| /* |
| * Driver for the Cirrus Logic EP93xx DMA Controller |
| * |
| * Copyright (C) 2011 Mika Westerberg |
| * |
| * DMA M2P implementation is based on the original |
| * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights: |
| * |
| * Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org> |
| * Copyright (C) 2006 Applied Data Systems |
| * Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com> |
| * |
| * This driver is based on dw_dmac and amba-pl08x drivers. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/dmaengine.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| |
| #include <mach/dma.h> |
| |
| /* M2P registers */ |
| #define M2P_CONTROL 0x0000 |
| #define M2P_CONTROL_STALLINT BIT(0) |
| #define M2P_CONTROL_NFBINT BIT(1) |
| #define M2P_CONTROL_CH_ERROR_INT BIT(3) |
| #define M2P_CONTROL_ENABLE BIT(4) |
| #define M2P_CONTROL_ICE BIT(6) |
| |
| #define M2P_INTERRUPT 0x0004 |
| #define M2P_INTERRUPT_STALL BIT(0) |
| #define M2P_INTERRUPT_NFB BIT(1) |
| #define M2P_INTERRUPT_ERROR BIT(3) |
| |
| #define M2P_PPALLOC 0x0008 |
| #define M2P_STATUS 0x000c |
| |
| #define M2P_MAXCNT0 0x0020 |
| #define M2P_BASE0 0x0024 |
| #define M2P_MAXCNT1 0x0030 |
| #define M2P_BASE1 0x0034 |
| |
| #define M2P_STATE_IDLE 0 |
| #define M2P_STATE_STALL 1 |
| #define M2P_STATE_ON 2 |
| #define M2P_STATE_NEXT 3 |
| |
| /* M2M registers */ |
| #define M2M_CONTROL 0x0000 |
| #define M2M_CONTROL_DONEINT BIT(2) |
| #define M2M_CONTROL_ENABLE BIT(3) |
| #define M2M_CONTROL_START BIT(4) |
| #define M2M_CONTROL_DAH BIT(11) |
| #define M2M_CONTROL_SAH BIT(12) |
| #define M2M_CONTROL_PW_SHIFT 9 |
| #define M2M_CONTROL_PW_8 (0 << M2M_CONTROL_PW_SHIFT) |
| #define M2M_CONTROL_PW_16 (1 << M2M_CONTROL_PW_SHIFT) |
| #define M2M_CONTROL_PW_32 (2 << M2M_CONTROL_PW_SHIFT) |
| #define M2M_CONTROL_PW_MASK (3 << M2M_CONTROL_PW_SHIFT) |
| #define M2M_CONTROL_TM_SHIFT 13 |
| #define M2M_CONTROL_TM_TX (1 << M2M_CONTROL_TM_SHIFT) |
| #define M2M_CONTROL_TM_RX (2 << M2M_CONTROL_TM_SHIFT) |
| #define M2M_CONTROL_RSS_SHIFT 22 |
| #define M2M_CONTROL_RSS_SSPRX (1 << M2M_CONTROL_RSS_SHIFT) |
| #define M2M_CONTROL_RSS_SSPTX (2 << M2M_CONTROL_RSS_SHIFT) |
| #define M2M_CONTROL_RSS_IDE (3 << M2M_CONTROL_RSS_SHIFT) |
| #define M2M_CONTROL_NO_HDSK BIT(24) |
| #define M2M_CONTROL_PWSC_SHIFT 25 |
| |
| #define M2M_INTERRUPT 0x0004 |
| #define M2M_INTERRUPT_DONEINT BIT(1) |
| |
| #define M2M_BCR0 0x0010 |
| #define M2M_BCR1 0x0014 |
| #define M2M_SAR_BASE0 0x0018 |
| #define M2M_SAR_BASE1 0x001c |
| #define M2M_DAR_BASE0 0x002c |
| #define M2M_DAR_BASE1 0x0030 |
| |
| #define DMA_MAX_CHAN_BYTES 0xffff |
| #define DMA_MAX_CHAN_DESCRIPTORS 32 |
| |
| struct ep93xx_dma_engine; |
| |
| /** |
| * struct ep93xx_dma_desc - EP93xx specific transaction descriptor |
| * @src_addr: source address of the transaction |
| * @dst_addr: destination address of the transaction |
| * @size: size of the transaction (in bytes) |
| * @complete: this descriptor is completed |
| * @txd: dmaengine API descriptor |
| * @tx_list: list of linked descriptors |
| * @node: link used for putting this into a channel queue |
| */ |
| struct ep93xx_dma_desc { |
| u32 src_addr; |
| u32 dst_addr; |
| size_t size; |
| bool complete; |
| struct dma_async_tx_descriptor txd; |
| struct list_head tx_list; |
| struct list_head node; |
| }; |
| |
| /** |
| * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel |
| * @chan: dmaengine API channel |
| * @edma: pointer to to the engine device |
| * @regs: memory mapped registers |
| * @irq: interrupt number of the channel |
| * @clk: clock used by this channel |
| * @tasklet: channel specific tasklet used for callbacks |
| * @lock: lock protecting the fields following |
| * @flags: flags for the channel |
| * @buffer: which buffer to use next (0/1) |
| * @last_completed: last completed cookie value |
| * @active: flattened chain of descriptors currently being processed |
| * @queue: pending descriptors which are handled next |
| * @free_list: list of free descriptors which can be used |
| * @runtime_addr: physical address currently used as dest/src (M2M only). This |
| * is set via %DMA_SLAVE_CONFIG before slave operation is |
| * prepared |
| * @runtime_ctrl: M2M runtime values for the control register. |
| * |
| * As EP93xx DMA controller doesn't support real chained DMA descriptors we |
| * will have slightly different scheme here: @active points to a head of |
| * flattened DMA descriptor chain. |
| * |
| * @queue holds pending transactions. These are linked through the first |
| * descriptor in the chain. When a descriptor is moved to the @active queue, |
| * the first and chained descriptors are flattened into a single list. |
| * |
| * @chan.private holds pointer to &struct ep93xx_dma_data which contains |
| * necessary channel configuration information. For memcpy channels this must |
| * be %NULL. |
| */ |
| struct ep93xx_dma_chan { |
| struct dma_chan chan; |
| const struct ep93xx_dma_engine *edma; |
| void __iomem *regs; |
| int irq; |
| struct clk *clk; |
| struct tasklet_struct tasklet; |
| /* protects the fields following */ |
| spinlock_t lock; |
| unsigned long flags; |
| /* Channel is configured for cyclic transfers */ |
| #define EP93XX_DMA_IS_CYCLIC 0 |
| |
| int buffer; |
| dma_cookie_t last_completed; |
| struct list_head active; |
| struct list_head queue; |
| struct list_head free_list; |
| u32 runtime_addr; |
| u32 runtime_ctrl; |
| }; |
| |
| /** |
| * struct ep93xx_dma_engine - the EP93xx DMA engine instance |
| * @dma_dev: holds the dmaengine device |
| * @m2m: is this an M2M or M2P device |
| * @hw_setup: method which sets the channel up for operation |
| * @hw_shutdown: shuts the channel down and flushes whatever is left |
| * @hw_submit: pushes active descriptor(s) to the hardware |
| * @hw_interrupt: handle the interrupt |
| * @num_channels: number of channels for this instance |
| * @channels: array of channels |
| * |
| * There is one instance of this struct for the M2P channels and one for the |
| * M2M channels. hw_xxx() methods are used to perform operations which are |
| * different on M2M and M2P channels. These methods are called with channel |
| * lock held and interrupts disabled so they cannot sleep. |
| */ |
| struct ep93xx_dma_engine { |
| struct dma_device dma_dev; |
| bool m2m; |
| int (*hw_setup)(struct ep93xx_dma_chan *); |
| void (*hw_shutdown)(struct ep93xx_dma_chan *); |
| void (*hw_submit)(struct ep93xx_dma_chan *); |
| int (*hw_interrupt)(struct ep93xx_dma_chan *); |
| #define INTERRUPT_UNKNOWN 0 |
| #define INTERRUPT_DONE 1 |
| #define INTERRUPT_NEXT_BUFFER 2 |
| |
| size_t num_channels; |
| struct ep93xx_dma_chan channels[]; |
| }; |
| |
| static inline struct device *chan2dev(struct ep93xx_dma_chan *edmac) |
| { |
| return &edmac->chan.dev->device; |
| } |
| |
| static struct ep93xx_dma_chan *to_ep93xx_dma_chan(struct dma_chan *chan) |
| { |
| return container_of(chan, struct ep93xx_dma_chan, chan); |
| } |
| |
| /** |
| * ep93xx_dma_set_active - set new active descriptor chain |
| * @edmac: channel |
| * @desc: head of the new active descriptor chain |
| * |
| * Sets @desc to be the head of the new active descriptor chain. This is the |
| * chain which is processed next. The active list must be empty before calling |
| * this function. |
| * |
| * Called with @edmac->lock held and interrupts disabled. |
| */ |
| static void ep93xx_dma_set_active(struct ep93xx_dma_chan *edmac, |
| struct ep93xx_dma_desc *desc) |
| { |
| BUG_ON(!list_empty(&edmac->active)); |
| |
| list_add_tail(&desc->node, &edmac->active); |
| |
| /* Flatten the @desc->tx_list chain into @edmac->active list */ |
| while (!list_empty(&desc->tx_list)) { |
| struct ep93xx_dma_desc *d = list_first_entry(&desc->tx_list, |
| struct ep93xx_dma_desc, node); |
| |
| /* |
| * We copy the callback parameters from the first descriptor |
| * to all the chained descriptors. This way we can call the |
| * callback without having to find out the first descriptor in |
| * the chain. Useful for cyclic transfers. |
| */ |
| d->txd.callback = desc->txd.callback; |
| d->txd.callback_param = desc->txd.callback_param; |
| |
| list_move_tail(&d->node, &edmac->active); |
| } |
| } |
| |
| /* Called with @edmac->lock held and interrupts disabled */ |
| static struct ep93xx_dma_desc * |
| ep93xx_dma_get_active(struct ep93xx_dma_chan *edmac) |
| { |
| return list_first_entry(&edmac->active, struct ep93xx_dma_desc, node); |
| } |
| |
| /** |
| * ep93xx_dma_advance_active - advances to the next active descriptor |
| * @edmac: channel |
| * |
| * Function advances active descriptor to the next in the @edmac->active and |
| * returns %true if we still have descriptors in the chain to process. |
| * Otherwise returns %false. |
| * |
| * When the channel is in cyclic mode always returns %true. |
| * |
| * Called with @edmac->lock held and interrupts disabled. |
| */ |
| static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan *edmac) |
| { |
| list_rotate_left(&edmac->active); |
| |
| if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) |
| return true; |
| |
| /* |
| * If txd.cookie is set it means that we are back in the first |
| * descriptor in the chain and hence done with it. |
| */ |
| return !ep93xx_dma_get_active(edmac)->txd.cookie; |
| } |
| |
| /* |
| * M2P DMA implementation |
| */ |
| |
| static void m2p_set_control(struct ep93xx_dma_chan *edmac, u32 control) |
| { |
| writel(control, edmac->regs + M2P_CONTROL); |
| /* |
| * EP93xx User's Guide states that we must perform a dummy read after |
| * write to the control register. |
| */ |
| readl(edmac->regs + M2P_CONTROL); |
| } |
| |
| static int m2p_hw_setup(struct ep93xx_dma_chan *edmac) |
| { |
| struct ep93xx_dma_data *data = edmac->chan.private; |
| u32 control; |
| |
| writel(data->port & 0xf, edmac->regs + M2P_PPALLOC); |
| |
| control = M2P_CONTROL_CH_ERROR_INT | M2P_CONTROL_ICE |
| | M2P_CONTROL_ENABLE; |
| m2p_set_control(edmac, control); |
| |
| return 0; |
| } |
| |
| static inline u32 m2p_channel_state(struct ep93xx_dma_chan *edmac) |
| { |
| return (readl(edmac->regs + M2P_STATUS) >> 4) & 0x3; |
| } |
| |
| static void m2p_hw_shutdown(struct ep93xx_dma_chan *edmac) |
| { |
| u32 control; |
| |
| control = readl(edmac->regs + M2P_CONTROL); |
| control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT); |
| m2p_set_control(edmac, control); |
| |
| while (m2p_channel_state(edmac) >= M2P_STATE_ON) |
| cpu_relax(); |
| |
| m2p_set_control(edmac, 0); |
| |
| while (m2p_channel_state(edmac) == M2P_STATE_STALL) |
| cpu_relax(); |
| } |
| |
| static void m2p_fill_desc(struct ep93xx_dma_chan *edmac) |
| { |
| struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac); |
| u32 bus_addr; |
| |
| if (ep93xx_dma_chan_direction(&edmac->chan) == DMA_TO_DEVICE) |
| bus_addr = desc->src_addr; |
| else |
| bus_addr = desc->dst_addr; |
| |
| if (edmac->buffer == 0) { |
| writel(desc->size, edmac->regs + M2P_MAXCNT0); |
| writel(bus_addr, edmac->regs + M2P_BASE0); |
| } else { |
| writel(desc->size, edmac->regs + M2P_MAXCNT1); |
| writel(bus_addr, edmac->regs + M2P_BASE1); |
| } |
| |
| edmac->buffer ^= 1; |
| } |
| |
| static void m2p_hw_submit(struct ep93xx_dma_chan *edmac) |
| { |
| u32 control = readl(edmac->regs + M2P_CONTROL); |
| |
| m2p_fill_desc(edmac); |
| control |= M2P_CONTROL_STALLINT; |
| |
| if (ep93xx_dma_advance_active(edmac)) { |
| m2p_fill_desc(edmac); |
| control |= M2P_CONTROL_NFBINT; |
| } |
| |
| m2p_set_control(edmac, control); |
| } |
| |
| static int m2p_hw_interrupt(struct ep93xx_dma_chan *edmac) |
| { |
| u32 irq_status = readl(edmac->regs + M2P_INTERRUPT); |
| u32 control; |
| |
| if (irq_status & M2P_INTERRUPT_ERROR) { |
| struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac); |
| |
| /* Clear the error interrupt */ |
| writel(1, edmac->regs + M2P_INTERRUPT); |
| |
| /* |
| * It seems that there is no easy way of reporting errors back |
| * to client so we just report the error here and continue as |
| * usual. |
| * |
| * Revisit this when there is a mechanism to report back the |
| * errors. |
| */ |
| dev_err(chan2dev(edmac), |
| "DMA transfer failed! Details:\n" |
| "\tcookie : %d\n" |
| "\tsrc_addr : 0x%08x\n" |
| "\tdst_addr : 0x%08x\n" |
| "\tsize : %zu\n", |
| desc->txd.cookie, desc->src_addr, desc->dst_addr, |
| desc->size); |
| } |
| |
| switch (irq_status & (M2P_INTERRUPT_STALL | M2P_INTERRUPT_NFB)) { |
| case M2P_INTERRUPT_STALL: |
| /* Disable interrupts */ |
| control = readl(edmac->regs + M2P_CONTROL); |
| control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT); |
| m2p_set_control(edmac, control); |
| |
| return INTERRUPT_DONE; |
| |
| case M2P_INTERRUPT_NFB: |
| if (ep93xx_dma_advance_active(edmac)) |
| m2p_fill_desc(edmac); |
| |
| return INTERRUPT_NEXT_BUFFER; |
| } |
| |
| return INTERRUPT_UNKNOWN; |
| } |
| |
| /* |
| * M2M DMA implementation |
| * |
| * For the M2M transfers we don't use NFB at all. This is because it simply |
| * doesn't work well with memcpy transfers. When you submit both buffers it is |
| * extremely unlikely that you get an NFB interrupt, but it instead reports |
| * DONE interrupt and both buffers are already transferred which means that we |
| * weren't able to update the next buffer. |
| * |
| * So for now we "simulate" NFB by just submitting buffer after buffer |
| * without double buffering. |
| */ |
| |
| static int m2m_hw_setup(struct ep93xx_dma_chan *edmac) |
| { |
| const struct ep93xx_dma_data *data = edmac->chan.private; |
| u32 control = 0; |
| |
| if (!data) { |
| /* This is memcpy channel, nothing to configure */ |
| writel(control, edmac->regs + M2M_CONTROL); |
| return 0; |
| } |
| |
| switch (data->port) { |
| case EP93XX_DMA_SSP: |
| /* |
| * This was found via experimenting - anything less than 5 |
| * causes the channel to perform only a partial transfer which |
| * leads to problems since we don't get DONE interrupt then. |
| */ |
| control = (5 << M2M_CONTROL_PWSC_SHIFT); |
| control |= M2M_CONTROL_NO_HDSK; |
| |
| if (data->direction == DMA_TO_DEVICE) { |
| control |= M2M_CONTROL_DAH; |
| control |= M2M_CONTROL_TM_TX; |
| control |= M2M_CONTROL_RSS_SSPTX; |
| } else { |
| control |= M2M_CONTROL_SAH; |
| control |= M2M_CONTROL_TM_RX; |
| control |= M2M_CONTROL_RSS_SSPRX; |
| } |
| break; |
| |
| case EP93XX_DMA_IDE: |
| /* |
| * This IDE part is totally untested. Values below are taken |
| * from the EP93xx Users's Guide and might not be correct. |
| */ |
| control |= M2M_CONTROL_NO_HDSK; |
| control |= M2M_CONTROL_RSS_IDE; |
| control |= M2M_CONTROL_PW_16; |
| |
| if (data->direction == DMA_TO_DEVICE) { |
| /* Worst case from the UG */ |
| control = (3 << M2M_CONTROL_PWSC_SHIFT); |
| control |= M2M_CONTROL_DAH; |
| control |= M2M_CONTROL_TM_TX; |
| } else { |
| control = (2 << M2M_CONTROL_PWSC_SHIFT); |
| control |= M2M_CONTROL_SAH; |
| control |= M2M_CONTROL_TM_RX; |
| } |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| writel(control, edmac->regs + M2M_CONTROL); |
| return 0; |
| } |
| |
| static void m2m_hw_shutdown(struct ep93xx_dma_chan *edmac) |
| { |
| /* Just disable the channel */ |
| writel(0, edmac->regs + M2M_CONTROL); |
| } |
| |
| static void m2m_fill_desc(struct ep93xx_dma_chan *edmac) |
| { |
| struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac); |
| |
| if (edmac->buffer == 0) { |
| writel(desc->src_addr, edmac->regs + M2M_SAR_BASE0); |
| writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE0); |
| writel(desc->size, edmac->regs + M2M_BCR0); |
| } else { |
| writel(desc->src_addr, edmac->regs + M2M_SAR_BASE1); |
| writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE1); |
| writel(desc->size, edmac->regs + M2M_BCR1); |
| } |
| |
| edmac->buffer ^= 1; |
| } |
| |
| static void m2m_hw_submit(struct ep93xx_dma_chan *edmac) |
| { |
| struct ep93xx_dma_data *data = edmac->chan.private; |
| u32 control = readl(edmac->regs + M2M_CONTROL); |
| |
| /* |
| * Since we allow clients to configure PW (peripheral width) we always |
| * clear PW bits here and then set them according what is given in |
| * the runtime configuration. |
| */ |
| control &= ~M2M_CONTROL_PW_MASK; |
| control |= edmac->runtime_ctrl; |
| |
| m2m_fill_desc(edmac); |
| control |= M2M_CONTROL_DONEINT; |
| |
| /* |
| * Now we can finally enable the channel. For M2M channel this must be |
| * done _after_ the BCRx registers are programmed. |
| */ |
| control |= M2M_CONTROL_ENABLE; |
| writel(control, edmac->regs + M2M_CONTROL); |
| |
| if (!data) { |
| /* |
| * For memcpy channels the software trigger must be asserted |
| * in order to start the memcpy operation. |
| */ |
| control |= M2M_CONTROL_START; |
| writel(control, edmac->regs + M2M_CONTROL); |
| } |
| } |
| |
| static int m2m_hw_interrupt(struct ep93xx_dma_chan *edmac) |
| { |
| u32 control; |
| |
| if (!(readl(edmac->regs + M2M_INTERRUPT) & M2M_INTERRUPT_DONEINT)) |
| return INTERRUPT_UNKNOWN; |
| |
| /* Clear the DONE bit */ |
| writel(0, edmac->regs + M2M_INTERRUPT); |
| |
| /* Disable interrupts and the channel */ |
| control = readl(edmac->regs + M2M_CONTROL); |
| control &= ~(M2M_CONTROL_DONEINT | M2M_CONTROL_ENABLE); |
| writel(control, edmac->regs + M2M_CONTROL); |
| |
| /* |
| * Since we only get DONE interrupt we have to find out ourselves |
| * whether there still is something to process. So we try to advance |
| * the chain an see whether it succeeds. |
| */ |
| if (ep93xx_dma_advance_active(edmac)) { |
| edmac->edma->hw_submit(edmac); |
| return INTERRUPT_NEXT_BUFFER; |
| } |
| |
| return INTERRUPT_DONE; |
| } |
| |
| /* |
| * DMA engine API implementation |
| */ |
| |
| static struct ep93xx_dma_desc * |
| ep93xx_dma_desc_get(struct ep93xx_dma_chan *edmac) |
| { |
| struct ep93xx_dma_desc *desc, *_desc; |
| struct ep93xx_dma_desc *ret = NULL; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&edmac->lock, flags); |
| list_for_each_entry_safe(desc, _desc, &edmac->free_list, node) { |
| if (async_tx_test_ack(&desc->txd)) { |
| list_del_init(&desc->node); |
| |
| /* Re-initialize the descriptor */ |
| desc->src_addr = 0; |
| desc->dst_addr = 0; |
| desc->size = 0; |
| desc->complete = false; |
| desc->txd.cookie = 0; |
| desc->txd.callback = NULL; |
| desc->txd.callback_param = NULL; |
| |
| ret = desc; |
| break; |
| } |
| } |
| spin_unlock_irqrestore(&edmac->lock, flags); |
| return ret; |
| } |
| |
| static void ep93xx_dma_desc_put(struct ep93xx_dma_chan *edmac, |
| struct ep93xx_dma_desc *desc) |
| { |
| if (desc) { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&edmac->lock, flags); |
| list_splice_init(&desc->tx_list, &edmac->free_list); |
| list_add(&desc->node, &edmac->free_list); |
| spin_unlock_irqrestore(&edmac->lock, flags); |
| } |
| } |
| |
| /** |
| * ep93xx_dma_advance_work - start processing the next pending transaction |
| * @edmac: channel |
| * |
| * If we have pending transactions queued and we are currently idling, this |
| * function takes the next queued transaction from the @edmac->queue and |
| * pushes it to the hardware for execution. |
| */ |
| static void ep93xx_dma_advance_work(struct ep93xx_dma_chan *edmac) |
| { |
| struct ep93xx_dma_desc *new; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&edmac->lock, flags); |
| if (!list_empty(&edmac->active) || list_empty(&edmac->queue)) { |
| spin_unlock_irqrestore(&edmac->lock, flags); |
| return; |
| } |
| |
| /* Take the next descriptor from the pending queue */ |
| new = list_first_entry(&edmac->queue, struct ep93xx_dma_desc, node); |
| list_del_init(&new->node); |
| |
| ep93xx_dma_set_active(edmac, new); |
| |
| /* Push it to the hardware */ |
| edmac->edma->hw_submit(edmac); |
| spin_unlock_irqrestore(&edmac->lock, flags); |
| } |
| |
| static void ep93xx_dma_unmap_buffers(struct ep93xx_dma_desc *desc) |
| { |
| struct device *dev = desc->txd.chan->device->dev; |
| |
| if (!(desc->txd.flags & DMA_COMPL_SKIP_SRC_UNMAP)) { |
| if (desc->txd.flags & DMA_COMPL_SRC_UNMAP_SINGLE) |
| dma_unmap_single(dev, desc->src_addr, desc->size, |
| DMA_TO_DEVICE); |
| else |
| dma_unmap_page(dev, desc->src_addr, desc->size, |
| DMA_TO_DEVICE); |
| } |
| if (!(desc->txd.flags & DMA_COMPL_SKIP_DEST_UNMAP)) { |
| if (desc->txd.flags & DMA_COMPL_DEST_UNMAP_SINGLE) |
| dma_unmap_single(dev, desc->dst_addr, desc->size, |
| DMA_FROM_DEVICE); |
| else |
| dma_unmap_page(dev, desc->dst_addr, desc->size, |
| DMA_FROM_DEVICE); |
| } |
| } |
| |
| static void ep93xx_dma_tasklet(unsigned long data) |
| { |
| struct ep93xx_dma_chan *edmac = (struct ep93xx_dma_chan *)data; |
| struct ep93xx_dma_desc *desc, *d; |
| dma_async_tx_callback callback; |
| void *callback_param; |
| LIST_HEAD(list); |
| |
| spin_lock_irq(&edmac->lock); |
| desc = ep93xx_dma_get_active(edmac); |
| if (desc->complete) { |
| edmac->last_completed = desc->txd.cookie; |
| list_splice_init(&edmac->active, &list); |
| } |
| spin_unlock_irq(&edmac->lock); |
| |
| /* Pick up the next descriptor from the queue */ |
| ep93xx_dma_advance_work(edmac); |
| |
| callback = desc->txd.callback; |
| callback_param = desc->txd.callback_param; |
| |
| /* Now we can release all the chained descriptors */ |
| list_for_each_entry_safe(desc, d, &list, node) { |
| /* |
| * For the memcpy channels the API requires us to unmap the |
| * buffers unless requested otherwise. |
| */ |
| if (!edmac->chan.private) |
| ep93xx_dma_unmap_buffers(desc); |
| |
| ep93xx_dma_desc_put(edmac, desc); |
| } |
| |
| if (callback) |
| callback(callback_param); |
| } |
| |
| static irqreturn_t ep93xx_dma_interrupt(int irq, void *dev_id) |
| { |
| struct ep93xx_dma_chan *edmac = dev_id; |
| irqreturn_t ret = IRQ_HANDLED; |
| |
| spin_lock(&edmac->lock); |
| |
| switch (edmac->edma->hw_interrupt(edmac)) { |
| case INTERRUPT_DONE: |
| ep93xx_dma_get_active(edmac)->complete = true; |
| tasklet_schedule(&edmac->tasklet); |
| break; |
| |
| case INTERRUPT_NEXT_BUFFER: |
| if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) |
| tasklet_schedule(&edmac->tasklet); |
| break; |
| |
| default: |
| dev_warn(chan2dev(edmac), "unknown interrupt!\n"); |
| ret = IRQ_NONE; |
| break; |
| } |
| |
| spin_unlock(&edmac->lock); |
| return ret; |
| } |
| |
| /** |
| * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed |
| * @tx: descriptor to be executed |
| * |
| * Function will execute given descriptor on the hardware or if the hardware |
| * is busy, queue the descriptor to be executed later on. Returns cookie which |
| * can be used to poll the status of the descriptor. |
| */ |
| static dma_cookie_t ep93xx_dma_tx_submit(struct dma_async_tx_descriptor *tx) |
| { |
| struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(tx->chan); |
| struct ep93xx_dma_desc *desc; |
| dma_cookie_t cookie; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&edmac->lock, flags); |
| |
| cookie = edmac->chan.cookie; |
| |
| if (++cookie < 0) |
| cookie = 1; |
| |
| desc = container_of(tx, struct ep93xx_dma_desc, txd); |
| |
| edmac->chan.cookie = cookie; |
| desc->txd.cookie = cookie; |
| |
| /* |
| * If nothing is currently prosessed, we push this descriptor |
| * directly to the hardware. Otherwise we put the descriptor |
| * to the pending queue. |
| */ |
| if (list_empty(&edmac->active)) { |
| ep93xx_dma_set_active(edmac, desc); |
| edmac->edma->hw_submit(edmac); |
| } else { |
| list_add_tail(&desc->node, &edmac->queue); |
| } |
| |
| spin_unlock_irqrestore(&edmac->lock, flags); |
| return cookie; |
| } |
| |
| /** |
| * ep93xx_dma_alloc_chan_resources - allocate resources for the channel |
| * @chan: channel to allocate resources |
| * |
| * Function allocates necessary resources for the given DMA channel and |
| * returns number of allocated descriptors for the channel. Negative errno |
| * is returned in case of failure. |
| */ |
| static int ep93xx_dma_alloc_chan_resources(struct dma_chan *chan) |
| { |
| struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan); |
| struct ep93xx_dma_data *data = chan->private; |
| const char *name = dma_chan_name(chan); |
| int ret, i; |
| |
| /* Sanity check the channel parameters */ |
| if (!edmac->edma->m2m) { |
| if (!data) |
| return -EINVAL; |
| if (data->port < EP93XX_DMA_I2S1 || |
| data->port > EP93XX_DMA_IRDA) |
| return -EINVAL; |
| if (data->direction != ep93xx_dma_chan_direction(chan)) |
| return -EINVAL; |
| } else { |
| if (data) { |
| switch (data->port) { |
| case EP93XX_DMA_SSP: |
| case EP93XX_DMA_IDE: |
| if (data->direction != DMA_TO_DEVICE && |
| data->direction != DMA_FROM_DEVICE) |
| return -EINVAL; |
| break; |
| default: |
| return -EINVAL; |
| } |
| } |
| } |
| |
| if (data && data->name) |
| name = data->name; |
| |
| ret = clk_enable(edmac->clk); |
| if (ret) |
| return ret; |
| |
| ret = request_irq(edmac->irq, ep93xx_dma_interrupt, 0, name, edmac); |
| if (ret) |
| goto fail_clk_disable; |
| |
| spin_lock_irq(&edmac->lock); |
| edmac->last_completed = 1; |
| edmac->chan.cookie = 1; |
| ret = edmac->edma->hw_setup(edmac); |
| spin_unlock_irq(&edmac->lock); |
| |
| if (ret) |
| goto fail_free_irq; |
| |
| for (i = 0; i < DMA_MAX_CHAN_DESCRIPTORS; i++) { |
| struct ep93xx_dma_desc *desc; |
| |
| desc = kzalloc(sizeof(*desc), GFP_KERNEL); |
| if (!desc) { |
| dev_warn(chan2dev(edmac), "not enough descriptors\n"); |
| break; |
| } |
| |
| INIT_LIST_HEAD(&desc->tx_list); |
| |
| dma_async_tx_descriptor_init(&desc->txd, chan); |
| desc->txd.flags = DMA_CTRL_ACK; |
| desc->txd.tx_submit = ep93xx_dma_tx_submit; |
| |
| ep93xx_dma_desc_put(edmac, desc); |
| } |
| |
| return i; |
| |
| fail_free_irq: |
| free_irq(edmac->irq, edmac); |
| fail_clk_disable: |
| clk_disable(edmac->clk); |
| |
| return ret; |
| } |
| |
| /** |
| * ep93xx_dma_free_chan_resources - release resources for the channel |
| * @chan: channel |
| * |
| * Function releases all the resources allocated for the given channel. |
| * The channel must be idle when this is called. |
| */ |
| static void ep93xx_dma_free_chan_resources(struct dma_chan *chan) |
| { |
| struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan); |
| struct ep93xx_dma_desc *desc, *d; |
| unsigned long flags; |
| LIST_HEAD(list); |
| |
| BUG_ON(!list_empty(&edmac->active)); |
| BUG_ON(!list_empty(&edmac->queue)); |
| |
| spin_lock_irqsave(&edmac->lock, flags); |
| edmac->edma->hw_shutdown(edmac); |
| edmac->runtime_addr = 0; |
| edmac->runtime_ctrl = 0; |
| edmac->buffer = 0; |
| list_splice_init(&edmac->free_list, &list); |
| spin_unlock_irqrestore(&edmac->lock, flags); |
| |
| list_for_each_entry_safe(desc, d, &list, node) |
| kfree(desc); |
| |
| clk_disable(edmac->clk); |
| free_irq(edmac->irq, edmac); |
| } |
| |
| /** |
| * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation |
| * @chan: channel |
| * @dest: destination bus address |
| * @src: source bus address |
| * @len: size of the transaction |
| * @flags: flags for the descriptor |
| * |
| * Returns a valid DMA descriptor or %NULL in case of failure. |
| */ |
| struct dma_async_tx_descriptor * |
| ep93xx_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, |
| dma_addr_t src, size_t len, unsigned long flags) |
| { |
| struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan); |
| struct ep93xx_dma_desc *desc, *first; |
| size_t bytes, offset; |
| |
| first = NULL; |
| for (offset = 0; offset < len; offset += bytes) { |
| desc = ep93xx_dma_desc_get(edmac); |
| if (!desc) { |
| dev_warn(chan2dev(edmac), "couln't get descriptor\n"); |
| goto fail; |
| } |
| |
| bytes = min_t(size_t, len - offset, DMA_MAX_CHAN_BYTES); |
| |
| desc->src_addr = src + offset; |
| desc->dst_addr = dest + offset; |
| desc->size = bytes; |
| |
| if (!first) |
| first = desc; |
| else |
| list_add_tail(&desc->node, &first->tx_list); |
| } |
| |
| first->txd.cookie = -EBUSY; |
| first->txd.flags = flags; |
| |
| return &first->txd; |
| fail: |
| ep93xx_dma_desc_put(edmac, first); |
| return NULL; |
| } |
| |
| /** |
| * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation |
| * @chan: channel |
| * @sgl: list of buffers to transfer |
| * @sg_len: number of entries in @sgl |
| * @dir: direction of tha DMA transfer |
| * @flags: flags for the descriptor |
| * |
| * Returns a valid DMA descriptor or %NULL in case of failure. |
| */ |
| static struct dma_async_tx_descriptor * |
| ep93xx_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, |
| unsigned int sg_len, enum dma_data_direction dir, |
| unsigned long flags) |
| { |
| struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan); |
| struct ep93xx_dma_desc *desc, *first; |
| struct scatterlist *sg; |
| int i; |
| |
| if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) { |
| dev_warn(chan2dev(edmac), |
| "channel was configured with different direction\n"); |
| return NULL; |
| } |
| |
| if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) { |
| dev_warn(chan2dev(edmac), |
| "channel is already used for cyclic transfers\n"); |
| return NULL; |
| } |
| |
| first = NULL; |
| for_each_sg(sgl, sg, sg_len, i) { |
| size_t sg_len = sg_dma_len(sg); |
| |
| if (sg_len > DMA_MAX_CHAN_BYTES) { |
| dev_warn(chan2dev(edmac), "too big transfer size %d\n", |
| sg_len); |
| goto fail; |
| } |
| |
| desc = ep93xx_dma_desc_get(edmac); |
| if (!desc) { |
| dev_warn(chan2dev(edmac), "couln't get descriptor\n"); |
| goto fail; |
| } |
| |
| if (dir == DMA_TO_DEVICE) { |
| desc->src_addr = sg_dma_address(sg); |
| desc->dst_addr = edmac->runtime_addr; |
| } else { |
| desc->src_addr = edmac->runtime_addr; |
| desc->dst_addr = sg_dma_address(sg); |
| } |
| desc->size = sg_len; |
| |
| if (!first) |
| first = desc; |
| else |
| list_add_tail(&desc->node, &first->tx_list); |
| } |
| |
| first->txd.cookie = -EBUSY; |
| first->txd.flags = flags; |
| |
| return &first->txd; |
| |
| fail: |
| ep93xx_dma_desc_put(edmac, first); |
| return NULL; |
| } |
| |
| /** |
| * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation |
| * @chan: channel |
| * @dma_addr: DMA mapped address of the buffer |
| * @buf_len: length of the buffer (in bytes) |
| * @period_len: lenght of a single period |
| * @dir: direction of the operation |
| * |
| * Prepares a descriptor for cyclic DMA operation. This means that once the |
| * descriptor is submitted, we will be submitting in a @period_len sized |
| * buffers and calling callback once the period has been elapsed. Transfer |
| * terminates only when client calls dmaengine_terminate_all() for this |
| * channel. |
| * |
| * Returns a valid DMA descriptor or %NULL in case of failure. |
| */ |
| static struct dma_async_tx_descriptor * |
| ep93xx_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr, |
| size_t buf_len, size_t period_len, |
| enum dma_data_direction dir) |
| { |
| struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan); |
| struct ep93xx_dma_desc *desc, *first; |
| size_t offset = 0; |
| |
| if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) { |
| dev_warn(chan2dev(edmac), |
| "channel was configured with different direction\n"); |
| return NULL; |
| } |
| |
| if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) { |
| dev_warn(chan2dev(edmac), |
| "channel is already used for cyclic transfers\n"); |
| return NULL; |
| } |
| |
| if (period_len > DMA_MAX_CHAN_BYTES) { |
| dev_warn(chan2dev(edmac), "too big period length %d\n", |
| period_len); |
| return NULL; |
| } |
| |
| /* Split the buffer into period size chunks */ |
| first = NULL; |
| for (offset = 0; offset < buf_len; offset += period_len) { |
| desc = ep93xx_dma_desc_get(edmac); |
| if (!desc) { |
| dev_warn(chan2dev(edmac), "couln't get descriptor\n"); |
| goto fail; |
| } |
| |
| if (dir == DMA_TO_DEVICE) { |
| desc->src_addr = dma_addr + offset; |
| desc->dst_addr = edmac->runtime_addr; |
| } else { |
| desc->src_addr = edmac->runtime_addr; |
| desc->dst_addr = dma_addr + offset; |
| } |
| |
| desc->size = period_len; |
| |
| if (!first) |
| first = desc; |
| else |
| list_add_tail(&desc->node, &first->tx_list); |
| } |
| |
| first->txd.cookie = -EBUSY; |
| |
| return &first->txd; |
| |
| fail: |
| ep93xx_dma_desc_put(edmac, first); |
| return NULL; |
| } |
| |
| /** |
| * ep93xx_dma_terminate_all - terminate all transactions |
| * @edmac: channel |
| * |
| * Stops all DMA transactions. All descriptors are put back to the |
| * @edmac->free_list and callbacks are _not_ called. |
| */ |
| static int ep93xx_dma_terminate_all(struct ep93xx_dma_chan *edmac) |
| { |
| struct ep93xx_dma_desc *desc, *_d; |
| unsigned long flags; |
| LIST_HEAD(list); |
| |
| spin_lock_irqsave(&edmac->lock, flags); |
| /* First we disable and flush the DMA channel */ |
| edmac->edma->hw_shutdown(edmac); |
| clear_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags); |
| list_splice_init(&edmac->active, &list); |
| list_splice_init(&edmac->queue, &list); |
| /* |
| * We then re-enable the channel. This way we can continue submitting |
| * the descriptors by just calling ->hw_submit() again. |
| */ |
| edmac->edma->hw_setup(edmac); |
| spin_unlock_irqrestore(&edmac->lock, flags); |
| |
| list_for_each_entry_safe(desc, _d, &list, node) |
| ep93xx_dma_desc_put(edmac, desc); |
| |
| return 0; |
| } |
| |
| static int ep93xx_dma_slave_config(struct ep93xx_dma_chan *edmac, |
| struct dma_slave_config *config) |
| { |
| enum dma_slave_buswidth width; |
| unsigned long flags; |
| u32 addr, ctrl; |
| |
| if (!edmac->edma->m2m) |
| return -EINVAL; |
| |
| switch (config->direction) { |
| case DMA_FROM_DEVICE: |
| width = config->src_addr_width; |
| addr = config->src_addr; |
| break; |
| |
| case DMA_TO_DEVICE: |
| width = config->dst_addr_width; |
| addr = config->dst_addr; |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| switch (width) { |
| case DMA_SLAVE_BUSWIDTH_1_BYTE: |
| ctrl = 0; |
| break; |
| case DMA_SLAVE_BUSWIDTH_2_BYTES: |
| ctrl = M2M_CONTROL_PW_16; |
| break; |
| case DMA_SLAVE_BUSWIDTH_4_BYTES: |
| ctrl = M2M_CONTROL_PW_32; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| spin_lock_irqsave(&edmac->lock, flags); |
| edmac->runtime_addr = addr; |
| edmac->runtime_ctrl = ctrl; |
| spin_unlock_irqrestore(&edmac->lock, flags); |
| |
| return 0; |
| } |
| |
| /** |
| * ep93xx_dma_control - manipulate all pending operations on a channel |
| * @chan: channel |
| * @cmd: control command to perform |
| * @arg: optional argument |
| * |
| * Controls the channel. Function returns %0 in case of success or negative |
| * error in case of failure. |
| */ |
| static int ep93xx_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, |
| unsigned long arg) |
| { |
| struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan); |
| struct dma_slave_config *config; |
| |
| switch (cmd) { |
| case DMA_TERMINATE_ALL: |
| return ep93xx_dma_terminate_all(edmac); |
| |
| case DMA_SLAVE_CONFIG: |
| config = (struct dma_slave_config *)arg; |
| return ep93xx_dma_slave_config(edmac, config); |
| |
| default: |
| break; |
| } |
| |
| return -ENOSYS; |
| } |
| |
| /** |
| * ep93xx_dma_tx_status - check if a transaction is completed |
| * @chan: channel |
| * @cookie: transaction specific cookie |
| * @state: state of the transaction is stored here if given |
| * |
| * This function can be used to query state of a given transaction. |
| */ |
| static enum dma_status ep93xx_dma_tx_status(struct dma_chan *chan, |
| dma_cookie_t cookie, |
| struct dma_tx_state *state) |
| { |
| struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan); |
| dma_cookie_t last_used, last_completed; |
| enum dma_status ret; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&edmac->lock, flags); |
| last_used = chan->cookie; |
| last_completed = edmac->last_completed; |
| spin_unlock_irqrestore(&edmac->lock, flags); |
| |
| ret = dma_async_is_complete(cookie, last_completed, last_used); |
| dma_set_tx_state(state, last_completed, last_used, 0); |
| |
| return ret; |
| } |
| |
| /** |
| * ep93xx_dma_issue_pending - push pending transactions to the hardware |
| * @chan: channel |
| * |
| * When this function is called, all pending transactions are pushed to the |
| * hardware and executed. |
| */ |
| static void ep93xx_dma_issue_pending(struct dma_chan *chan) |
| { |
| ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan)); |
| } |
| |
| static int __init ep93xx_dma_probe(struct platform_device *pdev) |
| { |
| struct ep93xx_dma_platform_data *pdata = dev_get_platdata(&pdev->dev); |
| struct ep93xx_dma_engine *edma; |
| struct dma_device *dma_dev; |
| size_t edma_size; |
| int ret, i; |
| |
| edma_size = pdata->num_channels * sizeof(struct ep93xx_dma_chan); |
| edma = kzalloc(sizeof(*edma) + edma_size, GFP_KERNEL); |
| if (!edma) |
| return -ENOMEM; |
| |
| dma_dev = &edma->dma_dev; |
| edma->m2m = platform_get_device_id(pdev)->driver_data; |
| edma->num_channels = pdata->num_channels; |
| |
| INIT_LIST_HEAD(&dma_dev->channels); |
| for (i = 0; i < pdata->num_channels; i++) { |
| const struct ep93xx_dma_chan_data *cdata = &pdata->channels[i]; |
| struct ep93xx_dma_chan *edmac = &edma->channels[i]; |
| |
| edmac->chan.device = dma_dev; |
| edmac->regs = cdata->base; |
| edmac->irq = cdata->irq; |
| edmac->edma = edma; |
| |
| edmac->clk = clk_get(NULL, cdata->name); |
| if (IS_ERR(edmac->clk)) { |
| dev_warn(&pdev->dev, "failed to get clock for %s\n", |
| cdata->name); |
| continue; |
| } |
| |
| spin_lock_init(&edmac->lock); |
| INIT_LIST_HEAD(&edmac->active); |
| INIT_LIST_HEAD(&edmac->queue); |
| INIT_LIST_HEAD(&edmac->free_list); |
| tasklet_init(&edmac->tasklet, ep93xx_dma_tasklet, |
| (unsigned long)edmac); |
| |
| list_add_tail(&edmac->chan.device_node, |
| &dma_dev->channels); |
| } |
| |
| dma_cap_zero(dma_dev->cap_mask); |
| dma_cap_set(DMA_SLAVE, dma_dev->cap_mask); |
| dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask); |
| |
| dma_dev->dev = &pdev->dev; |
| dma_dev->device_alloc_chan_resources = ep93xx_dma_alloc_chan_resources; |
| dma_dev->device_free_chan_resources = ep93xx_dma_free_chan_resources; |
| dma_dev->device_prep_slave_sg = ep93xx_dma_prep_slave_sg; |
| dma_dev->device_prep_dma_cyclic = ep93xx_dma_prep_dma_cyclic; |
| dma_dev->device_control = ep93xx_dma_control; |
| dma_dev->device_issue_pending = ep93xx_dma_issue_pending; |
| dma_dev->device_tx_status = ep93xx_dma_tx_status; |
| |
| dma_set_max_seg_size(dma_dev->dev, DMA_MAX_CHAN_BYTES); |
| |
| if (edma->m2m) { |
| dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask); |
| dma_dev->device_prep_dma_memcpy = ep93xx_dma_prep_dma_memcpy; |
| |
| edma->hw_setup = m2m_hw_setup; |
| edma->hw_shutdown = m2m_hw_shutdown; |
| edma->hw_submit = m2m_hw_submit; |
| edma->hw_interrupt = m2m_hw_interrupt; |
| } else { |
| dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask); |
| |
| edma->hw_setup = m2p_hw_setup; |
| edma->hw_shutdown = m2p_hw_shutdown; |
| edma->hw_submit = m2p_hw_submit; |
| edma->hw_interrupt = m2p_hw_interrupt; |
| } |
| |
| ret = dma_async_device_register(dma_dev); |
| if (unlikely(ret)) { |
| for (i = 0; i < edma->num_channels; i++) { |
| struct ep93xx_dma_chan *edmac = &edma->channels[i]; |
| if (!IS_ERR_OR_NULL(edmac->clk)) |
| clk_put(edmac->clk); |
| } |
| kfree(edma); |
| } else { |
| dev_info(dma_dev->dev, "EP93xx M2%s DMA ready\n", |
| edma->m2m ? "M" : "P"); |
| } |
| |
| return ret; |
| } |
| |
| static struct platform_device_id ep93xx_dma_driver_ids[] = { |
| { "ep93xx-dma-m2p", 0 }, |
| { "ep93xx-dma-m2m", 1 }, |
| { }, |
| }; |
| |
| static struct platform_driver ep93xx_dma_driver = { |
| .driver = { |
| .name = "ep93xx-dma", |
| }, |
| .id_table = ep93xx_dma_driver_ids, |
| }; |
| |
| static int __init ep93xx_dma_module_init(void) |
| { |
| return platform_driver_probe(&ep93xx_dma_driver, ep93xx_dma_probe); |
| } |
| subsys_initcall(ep93xx_dma_module_init); |
| |
| MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>"); |
| MODULE_DESCRIPTION("EP93xx DMA driver"); |
| MODULE_LICENSE("GPL"); |