|  | /* | 
|  | * Local APIC related interfaces to support IOAPIC, MSI, HT_IRQ etc. | 
|  | * | 
|  | * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo | 
|  | *	Moved from arch/x86/kernel/apic/io_apic.c. | 
|  | * Jiang Liu <jiang.liu@linux.intel.com> | 
|  | *	Enable support of hierarchical irqdomains | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/slab.h> | 
|  | #include <asm/irqdomain.h> | 
|  | #include <asm/hw_irq.h> | 
|  | #include <asm/apic.h> | 
|  | #include <asm/i8259.h> | 
|  | #include <asm/desc.h> | 
|  | #include <asm/irq_remapping.h> | 
|  |  | 
|  | struct apic_chip_data { | 
|  | struct irq_cfg		cfg; | 
|  | cpumask_var_t		domain; | 
|  | cpumask_var_t		old_domain; | 
|  | u8			move_in_progress : 1; | 
|  | }; | 
|  |  | 
|  | struct irq_domain *x86_vector_domain; | 
|  | EXPORT_SYMBOL_GPL(x86_vector_domain); | 
|  | static DEFINE_RAW_SPINLOCK(vector_lock); | 
|  | static cpumask_var_t vector_cpumask, vector_searchmask, searched_cpumask; | 
|  | static struct irq_chip lapic_controller; | 
|  | #ifdef	CONFIG_X86_IO_APIC | 
|  | static struct apic_chip_data *legacy_irq_data[NR_IRQS_LEGACY]; | 
|  | #endif | 
|  |  | 
|  | void lock_vector_lock(void) | 
|  | { | 
|  | /* Used to the online set of cpus does not change | 
|  | * during assign_irq_vector. | 
|  | */ | 
|  | raw_spin_lock(&vector_lock); | 
|  | } | 
|  |  | 
|  | void unlock_vector_lock(void) | 
|  | { | 
|  | raw_spin_unlock(&vector_lock); | 
|  | } | 
|  |  | 
|  | static struct apic_chip_data *apic_chip_data(struct irq_data *irq_data) | 
|  | { | 
|  | if (!irq_data) | 
|  | return NULL; | 
|  |  | 
|  | while (irq_data->parent_data) | 
|  | irq_data = irq_data->parent_data; | 
|  |  | 
|  | return irq_data->chip_data; | 
|  | } | 
|  |  | 
|  | struct irq_cfg *irqd_cfg(struct irq_data *irq_data) | 
|  | { | 
|  | struct apic_chip_data *data = apic_chip_data(irq_data); | 
|  |  | 
|  | return data ? &data->cfg : NULL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(irqd_cfg); | 
|  |  | 
|  | struct irq_cfg *irq_cfg(unsigned int irq) | 
|  | { | 
|  | return irqd_cfg(irq_get_irq_data(irq)); | 
|  | } | 
|  |  | 
|  | static struct apic_chip_data *alloc_apic_chip_data(int node) | 
|  | { | 
|  | struct apic_chip_data *data; | 
|  |  | 
|  | data = kzalloc_node(sizeof(*data), GFP_KERNEL, node); | 
|  | if (!data) | 
|  | return NULL; | 
|  | if (!zalloc_cpumask_var_node(&data->domain, GFP_KERNEL, node)) | 
|  | goto out_data; | 
|  | if (!zalloc_cpumask_var_node(&data->old_domain, GFP_KERNEL, node)) | 
|  | goto out_domain; | 
|  | return data; | 
|  | out_domain: | 
|  | free_cpumask_var(data->domain); | 
|  | out_data: | 
|  | kfree(data); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void free_apic_chip_data(struct apic_chip_data *data) | 
|  | { | 
|  | if (data) { | 
|  | free_cpumask_var(data->domain); | 
|  | free_cpumask_var(data->old_domain); | 
|  | kfree(data); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __assign_irq_vector(int irq, struct apic_chip_data *d, | 
|  | const struct cpumask *mask) | 
|  | { | 
|  | /* | 
|  | * NOTE! The local APIC isn't very good at handling | 
|  | * multiple interrupts at the same interrupt level. | 
|  | * As the interrupt level is determined by taking the | 
|  | * vector number and shifting that right by 4, we | 
|  | * want to spread these out a bit so that they don't | 
|  | * all fall in the same interrupt level. | 
|  | * | 
|  | * Also, we've got to be careful not to trash gate | 
|  | * 0x80, because int 0x80 is hm, kind of importantish. ;) | 
|  | */ | 
|  | static int current_vector = FIRST_EXTERNAL_VECTOR + VECTOR_OFFSET_START; | 
|  | static int current_offset = VECTOR_OFFSET_START % 16; | 
|  | int cpu, vector; | 
|  |  | 
|  | /* | 
|  | * If there is still a move in progress or the previous move has not | 
|  | * been cleaned up completely, tell the caller to come back later. | 
|  | */ | 
|  | if (d->move_in_progress || | 
|  | cpumask_intersects(d->old_domain, cpu_online_mask)) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* Only try and allocate irqs on cpus that are present */ | 
|  | cpumask_clear(d->old_domain); | 
|  | cpumask_clear(searched_cpumask); | 
|  | cpu = cpumask_first_and(mask, cpu_online_mask); | 
|  | while (cpu < nr_cpu_ids) { | 
|  | int new_cpu, offset; | 
|  |  | 
|  | /* Get the possible target cpus for @mask/@cpu from the apic */ | 
|  | apic->vector_allocation_domain(cpu, vector_cpumask, mask); | 
|  |  | 
|  | /* | 
|  | * Clear the offline cpus from @vector_cpumask for searching | 
|  | * and verify whether the result overlaps with @mask. If true, | 
|  | * then the call to apic->cpu_mask_to_apicid_and() will | 
|  | * succeed as well. If not, no point in trying to find a | 
|  | * vector in this mask. | 
|  | */ | 
|  | cpumask_and(vector_searchmask, vector_cpumask, cpu_online_mask); | 
|  | if (!cpumask_intersects(vector_searchmask, mask)) | 
|  | goto next_cpu; | 
|  |  | 
|  | if (cpumask_subset(vector_cpumask, d->domain)) { | 
|  | if (cpumask_equal(vector_cpumask, d->domain)) | 
|  | goto success; | 
|  | /* | 
|  | * Mark the cpus which are not longer in the mask for | 
|  | * cleanup. | 
|  | */ | 
|  | cpumask_andnot(d->old_domain, d->domain, vector_cpumask); | 
|  | vector = d->cfg.vector; | 
|  | goto update; | 
|  | } | 
|  |  | 
|  | vector = current_vector; | 
|  | offset = current_offset; | 
|  | next: | 
|  | vector += 16; | 
|  | if (vector >= first_system_vector) { | 
|  | offset = (offset + 1) % 16; | 
|  | vector = FIRST_EXTERNAL_VECTOR + offset; | 
|  | } | 
|  |  | 
|  | /* If the search wrapped around, try the next cpu */ | 
|  | if (unlikely(current_vector == vector)) | 
|  | goto next_cpu; | 
|  |  | 
|  | if (test_bit(vector, used_vectors)) | 
|  | goto next; | 
|  |  | 
|  | for_each_cpu(new_cpu, vector_searchmask) { | 
|  | if (!IS_ERR_OR_NULL(per_cpu(vector_irq, new_cpu)[vector])) | 
|  | goto next; | 
|  | } | 
|  | /* Found one! */ | 
|  | current_vector = vector; | 
|  | current_offset = offset; | 
|  | /* Schedule the old vector for cleanup on all cpus */ | 
|  | if (d->cfg.vector) | 
|  | cpumask_copy(d->old_domain, d->domain); | 
|  | for_each_cpu(new_cpu, vector_searchmask) | 
|  | per_cpu(vector_irq, new_cpu)[vector] = irq_to_desc(irq); | 
|  | goto update; | 
|  |  | 
|  | next_cpu: | 
|  | /* | 
|  | * We exclude the current @vector_cpumask from the requested | 
|  | * @mask and try again with the next online cpu in the | 
|  | * result. We cannot modify @mask, so we use @vector_cpumask | 
|  | * as a temporary buffer here as it will be reassigned when | 
|  | * calling apic->vector_allocation_domain() above. | 
|  | */ | 
|  | cpumask_or(searched_cpumask, searched_cpumask, vector_cpumask); | 
|  | cpumask_andnot(vector_cpumask, mask, searched_cpumask); | 
|  | cpu = cpumask_first_and(vector_cpumask, cpu_online_mask); | 
|  | continue; | 
|  | } | 
|  | return -ENOSPC; | 
|  |  | 
|  | update: | 
|  | /* | 
|  | * Exclude offline cpus from the cleanup mask and set the | 
|  | * move_in_progress flag when the result is not empty. | 
|  | */ | 
|  | cpumask_and(d->old_domain, d->old_domain, cpu_online_mask); | 
|  | d->move_in_progress = !cpumask_empty(d->old_domain); | 
|  | d->cfg.old_vector = d->move_in_progress ? d->cfg.vector : 0; | 
|  | d->cfg.vector = vector; | 
|  | cpumask_copy(d->domain, vector_cpumask); | 
|  | success: | 
|  | /* | 
|  | * Cache destination APIC IDs into cfg->dest_apicid. This cannot fail | 
|  | * as we already established, that mask & d->domain & cpu_online_mask | 
|  | * is not empty. | 
|  | */ | 
|  | BUG_ON(apic->cpu_mask_to_apicid_and(mask, d->domain, | 
|  | &d->cfg.dest_apicid)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int assign_irq_vector(int irq, struct apic_chip_data *data, | 
|  | const struct cpumask *mask) | 
|  | { | 
|  | int err; | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_spin_lock_irqsave(&vector_lock, flags); | 
|  | err = __assign_irq_vector(irq, data, mask); | 
|  | raw_spin_unlock_irqrestore(&vector_lock, flags); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int assign_irq_vector_policy(int irq, int node, | 
|  | struct apic_chip_data *data, | 
|  | struct irq_alloc_info *info) | 
|  | { | 
|  | if (info && info->mask) | 
|  | return assign_irq_vector(irq, data, info->mask); | 
|  | if (node != NUMA_NO_NODE && | 
|  | assign_irq_vector(irq, data, cpumask_of_node(node)) == 0) | 
|  | return 0; | 
|  | return assign_irq_vector(irq, data, apic->target_cpus()); | 
|  | } | 
|  |  | 
|  | static void clear_irq_vector(int irq, struct apic_chip_data *data) | 
|  | { | 
|  | struct irq_desc *desc; | 
|  | int cpu, vector; | 
|  |  | 
|  | BUG_ON(!data->cfg.vector); | 
|  |  | 
|  | vector = data->cfg.vector; | 
|  | for_each_cpu_and(cpu, data->domain, cpu_online_mask) | 
|  | per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED; | 
|  |  | 
|  | data->cfg.vector = 0; | 
|  | cpumask_clear(data->domain); | 
|  |  | 
|  | /* | 
|  | * If move is in progress or the old_domain mask is not empty, | 
|  | * i.e. the cleanup IPI has not been processed yet, we need to remove | 
|  | * the old references to desc from all cpus vector tables. | 
|  | */ | 
|  | if (!data->move_in_progress && cpumask_empty(data->old_domain)) | 
|  | return; | 
|  |  | 
|  | desc = irq_to_desc(irq); | 
|  | for_each_cpu_and(cpu, data->old_domain, cpu_online_mask) { | 
|  | for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; | 
|  | vector++) { | 
|  | if (per_cpu(vector_irq, cpu)[vector] != desc) | 
|  | continue; | 
|  | per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED; | 
|  | break; | 
|  | } | 
|  | } | 
|  | data->move_in_progress = 0; | 
|  | } | 
|  |  | 
|  | void init_irq_alloc_info(struct irq_alloc_info *info, | 
|  | const struct cpumask *mask) | 
|  | { | 
|  | memset(info, 0, sizeof(*info)); | 
|  | info->mask = mask; | 
|  | } | 
|  |  | 
|  | void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src) | 
|  | { | 
|  | if (src) | 
|  | *dst = *src; | 
|  | else | 
|  | memset(dst, 0, sizeof(*dst)); | 
|  | } | 
|  |  | 
|  | static void x86_vector_free_irqs(struct irq_domain *domain, | 
|  | unsigned int virq, unsigned int nr_irqs) | 
|  | { | 
|  | struct apic_chip_data *apic_data; | 
|  | struct irq_data *irq_data; | 
|  | unsigned long flags; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < nr_irqs; i++) { | 
|  | irq_data = irq_domain_get_irq_data(x86_vector_domain, virq + i); | 
|  | if (irq_data && irq_data->chip_data) { | 
|  | raw_spin_lock_irqsave(&vector_lock, flags); | 
|  | clear_irq_vector(virq + i, irq_data->chip_data); | 
|  | apic_data = irq_data->chip_data; | 
|  | irq_domain_reset_irq_data(irq_data); | 
|  | raw_spin_unlock_irqrestore(&vector_lock, flags); | 
|  | free_apic_chip_data(apic_data); | 
|  | #ifdef	CONFIG_X86_IO_APIC | 
|  | if (virq + i < nr_legacy_irqs()) | 
|  | legacy_irq_data[virq + i] = NULL; | 
|  | #endif | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq, | 
|  | unsigned int nr_irqs, void *arg) | 
|  | { | 
|  | struct irq_alloc_info *info = arg; | 
|  | struct apic_chip_data *data; | 
|  | struct irq_data *irq_data; | 
|  | int i, err, node; | 
|  |  | 
|  | if (disable_apic) | 
|  | return -ENXIO; | 
|  |  | 
|  | /* Currently vector allocator can't guarantee contiguous allocations */ | 
|  | if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1) | 
|  | return -ENOSYS; | 
|  |  | 
|  | for (i = 0; i < nr_irqs; i++) { | 
|  | irq_data = irq_domain_get_irq_data(domain, virq + i); | 
|  | BUG_ON(!irq_data); | 
|  | node = irq_data_get_node(irq_data); | 
|  | #ifdef	CONFIG_X86_IO_APIC | 
|  | if (virq + i < nr_legacy_irqs() && legacy_irq_data[virq + i]) | 
|  | data = legacy_irq_data[virq + i]; | 
|  | else | 
|  | #endif | 
|  | data = alloc_apic_chip_data(node); | 
|  | if (!data) { | 
|  | err = -ENOMEM; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | irq_data->chip = &lapic_controller; | 
|  | irq_data->chip_data = data; | 
|  | irq_data->hwirq = virq + i; | 
|  | err = assign_irq_vector_policy(virq + i, node, data, info); | 
|  | if (err) | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | error: | 
|  | x86_vector_free_irqs(domain, virq, i + 1); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static const struct irq_domain_ops x86_vector_domain_ops = { | 
|  | .alloc	= x86_vector_alloc_irqs, | 
|  | .free	= x86_vector_free_irqs, | 
|  | }; | 
|  |  | 
|  | int __init arch_probe_nr_irqs(void) | 
|  | { | 
|  | int nr; | 
|  |  | 
|  | if (nr_irqs > (NR_VECTORS * nr_cpu_ids)) | 
|  | nr_irqs = NR_VECTORS * nr_cpu_ids; | 
|  |  | 
|  | nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids; | 
|  | #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ) | 
|  | /* | 
|  | * for MSI and HT dyn irq | 
|  | */ | 
|  | if (gsi_top <= NR_IRQS_LEGACY) | 
|  | nr +=  8 * nr_cpu_ids; | 
|  | else | 
|  | nr += gsi_top * 16; | 
|  | #endif | 
|  | if (nr < nr_irqs) | 
|  | nr_irqs = nr; | 
|  |  | 
|  | /* | 
|  | * We don't know if PIC is present at this point so we need to do | 
|  | * probe() to get the right number of legacy IRQs. | 
|  | */ | 
|  | return legacy_pic->probe(); | 
|  | } | 
|  |  | 
|  | #ifdef	CONFIG_X86_IO_APIC | 
|  | static void init_legacy_irqs(void) | 
|  | { | 
|  | int i, node = cpu_to_node(0); | 
|  | struct apic_chip_data *data; | 
|  |  | 
|  | /* | 
|  | * For legacy IRQ's, start with assigning irq0 to irq15 to | 
|  | * ISA_IRQ_VECTOR(i) for all cpu's. | 
|  | */ | 
|  | for (i = 0; i < nr_legacy_irqs(); i++) { | 
|  | data = legacy_irq_data[i] = alloc_apic_chip_data(node); | 
|  | BUG_ON(!data); | 
|  |  | 
|  | data->cfg.vector = ISA_IRQ_VECTOR(i); | 
|  | cpumask_setall(data->domain); | 
|  | irq_set_chip_data(i, data); | 
|  | } | 
|  | } | 
|  | #else | 
|  | static void init_legacy_irqs(void) { } | 
|  | #endif | 
|  |  | 
|  | int __init arch_early_irq_init(void) | 
|  | { | 
|  | init_legacy_irqs(); | 
|  |  | 
|  | x86_vector_domain = irq_domain_add_tree(NULL, &x86_vector_domain_ops, | 
|  | NULL); | 
|  | BUG_ON(x86_vector_domain == NULL); | 
|  | irq_set_default_host(x86_vector_domain); | 
|  |  | 
|  | arch_init_msi_domain(x86_vector_domain); | 
|  | arch_init_htirq_domain(x86_vector_domain); | 
|  |  | 
|  | BUG_ON(!alloc_cpumask_var(&vector_cpumask, GFP_KERNEL)); | 
|  | BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL)); | 
|  | BUG_ON(!alloc_cpumask_var(&searched_cpumask, GFP_KERNEL)); | 
|  |  | 
|  | return arch_early_ioapic_init(); | 
|  | } | 
|  |  | 
|  | /* Initialize vector_irq on a new cpu */ | 
|  | static void __setup_vector_irq(int cpu) | 
|  | { | 
|  | struct apic_chip_data *data; | 
|  | struct irq_desc *desc; | 
|  | int irq, vector; | 
|  |  | 
|  | /* Mark the inuse vectors */ | 
|  | for_each_irq_desc(irq, desc) { | 
|  | struct irq_data *idata = irq_desc_get_irq_data(desc); | 
|  |  | 
|  | data = apic_chip_data(idata); | 
|  | if (!data || !cpumask_test_cpu(cpu, data->domain)) | 
|  | continue; | 
|  | vector = data->cfg.vector; | 
|  | per_cpu(vector_irq, cpu)[vector] = desc; | 
|  | } | 
|  | /* Mark the free vectors */ | 
|  | for (vector = 0; vector < NR_VECTORS; ++vector) { | 
|  | desc = per_cpu(vector_irq, cpu)[vector]; | 
|  | if (IS_ERR_OR_NULL(desc)) | 
|  | continue; | 
|  |  | 
|  | data = apic_chip_data(irq_desc_get_irq_data(desc)); | 
|  | if (!cpumask_test_cpu(cpu, data->domain)) | 
|  | per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Setup the vector to irq mappings. Must be called with vector_lock held. | 
|  | */ | 
|  | void setup_vector_irq(int cpu) | 
|  | { | 
|  | int irq; | 
|  |  | 
|  | lockdep_assert_held(&vector_lock); | 
|  | /* | 
|  | * On most of the platforms, legacy PIC delivers the interrupts on the | 
|  | * boot cpu. But there are certain platforms where PIC interrupts are | 
|  | * delivered to multiple cpu's. If the legacy IRQ is handled by the | 
|  | * legacy PIC, for the new cpu that is coming online, setup the static | 
|  | * legacy vector to irq mapping: | 
|  | */ | 
|  | for (irq = 0; irq < nr_legacy_irqs(); irq++) | 
|  | per_cpu(vector_irq, cpu)[ISA_IRQ_VECTOR(irq)] = irq_to_desc(irq); | 
|  |  | 
|  | __setup_vector_irq(cpu); | 
|  | } | 
|  |  | 
|  | static int apic_retrigger_irq(struct irq_data *irq_data) | 
|  | { | 
|  | struct apic_chip_data *data = apic_chip_data(irq_data); | 
|  | unsigned long flags; | 
|  | int cpu; | 
|  |  | 
|  | raw_spin_lock_irqsave(&vector_lock, flags); | 
|  | cpu = cpumask_first_and(data->domain, cpu_online_mask); | 
|  | apic->send_IPI_mask(cpumask_of(cpu), data->cfg.vector); | 
|  | raw_spin_unlock_irqrestore(&vector_lock, flags); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void apic_ack_edge(struct irq_data *data) | 
|  | { | 
|  | irq_complete_move(irqd_cfg(data)); | 
|  | irq_move_irq(data); | 
|  | ack_APIC_irq(); | 
|  | } | 
|  |  | 
|  | static int apic_set_affinity(struct irq_data *irq_data, | 
|  | const struct cpumask *dest, bool force) | 
|  | { | 
|  | struct apic_chip_data *data = irq_data->chip_data; | 
|  | int err, irq = irq_data->irq; | 
|  |  | 
|  | if (!config_enabled(CONFIG_SMP)) | 
|  | return -EPERM; | 
|  |  | 
|  | if (!cpumask_intersects(dest, cpu_online_mask)) | 
|  | return -EINVAL; | 
|  |  | 
|  | err = assign_irq_vector(irq, data, dest); | 
|  | return err ? err : IRQ_SET_MASK_OK; | 
|  | } | 
|  |  | 
|  | static struct irq_chip lapic_controller = { | 
|  | .irq_ack		= apic_ack_edge, | 
|  | .irq_set_affinity	= apic_set_affinity, | 
|  | .irq_retrigger		= apic_retrigger_irq, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | static void __send_cleanup_vector(struct apic_chip_data *data) | 
|  | { | 
|  | raw_spin_lock(&vector_lock); | 
|  | cpumask_and(data->old_domain, data->old_domain, cpu_online_mask); | 
|  | data->move_in_progress = 0; | 
|  | if (!cpumask_empty(data->old_domain)) | 
|  | apic->send_IPI_mask(data->old_domain, IRQ_MOVE_CLEANUP_VECTOR); | 
|  | raw_spin_unlock(&vector_lock); | 
|  | } | 
|  |  | 
|  | void send_cleanup_vector(struct irq_cfg *cfg) | 
|  | { | 
|  | struct apic_chip_data *data; | 
|  |  | 
|  | data = container_of(cfg, struct apic_chip_data, cfg); | 
|  | if (data->move_in_progress) | 
|  | __send_cleanup_vector(data); | 
|  | } | 
|  |  | 
|  | asmlinkage __visible void smp_irq_move_cleanup_interrupt(void) | 
|  | { | 
|  | unsigned vector, me; | 
|  |  | 
|  | entering_ack_irq(); | 
|  |  | 
|  | /* Prevent vectors vanishing under us */ | 
|  | raw_spin_lock(&vector_lock); | 
|  |  | 
|  | me = smp_processor_id(); | 
|  | for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { | 
|  | struct apic_chip_data *data; | 
|  | struct irq_desc *desc; | 
|  | unsigned int irr; | 
|  |  | 
|  | retry: | 
|  | desc = __this_cpu_read(vector_irq[vector]); | 
|  | if (IS_ERR_OR_NULL(desc)) | 
|  | continue; | 
|  |  | 
|  | if (!raw_spin_trylock(&desc->lock)) { | 
|  | raw_spin_unlock(&vector_lock); | 
|  | cpu_relax(); | 
|  | raw_spin_lock(&vector_lock); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | data = apic_chip_data(irq_desc_get_irq_data(desc)); | 
|  | if (!data) | 
|  | goto unlock; | 
|  |  | 
|  | /* | 
|  | * Nothing to cleanup if irq migration is in progress | 
|  | * or this cpu is not set in the cleanup mask. | 
|  | */ | 
|  | if (data->move_in_progress || | 
|  | !cpumask_test_cpu(me, data->old_domain)) | 
|  | goto unlock; | 
|  |  | 
|  | /* | 
|  | * We have two cases to handle here: | 
|  | * 1) vector is unchanged but the target mask got reduced | 
|  | * 2) vector and the target mask has changed | 
|  | * | 
|  | * #1 is obvious, but in #2 we have two vectors with the same | 
|  | * irq descriptor: the old and the new vector. So we need to | 
|  | * make sure that we only cleanup the old vector. The new | 
|  | * vector has the current @vector number in the config and | 
|  | * this cpu is part of the target mask. We better leave that | 
|  | * one alone. | 
|  | */ | 
|  | if (vector == data->cfg.vector && | 
|  | cpumask_test_cpu(me, data->domain)) | 
|  | goto unlock; | 
|  |  | 
|  | irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); | 
|  | /* | 
|  | * Check if the vector that needs to be cleanedup is | 
|  | * registered at the cpu's IRR. If so, then this is not | 
|  | * the best time to clean it up. Lets clean it up in the | 
|  | * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR | 
|  | * to myself. | 
|  | */ | 
|  | if (irr  & (1 << (vector % 32))) { | 
|  | apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR); | 
|  | goto unlock; | 
|  | } | 
|  | __this_cpu_write(vector_irq[vector], VECTOR_UNUSED); | 
|  | cpumask_clear_cpu(me, data->old_domain); | 
|  | unlock: | 
|  | raw_spin_unlock(&desc->lock); | 
|  | } | 
|  |  | 
|  | raw_spin_unlock(&vector_lock); | 
|  |  | 
|  | exiting_irq(); | 
|  | } | 
|  |  | 
|  | static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector) | 
|  | { | 
|  | unsigned me; | 
|  | struct apic_chip_data *data; | 
|  |  | 
|  | data = container_of(cfg, struct apic_chip_data, cfg); | 
|  | if (likely(!data->move_in_progress)) | 
|  | return; | 
|  |  | 
|  | me = smp_processor_id(); | 
|  | if (vector == data->cfg.vector && cpumask_test_cpu(me, data->domain)) | 
|  | __send_cleanup_vector(data); | 
|  | } | 
|  |  | 
|  | void irq_complete_move(struct irq_cfg *cfg) | 
|  | { | 
|  | __irq_complete_move(cfg, ~get_irq_regs()->orig_ax); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called from fixup_irqs() with @desc->lock held and interrupts disabled. | 
|  | */ | 
|  | void irq_force_complete_move(struct irq_desc *desc) | 
|  | { | 
|  | struct irq_data *irqdata = irq_desc_get_irq_data(desc); | 
|  | struct apic_chip_data *data = apic_chip_data(irqdata); | 
|  | struct irq_cfg *cfg = data ? &data->cfg : NULL; | 
|  | unsigned int cpu; | 
|  |  | 
|  | if (!cfg) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * This is tricky. If the cleanup of @data->old_domain has not been | 
|  | * done yet, then the following setaffinity call will fail with | 
|  | * -EBUSY. This can leave the interrupt in a stale state. | 
|  | * | 
|  | * All CPUs are stuck in stop machine with interrupts disabled so | 
|  | * calling __irq_complete_move() would be completely pointless. | 
|  | */ | 
|  | raw_spin_lock(&vector_lock); | 
|  | /* | 
|  | * Clean out all offline cpus (including the outgoing one) from the | 
|  | * old_domain mask. | 
|  | */ | 
|  | cpumask_and(data->old_domain, data->old_domain, cpu_online_mask); | 
|  |  | 
|  | /* | 
|  | * If move_in_progress is cleared and the old_domain mask is empty, | 
|  | * then there is nothing to cleanup. fixup_irqs() will take care of | 
|  | * the stale vectors on the outgoing cpu. | 
|  | */ | 
|  | if (!data->move_in_progress && cpumask_empty(data->old_domain)) { | 
|  | raw_spin_unlock(&vector_lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 1) The interrupt is in move_in_progress state. That means that we | 
|  | *    have not seen an interrupt since the io_apic was reprogrammed to | 
|  | *    the new vector. | 
|  | * | 
|  | * 2) The interrupt has fired on the new vector, but the cleanup IPIs | 
|  | *    have not been processed yet. | 
|  | */ | 
|  | if (data->move_in_progress) { | 
|  | /* | 
|  | * In theory there is a race: | 
|  | * | 
|  | * set_ioapic(new_vector) <-- Interrupt is raised before update | 
|  | *			      is effective, i.e. it's raised on | 
|  | *			      the old vector. | 
|  | * | 
|  | * So if the target cpu cannot handle that interrupt before | 
|  | * the old vector is cleaned up, we get a spurious interrupt | 
|  | * and in the worst case the ioapic irq line becomes stale. | 
|  | * | 
|  | * But in case of cpu hotplug this should be a non issue | 
|  | * because if the affinity update happens right before all | 
|  | * cpus rendevouz in stop machine, there is no way that the | 
|  | * interrupt can be blocked on the target cpu because all cpus | 
|  | * loops first with interrupts enabled in stop machine, so the | 
|  | * old vector is not yet cleaned up when the interrupt fires. | 
|  | * | 
|  | * So the only way to run into this issue is if the delivery | 
|  | * of the interrupt on the apic/system bus would be delayed | 
|  | * beyond the point where the target cpu disables interrupts | 
|  | * in stop machine. I doubt that it can happen, but at least | 
|  | * there is a theroretical chance. Virtualization might be | 
|  | * able to expose this, but AFAICT the IOAPIC emulation is not | 
|  | * as stupid as the real hardware. | 
|  | * | 
|  | * Anyway, there is nothing we can do about that at this point | 
|  | * w/o refactoring the whole fixup_irq() business completely. | 
|  | * We print at least the irq number and the old vector number, | 
|  | * so we have the necessary information when a problem in that | 
|  | * area arises. | 
|  | */ | 
|  | pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n", | 
|  | irqdata->irq, cfg->old_vector); | 
|  | } | 
|  | /* | 
|  | * If old_domain is not empty, then other cpus still have the irq | 
|  | * descriptor set in their vector array. Clean it up. | 
|  | */ | 
|  | for_each_cpu(cpu, data->old_domain) | 
|  | per_cpu(vector_irq, cpu)[cfg->old_vector] = VECTOR_UNUSED; | 
|  |  | 
|  | /* Cleanup the left overs of the (half finished) move */ | 
|  | cpumask_clear(data->old_domain); | 
|  | data->move_in_progress = 0; | 
|  | raw_spin_unlock(&vector_lock); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void __init print_APIC_field(int base) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | printk(KERN_DEBUG); | 
|  |  | 
|  | for (i = 0; i < 8; i++) | 
|  | pr_cont("%08x", apic_read(base + i*0x10)); | 
|  |  | 
|  | pr_cont("\n"); | 
|  | } | 
|  |  | 
|  | static void __init print_local_APIC(void *dummy) | 
|  | { | 
|  | unsigned int i, v, ver, maxlvt; | 
|  | u64 icr; | 
|  |  | 
|  | pr_debug("printing local APIC contents on CPU#%d/%d:\n", | 
|  | smp_processor_id(), hard_smp_processor_id()); | 
|  | v = apic_read(APIC_ID); | 
|  | pr_info("... APIC ID:      %08x (%01x)\n", v, read_apic_id()); | 
|  | v = apic_read(APIC_LVR); | 
|  | pr_info("... APIC VERSION: %08x\n", v); | 
|  | ver = GET_APIC_VERSION(v); | 
|  | maxlvt = lapic_get_maxlvt(); | 
|  |  | 
|  | v = apic_read(APIC_TASKPRI); | 
|  | pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK); | 
|  |  | 
|  | /* !82489DX */ | 
|  | if (APIC_INTEGRATED(ver)) { | 
|  | if (!APIC_XAPIC(ver)) { | 
|  | v = apic_read(APIC_ARBPRI); | 
|  | pr_debug("... APIC ARBPRI: %08x (%02x)\n", | 
|  | v, v & APIC_ARBPRI_MASK); | 
|  | } | 
|  | v = apic_read(APIC_PROCPRI); | 
|  | pr_debug("... APIC PROCPRI: %08x\n", v); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remote read supported only in the 82489DX and local APIC for | 
|  | * Pentium processors. | 
|  | */ | 
|  | if (!APIC_INTEGRATED(ver) || maxlvt == 3) { | 
|  | v = apic_read(APIC_RRR); | 
|  | pr_debug("... APIC RRR: %08x\n", v); | 
|  | } | 
|  |  | 
|  | v = apic_read(APIC_LDR); | 
|  | pr_debug("... APIC LDR: %08x\n", v); | 
|  | if (!x2apic_enabled()) { | 
|  | v = apic_read(APIC_DFR); | 
|  | pr_debug("... APIC DFR: %08x\n", v); | 
|  | } | 
|  | v = apic_read(APIC_SPIV); | 
|  | pr_debug("... APIC SPIV: %08x\n", v); | 
|  |  | 
|  | pr_debug("... APIC ISR field:\n"); | 
|  | print_APIC_field(APIC_ISR); | 
|  | pr_debug("... APIC TMR field:\n"); | 
|  | print_APIC_field(APIC_TMR); | 
|  | pr_debug("... APIC IRR field:\n"); | 
|  | print_APIC_field(APIC_IRR); | 
|  |  | 
|  | /* !82489DX */ | 
|  | if (APIC_INTEGRATED(ver)) { | 
|  | /* Due to the Pentium erratum 3AP. */ | 
|  | if (maxlvt > 3) | 
|  | apic_write(APIC_ESR, 0); | 
|  |  | 
|  | v = apic_read(APIC_ESR); | 
|  | pr_debug("... APIC ESR: %08x\n", v); | 
|  | } | 
|  |  | 
|  | icr = apic_icr_read(); | 
|  | pr_debug("... APIC ICR: %08x\n", (u32)icr); | 
|  | pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32)); | 
|  |  | 
|  | v = apic_read(APIC_LVTT); | 
|  | pr_debug("... APIC LVTT: %08x\n", v); | 
|  |  | 
|  | if (maxlvt > 3) { | 
|  | /* PC is LVT#4. */ | 
|  | v = apic_read(APIC_LVTPC); | 
|  | pr_debug("... APIC LVTPC: %08x\n", v); | 
|  | } | 
|  | v = apic_read(APIC_LVT0); | 
|  | pr_debug("... APIC LVT0: %08x\n", v); | 
|  | v = apic_read(APIC_LVT1); | 
|  | pr_debug("... APIC LVT1: %08x\n", v); | 
|  |  | 
|  | if (maxlvt > 2) { | 
|  | /* ERR is LVT#3. */ | 
|  | v = apic_read(APIC_LVTERR); | 
|  | pr_debug("... APIC LVTERR: %08x\n", v); | 
|  | } | 
|  |  | 
|  | v = apic_read(APIC_TMICT); | 
|  | pr_debug("... APIC TMICT: %08x\n", v); | 
|  | v = apic_read(APIC_TMCCT); | 
|  | pr_debug("... APIC TMCCT: %08x\n", v); | 
|  | v = apic_read(APIC_TDCR); | 
|  | pr_debug("... APIC TDCR: %08x\n", v); | 
|  |  | 
|  | if (boot_cpu_has(X86_FEATURE_EXTAPIC)) { | 
|  | v = apic_read(APIC_EFEAT); | 
|  | maxlvt = (v >> 16) & 0xff; | 
|  | pr_debug("... APIC EFEAT: %08x\n", v); | 
|  | v = apic_read(APIC_ECTRL); | 
|  | pr_debug("... APIC ECTRL: %08x\n", v); | 
|  | for (i = 0; i < maxlvt; i++) { | 
|  | v = apic_read(APIC_EILVTn(i)); | 
|  | pr_debug("... APIC EILVT%d: %08x\n", i, v); | 
|  | } | 
|  | } | 
|  | pr_cont("\n"); | 
|  | } | 
|  |  | 
|  | static void __init print_local_APICs(int maxcpu) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | if (!maxcpu) | 
|  | return; | 
|  |  | 
|  | preempt_disable(); | 
|  | for_each_online_cpu(cpu) { | 
|  | if (cpu >= maxcpu) | 
|  | break; | 
|  | smp_call_function_single(cpu, print_local_APIC, NULL, 1); | 
|  | } | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static void __init print_PIC(void) | 
|  | { | 
|  | unsigned int v; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!nr_legacy_irqs()) | 
|  | return; | 
|  |  | 
|  | pr_debug("\nprinting PIC contents\n"); | 
|  |  | 
|  | raw_spin_lock_irqsave(&i8259A_lock, flags); | 
|  |  | 
|  | v = inb(0xa1) << 8 | inb(0x21); | 
|  | pr_debug("... PIC  IMR: %04x\n", v); | 
|  |  | 
|  | v = inb(0xa0) << 8 | inb(0x20); | 
|  | pr_debug("... PIC  IRR: %04x\n", v); | 
|  |  | 
|  | outb(0x0b, 0xa0); | 
|  | outb(0x0b, 0x20); | 
|  | v = inb(0xa0) << 8 | inb(0x20); | 
|  | outb(0x0a, 0xa0); | 
|  | outb(0x0a, 0x20); | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&i8259A_lock, flags); | 
|  |  | 
|  | pr_debug("... PIC  ISR: %04x\n", v); | 
|  |  | 
|  | v = inb(0x4d1) << 8 | inb(0x4d0); | 
|  | pr_debug("... PIC ELCR: %04x\n", v); | 
|  | } | 
|  |  | 
|  | static int show_lapic __initdata = 1; | 
|  | static __init int setup_show_lapic(char *arg) | 
|  | { | 
|  | int num = -1; | 
|  |  | 
|  | if (strcmp(arg, "all") == 0) { | 
|  | show_lapic = CONFIG_NR_CPUS; | 
|  | } else { | 
|  | get_option(&arg, &num); | 
|  | if (num >= 0) | 
|  | show_lapic = num; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | __setup("show_lapic=", setup_show_lapic); | 
|  |  | 
|  | static int __init print_ICs(void) | 
|  | { | 
|  | if (apic_verbosity == APIC_QUIET) | 
|  | return 0; | 
|  |  | 
|  | print_PIC(); | 
|  |  | 
|  | /* don't print out if apic is not there */ | 
|  | if (!cpu_has_apic && !apic_from_smp_config()) | 
|  | return 0; | 
|  |  | 
|  | print_local_APICs(show_lapic); | 
|  | print_IO_APICs(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | late_initcall(print_ICs); |