_MSG_MAX_RETRIES));
return ret;
}
void adf_vf2pf_req_hndl(struct adf_accel_vf_info *vf_info)
{
struct adf_accel_dev *accel_dev = vf_info->accel_dev;
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
int bar_id = hw_data->get_misc_bar_id(hw_data);
struct adf_bar *pmisc = &GET_BARS(accel_dev)[bar_id];
void __iomem *pmisc_addr = pmisc->virt_addr;
u32 msg, resp = 0, vf_nr = vf_info->vf_nr;
/* Read message from the VF */
msg = ADF_CSR_RD(pmisc_addr, hw_data->get_pf2vf_offset(vf_nr));
/* To ACK, clear the VF2PFINT bit */
msg &= ~ADF_VF2PF_INT;
ADF_CSR_WR(pmisc_addr, hw_data->get_pf2vf_offset(vf_nr), msg);
if (!(msg & ADF_VF2PF_MSGORIGIN_SYSTEM))
/* Ignore legacy non-system (non-kernel) VF2PF messages */
goto err;
switch ((msg & ADF_VF2PF_MSGTYPE_MASK) >> ADF_VF2PF_MSGTYPE_SHIFT) {
case ADF_VF2PF_MSGTYPE_COMPAT_VER_REQ:
{
u8 vf_compat_ver = msg >> ADF_VF2PF_COMPAT_VER_REQ_SHIFT;
resp = (ADF_PF2VF_MSGORIGIN_SYSTEM |
(ADF_PF2VF_MSGTYPE_VERSION_RESP <<
ADF_PF2VF_MSGTYPE_SHIFT) |
(ADF_PFVF_COMPAT_THIS_VERSION <<
ADF_PF2VF_VERSION_RESP_VERS_SHIFT));
dev_dbg(&GET_DEV(accel_dev),
"Compatibility Version Request from VF%d vers=%u\n",
vf_nr + 1, vf_compat_ver);
if (vf_compat_ver < hw_data->min_iov_compat_ver) {
dev_err(&GET_DEV(accel_dev),
"VF (vers %d) incompatible with PF (vers %d)\n",
vf_compat_ver, ADF_PFVF_COMPAT_THIS_VERSION);
resp |= ADF_PF2VF_VF_INCOMPATIBLE <<
ADF_PF2VF_VERSION_RESP_RESULT_SHIFT;
} else if (vf_compat_ver > ADF_PFVF_COMPAT_THIS_VERSION) {
dev_err(&GET_DEV(accel_dev),
"VF (vers %d) compat with PF (vers %d) unkn.\n",
vf_compat_ver, ADF_PFVF_COMPAT_THIS_VERSION);
resp |= ADF_PF2VF_VF_COMPAT_UNKNOWN <<
ADF_PF2VF_VERSION_RESP_RESULT_SHIFT;
} else {
dev_dbg(&GET_DEV(accel_dev),
"VF (vers %d) compatible with PF (vers %d)\n",
vf_compat_ver, ADF_PFVF_COMPAT_THIS_VERSION);
resp |= ADF_PF2VF_VF_COMPATIBLE <<
ADF_PF2VF_VERSION_RESP_RESULT_SHIFT;
}
}
break;
case ADF_VF2PF_MSGTYPE_VERSION_REQ:
dev_dbg(&GET_DEV(accel_dev),
"Legacy VersionRequest received from VF%d 0x%x\n",
vf_nr + 1, msg);
resp = (ADF_PF2VF_MSGORIGIN_SYSTEM |
(ADF_PF2VF_MSGTYPE_VERSION_RESP <<
ADF_PF2VF_MSGTYPE_SHIFT) |
(ADF_PFVF_COMPAT_THIS_VERSION <<
ADF_PF2VF_VERSION_RESP_VERS_SHIFT));
resp |= ADF_PF2VF_VF_COMPATIBLE <<
ADF_PF2VF_VERSION_RESP_RESULT_SHIFT;
/* Set legacy major and minor version num */
resp |= 1 << ADF_PF2VF_MAJORVERSION_SHIFT |
1 << ADF_PF2VF_MINORVERSION_SHIFT;
break;
case ADF_VF2PF_MSGTYPE_INIT:
{
dev_dbg(&GET_DEV(accel_dev),
"Init message received from VF%d 0x%x\n",
vf_nr + 1, msg);
vf_info->init = true;
}
break;
case ADF_VF2PF_MSGTYPE_SHUTDOWN:
{
dev_dbg(&GET_DEV(accel_dev),
"Shutdown message received from VF%d 0x%x\n",
vf_nr + 1, msg);
vf_info->init = false;
}
break;
default:
goto err;
}
if (resp && adf_iov_putmsg(accel_dev, resp, vf_nr))
dev_err(&GET_DEV(accel_dev), "Failed to send response to VF\n");
/* re-enable interrupt on PF from this VF */
adf_enable_vf2pf_interrupts(accel_dev, (1 << vf_nr));
return;
err:
dev_dbg(&GET_DEV(accel_dev), "Unknown message from VF%d (0x%x);\n",
vf_nr + 1, msg);
}
void adf_pf2vf_notify_restarting(struct adf_accel_dev *accel_dev)
{
struct adf_accel_vf_info *vf;
u32 msg = (ADF_PF2VF_MSGORIGIN_SYSTEM |
(ADF_PF2VF_MSGTYPE_RESTARTING << ADF_PF2VF_MSGTYPE_SHIFT));
int i, num_vfs = pci_num_vf(accel_to_pci_dev(accel_dev));
for (i = 0, vf = accel_dev->pf.vf_info; i < num_vfs; i++, vf++) {
if (vf->init && adf_iov_putmsg(accel_dev, msg, i))
dev_err(&GET_DEV(accel_dev),
"Failed to send restarting msg to VF%d\n", i);
}
}
static int adf_vf2pf_request_version(struct adf_accel_dev *accel_dev)
{
unsigned long timeout = msecs_to_jiffies(ADF_IOV_MSG_RESP_TIMEOUT);
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
u32 msg = 0;
int ret;
msg = ADF_VF2PF_MSGORIGIN_SYSTEM;
msg |= ADF_VF2PF_MSGTYPE_COMPAT_VER_REQ << ADF_VF2PF_MSGTYPE_SHIFT;
msg |= ADF_PFVF_COMPAT_THIS_VERSION << ADF_VF2PF_COMPAT_VER_REQ_SHIFT;
BUILD_BUG_ON(ADF_PFVF_COMPAT_THIS_VERSION > 255);
reinit_completion(&accel_dev->vf.iov_msg_completion);
/* Send request from VF to PF */
ret = adf_iov_putmsg(accel_dev, msg, 0);
if (ret) {
dev_err(&GET_DEV(accel_dev),
"Failed to send Compatibility Version Request.\n");
return ret;
}
/* Wait for response */
if (!wait_for_completion_timeout(&accel_dev->vf.iov_msg_completion,
timeout)) {
dev_err(&GET_DEV(accel_dev),
"IOV request/response message timeout expired\n");
return -EIO;
}
/* Response from PF received, check compatibility */
switch (accel_dev->vf.compatible) {
case ADF_PF2VF_VF_COMPATIBLE:
break;
case ADF_PF2VF_VF_COMPAT_UNKNOWN:
/* VF is newer than PF and decides whether it is compatible */
if (accel_dev->vf.pf_version >= hw_data->min_iov_compat_ver) {
accel_dev->vf.compatible = ADF_PF2VF_VF_COMPATIBLE;
break;
}
fallthrough;
case ADF_PF2VF_VF_INCOMPATIBLE:
dev_err(&GET_DEV(accel_dev),
"PF (vers %d) and VF (vers %d) are not compatible\n",
accel_dev->vf.pf_version,
ADF_PFVF_COMPAT_THIS_VERSION);
return -EINVAL;
default:
dev_err(&GET_DEV(accel_dev),
"Invalid response from PF; assume not compatible\n");
return -EINVAL;
}
return ret;
}
/**
* adf_enable_vf2pf_comms() - Function enables communication from vf to pf
*
* @accel_dev: Pointer to acceleration device virtual function.
*
* Return: 0 on success, error code otherwise.
*/
int adf_enable_vf2pf_comms(struct adf_accel_dev *accel_dev)
{
adf_enable_pf2vf_interrupts(accel_dev);
return adf_vf2pf_request_version(accel_dev);
}
EXPORT_SYMBOL_GPL(adf_enable_vf2pf_comms);