| /* |
| * Meta version derived from arch/powerpc/lib/dma-noncoherent.c |
| * Copyright (C) 2008 Imagination Technologies Ltd. |
| * |
| * PowerPC version derived from arch/arm/mm/consistent.c |
| * Copyright (C) 2001 Dan Malek (dmalek@jlc.net) |
| * |
| * Copyright (C) 2000 Russell King |
| * |
| * Consistent memory allocators. Used for DMA devices that want to |
| * share uncached memory with the processor core. The function return |
| * is the virtual address and 'dma_handle' is the physical address. |
| * Mostly stolen from the ARM port, with some changes for PowerPC. |
| * -- Dan |
| * |
| * Reorganized to get rid of the arch-specific consistent_* functions |
| * and provide non-coherent implementations for the DMA API. -Matt |
| * |
| * Added in_interrupt() safe dma_alloc_coherent()/dma_free_coherent() |
| * implementation. This is pulled straight from ARM and barely |
| * modified. -Matt |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/export.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/highmem.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/slab.h> |
| |
| #include <asm/tlbflush.h> |
| #include <asm/mmu.h> |
| |
| #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_START) \ |
| >> PAGE_SHIFT) |
| |
| static u64 get_coherent_dma_mask(struct device *dev) |
| { |
| u64 mask = ~0ULL; |
| |
| if (dev) { |
| mask = dev->coherent_dma_mask; |
| |
| /* |
| * Sanity check the DMA mask - it must be non-zero, and |
| * must be able to be satisfied by a DMA allocation. |
| */ |
| if (mask == 0) { |
| dev_warn(dev, "coherent DMA mask is unset\n"); |
| return 0; |
| } |
| } |
| |
| return mask; |
| } |
| /* |
| * This is the page table (2MB) covering uncached, DMA consistent allocations |
| */ |
| static pte_t *consistent_pte; |
| static DEFINE_SPINLOCK(consistent_lock); |
| |
| /* |
| * VM region handling support. |
| * |
| * This should become something generic, handling VM region allocations for |
| * vmalloc and similar (ioremap, module space, etc). |
| * |
| * I envisage vmalloc()'s supporting vm_struct becoming: |
| * |
| * struct vm_struct { |
| * struct metag_vm_region region; |
| * unsigned long flags; |
| * struct page **pages; |
| * unsigned int nr_pages; |
| * unsigned long phys_addr; |
| * }; |
| * |
| * get_vm_area() would then call metag_vm_region_alloc with an appropriate |
| * struct metag_vm_region head (eg): |
| * |
| * struct metag_vm_region vmalloc_head = { |
| * .vm_list = LIST_HEAD_INIT(vmalloc_head.vm_list), |
| * .vm_start = VMALLOC_START, |
| * .vm_end = VMALLOC_END, |
| * }; |
| * |
| * However, vmalloc_head.vm_start is variable (typically, it is dependent on |
| * the amount of RAM found at boot time.) I would imagine that get_vm_area() |
| * would have to initialise this each time prior to calling |
| * metag_vm_region_alloc(). |
| */ |
| struct metag_vm_region { |
| struct list_head vm_list; |
| unsigned long vm_start; |
| unsigned long vm_end; |
| struct page *vm_pages; |
| int vm_active; |
| }; |
| |
| static struct metag_vm_region consistent_head = { |
| .vm_list = LIST_HEAD_INIT(consistent_head.vm_list), |
| .vm_start = CONSISTENT_START, |
| .vm_end = CONSISTENT_END, |
| }; |
| |
| static struct metag_vm_region *metag_vm_region_alloc(struct metag_vm_region |
| *head, size_t size, |
| gfp_t gfp) |
| { |
| unsigned long addr = head->vm_start, end = head->vm_end - size; |
| unsigned long flags; |
| struct metag_vm_region *c, *new; |
| |
| new = kmalloc(sizeof(struct metag_vm_region), gfp); |
| if (!new) |
| goto out; |
| |
| spin_lock_irqsave(&consistent_lock, flags); |
| |
| list_for_each_entry(c, &head->vm_list, vm_list) { |
| if ((addr + size) < addr) |
| goto nospc; |
| if ((addr + size) <= c->vm_start) |
| goto found; |
| addr = c->vm_end; |
| if (addr > end) |
| goto nospc; |
| } |
| |
| found: |
| /* |
| * Insert this entry _before_ the one we found. |
| */ |
| list_add_tail(&new->vm_list, &c->vm_list); |
| new->vm_start = addr; |
| new->vm_end = addr + size; |
| new->vm_active = 1; |
| |
| spin_unlock_irqrestore(&consistent_lock, flags); |
| return new; |
| |
| nospc: |
| spin_unlock_irqrestore(&consistent_lock, flags); |
| kfree(new); |
| out: |
| return NULL; |
| } |
| |
| static struct metag_vm_region *metag_vm_region_find(struct metag_vm_region |
| *head, unsigned long addr) |
| { |
| struct metag_vm_region *c; |
| |
| list_for_each_entry(c, &head->vm_list, vm_list) { |
| if (c->vm_active && c->vm_start == addr) |
| goto out; |
| } |
| c = NULL; |
| out: |
| return c; |
| } |
| |
| /* |
| * Allocate DMA-coherent memory space and return both the kernel remapped |
| * virtual and bus address for that space. |
| */ |
| static void *metag_dma_alloc(struct device *dev, size_t size, |
| dma_addr_t *handle, gfp_t gfp, unsigned long attrs) |
| { |
| struct page *page; |
| struct metag_vm_region *c; |
| unsigned long order; |
| u64 mask = get_coherent_dma_mask(dev); |
| u64 limit; |
| |
| if (!consistent_pte) { |
| pr_err("%s: not initialised\n", __func__); |
| dump_stack(); |
| return NULL; |
| } |
| |
| if (!mask) |
| goto no_page; |
| size = PAGE_ALIGN(size); |
| limit = (mask + 1) & ~mask; |
| if ((limit && size >= limit) |
| || size >= (CONSISTENT_END - CONSISTENT_START)) { |
| pr_warn("coherent allocation too big (requested %#x mask %#Lx)\n", |
| size, mask); |
| return NULL; |
| } |
| |
| order = get_order(size); |
| |
| if (mask != 0xffffffff) |
| gfp |= GFP_DMA; |
| |
| page = alloc_pages(gfp, order); |
| if (!page) |
| goto no_page; |
| |
| /* |
| * Invalidate any data that might be lurking in the |
| * kernel direct-mapped region for device DMA. |
| */ |
| { |
| void *kaddr = page_address(page); |
| memset(kaddr, 0, size); |
| flush_dcache_region(kaddr, size); |
| } |
| |
| /* |
| * Allocate a virtual address in the consistent mapping region. |
| */ |
| c = metag_vm_region_alloc(&consistent_head, size, |
| gfp & ~(__GFP_DMA | __GFP_HIGHMEM)); |
| if (c) { |
| unsigned long vaddr = c->vm_start; |
| pte_t *pte = consistent_pte + CONSISTENT_OFFSET(vaddr); |
| struct page *end = page + (1 << order); |
| |
| c->vm_pages = page; |
| split_page(page, order); |
| |
| /* |
| * Set the "dma handle" |
| */ |
| *handle = page_to_bus(page); |
| |
| do { |
| BUG_ON(!pte_none(*pte)); |
| |
| SetPageReserved(page); |
| set_pte_at(&init_mm, vaddr, |
| pte, mk_pte(page, |
| pgprot_writecombine |
| (PAGE_KERNEL))); |
| page++; |
| pte++; |
| vaddr += PAGE_SIZE; |
| } while (size -= PAGE_SIZE); |
| |
| /* |
| * Free the otherwise unused pages. |
| */ |
| while (page < end) { |
| __free_page(page); |
| page++; |
| } |
| |
| return (void *)c->vm_start; |
| } |
| |
| if (page) |
| __free_pages(page, order); |
| no_page: |
| return NULL; |
| } |
| |
| /* |
| * free a page as defined by the above mapping. |
| */ |
| static void metag_dma_free(struct device *dev, size_t size, void *vaddr, |
| dma_addr_t dma_handle, unsigned long attrs) |
| { |
| struct metag_vm_region *c; |
| unsigned long flags, addr; |
| pte_t *ptep; |
| |
| size = PAGE_ALIGN(size); |
| |
| spin_lock_irqsave(&consistent_lock, flags); |
| |
| c = metag_vm_region_find(&consistent_head, (unsigned long)vaddr); |
| if (!c) |
| goto no_area; |
| |
| c->vm_active = 0; |
| if ((c->vm_end - c->vm_start) != size) { |
| pr_err("%s: freeing wrong coherent size (%ld != %d)\n", |
| __func__, c->vm_end - c->vm_start, size); |
| dump_stack(); |
| size = c->vm_end - c->vm_start; |
| } |
| |
| ptep = consistent_pte + CONSISTENT_OFFSET(c->vm_start); |
| addr = c->vm_start; |
| do { |
| pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep); |
| unsigned long pfn; |
| |
| ptep++; |
| addr += PAGE_SIZE; |
| |
| if (!pte_none(pte) && pte_present(pte)) { |
| pfn = pte_pfn(pte); |
| |
| if (pfn_valid(pfn)) { |
| struct page *page = pfn_to_page(pfn); |
| __free_reserved_page(page); |
| continue; |
| } |
| } |
| |
| pr_crit("%s: bad page in kernel page table\n", |
| __func__); |
| } while (size -= PAGE_SIZE); |
| |
| flush_tlb_kernel_range(c->vm_start, c->vm_end); |
| |
| list_del(&c->vm_list); |
| |
| spin_unlock_irqrestore(&consistent_lock, flags); |
| |
| kfree(c); |
| return; |
| |
| no_area: |
| spin_unlock_irqrestore(&consistent_lock, flags); |
| pr_err("%s: trying to free invalid coherent area: %p\n", |
| __func__, vaddr); |
| dump_stack(); |
| } |
| |
| static int metag_dma_mmap(struct device *dev, struct vm_area_struct *vma, |
| void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| unsigned long attrs) |
| { |
| unsigned long flags, user_size, kern_size; |
| struct metag_vm_region *c; |
| int ret = -ENXIO; |
| |
| if (attrs & DMA_ATTR_WRITE_COMBINE) |
| vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); |
| else |
| vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); |
| |
| user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; |
| |
| spin_lock_irqsave(&consistent_lock, flags); |
| c = metag_vm_region_find(&consistent_head, (unsigned long)cpu_addr); |
| spin_unlock_irqrestore(&consistent_lock, flags); |
| |
| if (c) { |
| unsigned long off = vma->vm_pgoff; |
| |
| kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT; |
| |
| if (off < kern_size && |
| user_size <= (kern_size - off)) { |
| ret = remap_pfn_range(vma, vma->vm_start, |
| page_to_pfn(c->vm_pages) + off, |
| user_size << PAGE_SHIFT, |
| vma->vm_page_prot); |
| } |
| } |
| |
| |
| return ret; |
| } |
| |
| /* |
| * Initialise the consistent memory allocation. |
| */ |
| static int __init dma_alloc_init(void) |
| { |
| pgd_t *pgd, *pgd_k; |
| pud_t *pud, *pud_k; |
| pmd_t *pmd, *pmd_k; |
| pte_t *pte; |
| int ret = 0; |
| |
| do { |
| int offset = pgd_index(CONSISTENT_START); |
| pgd = pgd_offset(&init_mm, CONSISTENT_START); |
| pud = pud_alloc(&init_mm, pgd, CONSISTENT_START); |
| pmd = pmd_alloc(&init_mm, pud, CONSISTENT_START); |
| WARN_ON(!pmd_none(*pmd)); |
| |
| pte = pte_alloc_kernel(pmd, CONSISTENT_START); |
| if (!pte) { |
| pr_err("%s: no pte tables\n", __func__); |
| ret = -ENOMEM; |
| break; |
| } |
| |
| pgd_k = ((pgd_t *) mmu_get_base()) + offset; |
| pud_k = pud_offset(pgd_k, CONSISTENT_START); |
| pmd_k = pmd_offset(pud_k, CONSISTENT_START); |
| set_pmd(pmd_k, *pmd); |
| |
| consistent_pte = pte; |
| } while (0); |
| |
| return ret; |
| } |
| early_initcall(dma_alloc_init); |
| |
| /* |
| * make an area consistent to devices. |
| */ |
| static void dma_sync_for_device(void *vaddr, size_t size, int dma_direction) |
| { |
| /* |
| * Ensure any writes get through the write combiner. This is necessary |
| * even with DMA_FROM_DEVICE, or the write may dirty the cache after |
| * we've invalidated it and get written back during the DMA. |
| */ |
| |
| barrier(); |
| |
| switch (dma_direction) { |
| case DMA_BIDIRECTIONAL: |
| /* |
| * Writeback to ensure the device can see our latest changes and |
| * so that we have no dirty lines, and invalidate the cache |
| * lines too in preparation for receiving the buffer back |
| * (dma_sync_for_cpu) later. |
| */ |
| flush_dcache_region(vaddr, size); |
| break; |
| case DMA_TO_DEVICE: |
| /* |
| * Writeback to ensure the device can see our latest changes. |
| * There's no need to invalidate as the device shouldn't write |
| * to the buffer. |
| */ |
| writeback_dcache_region(vaddr, size); |
| break; |
| case DMA_FROM_DEVICE: |
| /* |
| * Invalidate to ensure we have no dirty lines that could get |
| * written back during the DMA. It's also safe to flush |
| * (writeback) here if necessary. |
| */ |
| invalidate_dcache_region(vaddr, size); |
| break; |
| case DMA_NONE: |
| BUG(); |
| } |
| |
| wmb(); |
| } |
| |
| /* |
| * make an area consistent to the core. |
| */ |
| static void dma_sync_for_cpu(void *vaddr, size_t size, int dma_direction) |
| { |
| /* |
| * Hardware L2 cache prefetch doesn't occur across 4K physical |
| * boundaries, however according to Documentation/DMA-API-HOWTO.txt |
| * kmalloc'd memory is DMA'able, so accesses in nearby memory could |
| * trigger a cache fill in the DMA buffer. |
| * |
| * This should never cause dirty lines, so a flush or invalidate should |
| * be safe to allow us to see data from the device. |
| */ |
| if (_meta_l2c_pf_is_enabled()) { |
| switch (dma_direction) { |
| case DMA_BIDIRECTIONAL: |
| case DMA_FROM_DEVICE: |
| invalidate_dcache_region(vaddr, size); |
| break; |
| case DMA_TO_DEVICE: |
| /* The device shouldn't have written to the buffer */ |
| break; |
| case DMA_NONE: |
| BUG(); |
| } |
| } |
| |
| rmb(); |
| } |
| |
| static dma_addr_t metag_dma_map_page(struct device *dev, struct page *page, |
| unsigned long offset, size_t size, |
| enum dma_data_direction direction, unsigned long attrs) |
| { |
| if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) |
| dma_sync_for_device((void *)(page_to_phys(page) + offset), |
| size, direction); |
| return page_to_phys(page) + offset; |
| } |
| |
| static void metag_dma_unmap_page(struct device *dev, dma_addr_t dma_address, |
| size_t size, enum dma_data_direction direction, |
| unsigned long attrs) |
| { |
| if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) |
| dma_sync_for_cpu(phys_to_virt(dma_address), size, direction); |
| } |
| |
| static int metag_dma_map_sg(struct device *dev, struct scatterlist *sglist, |
| int nents, enum dma_data_direction direction, |
| unsigned long attrs) |
| { |
| struct scatterlist *sg; |
| int i; |
| |
| for_each_sg(sglist, sg, nents, i) { |
| BUG_ON(!sg_page(sg)); |
| |
| sg->dma_address = sg_phys(sg); |
| |
| if (attrs & DMA_ATTR_SKIP_CPU_SYNC) |
| continue; |
| |
| dma_sync_for_device(sg_virt(sg), sg->length, direction); |
| } |
| |
| return nents; |
| } |
| |
| |
| static void metag_dma_unmap_sg(struct device *dev, struct scatterlist *sglist, |
| int nhwentries, enum dma_data_direction direction, |
| unsigned long attrs) |
| { |
| struct scatterlist *sg; |
| int i; |
| |
| for_each_sg(sglist, sg, nhwentries, i) { |
| BUG_ON(!sg_page(sg)); |
| |
| sg->dma_address = sg_phys(sg); |
| |
| if (attrs & DMA_ATTR_SKIP_CPU_SYNC) |
| continue; |
| |
| dma_sync_for_cpu(sg_virt(sg), sg->length, direction); |
| } |
| } |
| |
| static void metag_dma_sync_single_for_cpu(struct device *dev, |
| dma_addr_t dma_handle, size_t size, |
| enum dma_data_direction direction) |
| { |
| dma_sync_for_cpu(phys_to_virt(dma_handle), size, direction); |
| } |
| |
| static void metag_dma_sync_single_for_device(struct device *dev, |
| dma_addr_t dma_handle, size_t size, |
| enum dma_data_direction direction) |
| { |
| dma_sync_for_device(phys_to_virt(dma_handle), size, direction); |
| } |
| |
| static void metag_dma_sync_sg_for_cpu(struct device *dev, |
| struct scatterlist *sglist, int nelems, |
| enum dma_data_direction direction) |
| { |
| int i; |
| struct scatterlist *sg; |
| |
| for_each_sg(sglist, sg, nelems, i) |
| dma_sync_for_cpu(sg_virt(sg), sg->length, direction); |
| } |
| |
| static void metag_dma_sync_sg_for_device(struct device *dev, |
| struct scatterlist *sglist, int nelems, |
| enum dma_data_direction direction) |
| { |
| int i; |
| struct scatterlist *sg; |
| |
| for_each_sg(sglist, sg, nelems, i) |
| dma_sync_for_device(sg_virt(sg), sg->length, direction); |
| } |
| |
| struct dma_map_ops metag_dma_ops = { |
| .alloc = metag_dma_alloc, |
| .free = metag_dma_free, |
| .map_page = metag_dma_map_page, |
| .map_sg = metag_dma_map_sg, |
| .sync_single_for_device = metag_dma_sync_single_for_device, |
| .sync_single_for_cpu = metag_dma_sync_single_for_cpu, |
| .sync_sg_for_cpu = metag_dma_sync_sg_for_cpu, |
| .mmap = metag_dma_mmap, |
| }; |
| EXPORT_SYMBOL(metag_dma_ops); |