blob: 19b11e896460f46f1fdf89b0c4392e7d83f4e436 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* drivers/net/phy/micrel.c
*
* Driver for Micrel PHYs
*
* Author: David J. Choi
*
* Copyright (c) 2010-2013 Micrel, Inc.
* Copyright (c) 2014 Johan Hovold <johan@kernel.org>
*
* Support : Micrel Phys:
* Giga phys: ksz9021, ksz9031, ksz9131
* 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
* ksz8021, ksz8031, ksz8051,
* ksz8081, ksz8091,
* ksz8061,
* Switch : ksz8873, ksz886x
* ksz9477
*/
#include <linux/bitfield.h>
#include <linux/ethtool_netlink.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/phy.h>
#include <linux/micrel_phy.h>
#include <linux/of.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/ptp_clock_kernel.h>
#include <linux/ptp_clock.h>
#include <linux/ptp_classify.h>
#include <linux/net_tstamp.h>
/* Operation Mode Strap Override */
#define MII_KSZPHY_OMSO 0x16
#define KSZPHY_OMSO_FACTORY_TEST BIT(15)
#define KSZPHY_OMSO_B_CAST_OFF BIT(9)
#define KSZPHY_OMSO_NAND_TREE_ON BIT(5)
#define KSZPHY_OMSO_RMII_OVERRIDE BIT(1)
#define KSZPHY_OMSO_MII_OVERRIDE BIT(0)
/* general Interrupt control/status reg in vendor specific block. */
#define MII_KSZPHY_INTCS 0x1B
#define KSZPHY_INTCS_JABBER BIT(15)
#define KSZPHY_INTCS_RECEIVE_ERR BIT(14)
#define KSZPHY_INTCS_PAGE_RECEIVE BIT(13)
#define KSZPHY_INTCS_PARELLEL BIT(12)
#define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11)
#define KSZPHY_INTCS_LINK_DOWN BIT(10)
#define KSZPHY_INTCS_REMOTE_FAULT BIT(9)
#define KSZPHY_INTCS_LINK_UP BIT(8)
#define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\
KSZPHY_INTCS_LINK_DOWN)
#define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2)
#define KSZPHY_INTCS_LINK_UP_STATUS BIT(0)
#define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\
KSZPHY_INTCS_LINK_UP_STATUS)
/* LinkMD Control/Status */
#define KSZ8081_LMD 0x1d
#define KSZ8081_LMD_ENABLE_TEST BIT(15)
#define KSZ8081_LMD_STAT_NORMAL 0
#define KSZ8081_LMD_STAT_OPEN 1
#define KSZ8081_LMD_STAT_SHORT 2
#define KSZ8081_LMD_STAT_FAIL 3
#define KSZ8081_LMD_STAT_MASK GENMASK(14, 13)
/* Short cable (<10 meter) has been detected by LinkMD */
#define KSZ8081_LMD_SHORT_INDICATOR BIT(12)
#define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0)
/* Lan8814 general Interrupt control/status reg in GPHY specific block. */
#define LAN8814_INTC 0x18
#define LAN8814_INTS 0x1B
#define LAN8814_INT_LINK_DOWN BIT(2)
#define LAN8814_INT_LINK_UP BIT(0)
#define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\
LAN8814_INT_LINK_DOWN)
#define LAN8814_INTR_CTRL_REG 0x34
#define LAN8814_INTR_CTRL_REG_POLARITY BIT(1)
#define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0)
/* Represents 1ppm adjustment in 2^32 format with
* each nsec contains 4 clock cycles.
* The value is calculated as following: (1/1000000)/((2^-32)/4)
*/
#define LAN8814_1PPM_FORMAT 17179
#define PTP_RX_MOD 0x024F
#define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
#define PTP_RX_TIMESTAMP_EN 0x024D
#define PTP_TX_TIMESTAMP_EN 0x028D
#define PTP_TIMESTAMP_EN_SYNC_ BIT(0)
#define PTP_TIMESTAMP_EN_DREQ_ BIT(1)
#define PTP_TIMESTAMP_EN_PDREQ_ BIT(2)
#define PTP_TIMESTAMP_EN_PDRES_ BIT(3)
#define PTP_RX_LATENCY_1000 0x0224
#define PTP_TX_LATENCY_1000 0x0225
#define PTP_RX_LATENCY_100 0x0222
#define PTP_TX_LATENCY_100 0x0223
#define PTP_RX_LATENCY_10 0x0220
#define PTP_TX_LATENCY_10 0x0221
#define PTP_TX_PARSE_L2_ADDR_EN 0x0284
#define PTP_RX_PARSE_L2_ADDR_EN 0x0244
#define PTP_TX_PARSE_IP_ADDR_EN 0x0285
#define PTP_RX_PARSE_IP_ADDR_EN 0x0245
#define LTC_HARD_RESET 0x023F
#define LTC_HARD_RESET_ BIT(0)
#define TSU_HARD_RESET 0x02C1
#define TSU_HARD_RESET_ BIT(0)
#define PTP_CMD_CTL 0x0200
#define PTP_CMD_CTL_PTP_DISABLE_ BIT(0)
#define PTP_CMD_CTL_PTP_ENABLE_ BIT(1)
#define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3)
#define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4)
#define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5)
#define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6)
#define PTP_CLOCK_SET_SEC_MID 0x0206
#define PTP_CLOCK_SET_SEC_LO 0x0207
#define PTP_CLOCK_SET_NS_HI 0x0208
#define PTP_CLOCK_SET_NS_LO 0x0209
#define PTP_CLOCK_READ_SEC_MID 0x022A
#define PTP_CLOCK_READ_SEC_LO 0x022B
#define PTP_CLOCK_READ_NS_HI 0x022C
#define PTP_CLOCK_READ_NS_LO 0x022D
#define PTP_OPERATING_MODE 0x0241
#define PTP_OPERATING_MODE_STANDALONE_ BIT(0)
#define PTP_TX_MOD 0x028F
#define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12)
#define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
#define PTP_RX_PARSE_CONFIG 0x0242
#define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0)
#define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1)
#define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2)
#define PTP_TX_PARSE_CONFIG 0x0282
#define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0)
#define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1)
#define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2)
#define PTP_CLOCK_RATE_ADJ_HI 0x020C
#define PTP_CLOCK_RATE_ADJ_LO 0x020D
#define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15)
#define PTP_LTC_STEP_ADJ_HI 0x0212
#define PTP_LTC_STEP_ADJ_LO 0x0213
#define PTP_LTC_STEP_ADJ_DIR_ BIT(15)
#define LAN8814_INTR_STS_REG 0x0033
#define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0)
#define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1)
#define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2)
#define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3)
#define PTP_CAP_INFO 0x022A
#define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8)
#define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f)
#define PTP_TX_EGRESS_SEC_HI 0x0296
#define PTP_TX_EGRESS_SEC_LO 0x0297
#define PTP_TX_EGRESS_NS_HI 0x0294
#define PTP_TX_EGRESS_NS_LO 0x0295
#define PTP_TX_MSG_HEADER2 0x0299
#define PTP_RX_INGRESS_SEC_HI 0x0256
#define PTP_RX_INGRESS_SEC_LO 0x0257
#define PTP_RX_INGRESS_NS_HI 0x0254
#define PTP_RX_INGRESS_NS_LO 0x0255
#define PTP_RX_MSG_HEADER2 0x0259
#define PTP_TSU_INT_EN 0x0200
#define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3)
#define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2)
#define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1)
#define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0)
#define PTP_TSU_INT_STS 0x0201
#define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3)
#define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2)
#define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1)
#define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0)
/* PHY Control 1 */
#define MII_KSZPHY_CTRL_1 0x1e
#define KSZ8081_CTRL1_MDIX_STAT BIT(4)
/* PHY Control 2 / PHY Control (if no PHY Control 1) */
#define MII_KSZPHY_CTRL_2 0x1f
#define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2
/* bitmap of PHY register to set interrupt mode */
#define KSZ8081_CTRL2_HP_MDIX BIT(15)
#define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14)
#define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13)
#define KSZ8081_CTRL2_FORCE_LINK BIT(11)
#define KSZ8081_CTRL2_POWER_SAVING BIT(10)
#define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9)
#define KSZPHY_RMII_REF_CLK_SEL BIT(7)
/* Write/read to/from extended registers */
#define MII_KSZPHY_EXTREG 0x0b
#define KSZPHY_EXTREG_WRITE 0x8000
#define MII_KSZPHY_EXTREG_WRITE 0x0c
#define MII_KSZPHY_EXTREG_READ 0x0d
/* Extended registers */
#define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104
#define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105
#define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106
#define PS_TO_REG 200
#define FIFO_SIZE 8
struct kszphy_hw_stat {
const char *string;
u8 reg;
u8 bits;
};
static struct kszphy_hw_stat kszphy_hw_stats[] = {
{ "phy_receive_errors", 21, 16},
{ "phy_idle_errors", 10, 8 },
};
struct kszphy_type {
u32 led_mode_reg;
u16 interrupt_level_mask;
bool has_broadcast_disable;
bool has_nand_tree_disable;
bool has_rmii_ref_clk_sel;
};
/* Shared structure between the PHYs of the same package. */
struct lan8814_shared_priv {
struct phy_device *phydev;
struct ptp_clock *ptp_clock;
struct ptp_clock_info ptp_clock_info;
/* Reference counter to how many ports in the package are enabling the
* timestamping
*/
u8 ref;
/* Lock for ptp_clock and ref */
struct mutex shared_lock;
};
struct lan8814_ptp_rx_ts {
struct list_head list;
u32 seconds;
u32 nsec;
u16 seq_id;
};
struct kszphy_latencies {
u16 rx_10;
u16 tx_10;
u16 rx_100;
u16 tx_100;
u16 rx_1000;
u16 tx_1000;
};
struct kszphy_ptp_priv {
struct mii_timestamper mii_ts;
struct phy_device *phydev;
struct sk_buff_head tx_queue;
struct sk_buff_head rx_queue;
struct list_head rx_ts_list;
/* Lock for Rx ts fifo */
spinlock_t rx_ts_lock;
int hwts_tx_type;
enum hwtstamp_rx_filters rx_filter;
int layer;
int version;
};
struct kszphy_priv {
struct kszphy_ptp_priv ptp_priv;
struct kszphy_latencies latencies;
const struct kszphy_type *type;
int led_mode;
bool rmii_ref_clk_sel;
bool rmii_ref_clk_sel_val;
u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
};
static struct kszphy_latencies lan8814_latencies = {
.rx_10 = 0x22AA,
.tx_10 = 0x2E4A,
.rx_100 = 0x092A,
.tx_100 = 0x02C1,
.rx_1000 = 0x01AD,
.tx_1000 = 0x00C9,
};
static const struct kszphy_type ksz8021_type = {
.led_mode_reg = MII_KSZPHY_CTRL_2,
.has_broadcast_disable = true,
.has_nand_tree_disable = true,
.has_rmii_ref_clk_sel = true,
};
static const struct kszphy_type ksz8041_type = {
.led_mode_reg = MII_KSZPHY_CTRL_1,
};
static const struct kszphy_type ksz8051_type = {
.led_mode_reg = MII_KSZPHY_CTRL_2,
.has_nand_tree_disable = true,
};
static const struct kszphy_type ksz8081_type = {
.led_mode_reg = MII_KSZPHY_CTRL_2,
.has_broadcast_disable = true,
.has_nand_tree_disable = true,
.has_rmii_ref_clk_sel = true,
};
static const struct kszphy_type ks8737_type = {
.interrupt_level_mask = BIT(14),
};
static const struct kszphy_type ksz9021_type = {
.interrupt_level_mask = BIT(14),
};
static int kszphy_extended_write(struct phy_device *phydev,
u32 regnum, u16 val)
{
phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
}
static int kszphy_extended_read(struct phy_device *phydev,
u32 regnum)
{
phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
}
static int kszphy_ack_interrupt(struct phy_device *phydev)
{
/* bit[7..0] int status, which is a read and clear register. */
int rc;
rc = phy_read(phydev, MII_KSZPHY_INTCS);
return (rc < 0) ? rc : 0;
}
static int kszphy_config_intr(struct phy_device *phydev)
{
const struct kszphy_type *type = phydev->drv->driver_data;
int temp, err;
u16 mask;
if (type && type->interrupt_level_mask)
mask = type->interrupt_level_mask;
else
mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
/* set the interrupt pin active low */
temp = phy_read(phydev, MII_KSZPHY_CTRL);
if (temp < 0)
return temp;
temp &= ~mask;
phy_write(phydev, MII_KSZPHY_CTRL, temp);
/* enable / disable interrupts */
if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
err = kszphy_ack_interrupt(phydev);
if (err)
return err;
temp = KSZPHY_INTCS_ALL;
err = phy_write(phydev, MII_KSZPHY_INTCS, temp);
} else {
temp = 0;
err = phy_write(phydev, MII_KSZPHY_INTCS, temp);
if (err)
return err;
err = kszphy_ack_interrupt(phydev);
}
return err;
}
static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev)
{
int irq_status;
irq_status = phy_read(phydev, MII_KSZPHY_INTCS);
if (irq_status < 0) {
phy_error(phydev);
return IRQ_NONE;
}
if (!(irq_status & KSZPHY_INTCS_STATUS))
return IRQ_NONE;
phy_trigger_machine(phydev);
return IRQ_HANDLED;
}
static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
{
int ctrl;
ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
if (ctrl < 0)
return ctrl;
if (val)
ctrl |= KSZPHY_RMII_REF_CLK_SEL;
else
ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
}
static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
{
int rc, temp, shift;
switch (reg) {
case MII_KSZPHY_CTRL_1:
shift = 14;
break;
case MII_KSZPHY_CTRL_2:
shift = 4;
break;
default:
return -EINVAL;
}
temp = phy_read(phydev, reg);
if (temp < 0) {
rc = temp;
goto out;
}
temp &= ~(3 << shift);
temp |= val << shift;
rc = phy_write(phydev, reg, temp);
out:
if (rc < 0)
phydev_err(phydev, "failed to set led mode\n");
return rc;
}
/* Disable PHY address 0 as the broadcast address, so that it can be used as a
* unique (non-broadcast) address on a shared bus.
*/
static int kszphy_broadcast_disable(struct phy_device *phydev)
{
int ret;
ret = phy_read(phydev, MII_KSZPHY_OMSO);
if (ret < 0)
goto out;
ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
out:
if (ret)
phydev_err(phydev, "failed to disable broadcast address\n");
return ret;
}
static int kszphy_nand_tree_disable(struct phy_device *phydev)
{
int ret;
ret = phy_read(phydev, MII_KSZPHY_OMSO);
if (ret < 0)
goto out;
if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
return 0;
ret = phy_write(phydev, MII_KSZPHY_OMSO,
ret & ~KSZPHY_OMSO_NAND_TREE_ON);
out:
if (ret)
phydev_err(phydev, "failed to disable NAND tree mode\n");
return ret;
}
/* Some config bits need to be set again on resume, handle them here. */
static int kszphy_config_reset(struct phy_device *phydev)
{
struct kszphy_priv *priv = phydev->priv;
int ret;
if (priv->rmii_ref_clk_sel) {
ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
if (ret) {
phydev_err(phydev,
"failed to set rmii reference clock\n");
return ret;
}
}
if (priv->led_mode >= 0)
kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
return 0;
}
static int kszphy_config_init(struct phy_device *phydev)
{
struct kszphy_priv *priv = phydev->priv;
const struct kszphy_type *type;
if (!priv)
return 0;
type = priv->type;
if (type->has_broadcast_disable)
kszphy_broadcast_disable(phydev);
if (type->has_nand_tree_disable)
kszphy_nand_tree_disable(phydev);
return kszphy_config_reset(phydev);
}
static int ksz8041_fiber_mode(struct phy_device *phydev)
{
struct device_node *of_node = phydev->mdio.dev.of_node;
return of_property_read_bool(of_node, "micrel,fiber-mode");
}
static int ksz8041_config_init(struct phy_device *phydev)
{
__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
/* Limit supported and advertised modes in fiber mode */
if (ksz8041_fiber_mode(phydev)) {
phydev->dev_flags |= MICREL_PHY_FXEN;
linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
linkmode_and(phydev->supported, phydev->supported, mask);
linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
phydev->supported);
linkmode_and(phydev->advertising, phydev->advertising, mask);
linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
phydev->advertising);
phydev->autoneg = AUTONEG_DISABLE;
}
return kszphy_config_init(phydev);
}
static int ksz8041_config_aneg(struct phy_device *phydev)
{
/* Skip auto-negotiation in fiber mode */
if (phydev->dev_flags & MICREL_PHY_FXEN) {
phydev->speed = SPEED_100;
return 0;
}
return genphy_config_aneg(phydev);
}
static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev,
const bool ksz_8051)
{
int ret;
if ((phydev->phy_id & MICREL_PHY_ID_MASK) != PHY_ID_KSZ8051)
return 0;
ret = phy_read(phydev, MII_BMSR);
if (ret < 0)
return ret;
/* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same
* exact PHY ID. However, they can be told apart by the extended
* capability registers presence. The KSZ8051 PHY has them while
* the switch does not.
*/
ret &= BMSR_ERCAP;
if (ksz_8051)
return ret;
else
return !ret;
}
static int ksz8051_match_phy_device(struct phy_device *phydev)
{
return ksz8051_ksz8795_match_phy_device(phydev, true);
}
static int ksz8081_config_init(struct phy_device *phydev)
{
/* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line
* based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a
* pull-down is missing, the factory test mode should be cleared by
* manually writing a 0.
*/
phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST);
return kszphy_config_init(phydev);
}
static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl)
{
u16 val;
switch (ctrl) {
case ETH_TP_MDI:
val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX;
break;
case ETH_TP_MDI_X:
val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX |
KSZ8081_CTRL2_MDI_MDI_X_SELECT;
break;
case ETH_TP_MDI_AUTO:
val = 0;
break;
default:
return 0;
}
return phy_modify(phydev, MII_KSZPHY_CTRL_2,
KSZ8081_CTRL2_HP_MDIX |
KSZ8081_CTRL2_MDI_MDI_X_SELECT |
KSZ8081_CTRL2_DISABLE_AUTO_MDIX,
KSZ8081_CTRL2_HP_MDIX | val);
}
static int ksz8081_config_aneg(struct phy_device *phydev)
{
int ret;
ret = genphy_config_aneg(phydev);
if (ret)
return ret;
/* The MDI-X configuration is automatically changed by the PHY after
* switching from autoneg off to on. So, take MDI-X configuration under
* own control and set it after autoneg configuration was done.
*/
return ksz8081_config_mdix(phydev, phydev->mdix_ctrl);
}
static int ksz8081_mdix_update(struct phy_device *phydev)
{
int ret;
ret = phy_read(phydev, MII_KSZPHY_CTRL_2);
if (ret < 0)
return ret;
if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) {
if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT)
phydev->mdix_ctrl = ETH_TP_MDI_X;
else
phydev->mdix_ctrl = ETH_TP_MDI;
} else {
phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
}
ret = phy_read(phydev, MII_KSZPHY_CTRL_1);
if (ret < 0)
return ret;
if (ret & KSZ8081_CTRL1_MDIX_STAT)
phydev->mdix = ETH_TP_MDI;
else
phydev->mdix = ETH_TP_MDI_X;
return 0;
}
static int ksz8081_read_status(struct phy_device *phydev)
{
int ret;
ret = ksz8081_mdix_update(phydev);
if (ret < 0)
return ret;
return genphy_read_status(phydev);
}
static int ksz8061_config_init(struct phy_device *phydev)
{
int ret;
ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
if (ret)
return ret;
return kszphy_config_init(phydev);
}
static int ksz8795_match_phy_device(struct phy_device *phydev)
{
return ksz8051_ksz8795_match_phy_device(phydev, false);
}
static int ksz9021_load_values_from_of(struct phy_device *phydev,
const struct device_node *of_node,
u16 reg,
const char *field1, const char *field2,
const char *field3, const char *field4)
{
int val1 = -1;
int val2 = -2;
int val3 = -3;
int val4 = -4;
int newval;
int matches = 0;
if (!of_property_read_u32(of_node, field1, &val1))
matches++;
if (!of_property_read_u32(of_node, field2, &val2))
matches++;
if (!of_property_read_u32(of_node, field3, &val3))
matches++;
if (!of_property_read_u32(of_node, field4, &val4))
matches++;
if (!matches)
return 0;
if (matches < 4)
newval = kszphy_extended_read(phydev, reg);
else
newval = 0;
if (val1 != -1)
newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
if (val2 != -2)
newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
if (val3 != -3)
newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
if (val4 != -4)
newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
return kszphy_extended_write(phydev, reg, newval);
}
static int ksz9021_config_init(struct phy_device *phydev)
{
const struct device_node *of_node;
const struct device *dev_walker;
/* The Micrel driver has a deprecated option to place phy OF
* properties in the MAC node. Walk up the tree of devices to
* find a device with an OF node.
*/
dev_walker = &phydev->mdio.dev;
do {
of_node = dev_walker->of_node;
dev_walker = dev_walker->parent;
} while (!of_node && dev_walker);
if (of_node) {
ksz9021_load_values_from_of(phydev, of_node,
MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
"txen-skew-ps", "txc-skew-ps",
"rxdv-skew-ps", "rxc-skew-ps");
ksz9021_load_values_from_of(phydev, of_node,
MII_KSZPHY_RX_DATA_PAD_SKEW,
"rxd0-skew-ps", "rxd1-skew-ps",
"rxd2-skew-ps", "rxd3-skew-ps");
ksz9021_load_values_from_of(phydev, of_node,
MII_KSZPHY_TX_DATA_PAD_SKEW,
"txd0-skew-ps", "txd1-skew-ps",
"txd2-skew-ps", "txd3-skew-ps");
}
return 0;
}
#define KSZ9031_PS_TO_REG 60
/* Extended registers */
/* MMD Address 0x0 */
#define MII_KSZ9031RN_FLP_BURST_TX_LO 3
#define MII_KSZ9031RN_FLP_BURST_TX_HI 4
/* MMD Address 0x2 */
#define MII_KSZ9031RN_CONTROL_PAD_SKEW 4
#define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4)
#define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0)
#define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5
#define MII_KSZ9031RN_RXD3 GENMASK(15, 12)
#define MII_KSZ9031RN_RXD2 GENMASK(11, 8)
#define MII_KSZ9031RN_RXD1 GENMASK(7, 4)
#define MII_KSZ9031RN_RXD0 GENMASK(3, 0)
#define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6
#define MII_KSZ9031RN_TXD3 GENMASK(15, 12)
#define MII_KSZ9031RN_TXD2 GENMASK(11, 8)
#define MII_KSZ9031RN_TXD1 GENMASK(7, 4)
#define MII_KSZ9031RN_TXD0 GENMASK(3, 0)
#define MII_KSZ9031RN_CLK_PAD_SKEW 8
#define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5)
#define MII_KSZ9031RN_RX_CLK GENMASK(4, 0)
/* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To
* provide different RGMII options we need to configure delay offset
* for each pad relative to build in delay.
*/
/* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of
* 1.80ns
*/
#define RX_ID 0x7
#define RX_CLK_ID 0x19
/* set rx to +0.30ns and rx_clk to -0.90ns to compensate the
* internal 1.2ns delay.
*/
#define RX_ND 0xc
#define RX_CLK_ND 0x0
/* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */
#define TX_ID 0x0
#define TX_CLK_ID 0x1f
/* set tx and tx_clk to "No delay adjustment" to keep 0ns
* dealy
*/
#define TX_ND 0x7
#define TX_CLK_ND 0xf
/* MMD Address 0x1C */
#define MII_KSZ9031RN_EDPD 0x23
#define MII_KSZ9031RN_EDPD_ENABLE BIT(0)
static int ksz9031_of_load_skew_values(struct phy_device *phydev,
const struct device_node *of_node,
u16 reg, size_t field_sz,
const char *field[], u8 numfields,
bool *update)
{
int val[4] = {-1, -2, -3, -4};
int matches = 0;
u16 mask;
u16 maxval;
u16 newval;
int i;
for (i = 0; i < numfields; i++)
if (!of_property_read_u32(of_node, field[i], val + i))
matches++;
if (!matches)
return 0;
*update |= true;
if (matches < numfields)
newval = phy_read_mmd(phydev, 2, reg);
else
newval = 0;
maxval = (field_sz == 4) ? 0xf : 0x1f;
for (i = 0; i < numfields; i++)
if (val[i] != -(i + 1)) {
mask = 0xffff;
mask ^= maxval << (field_sz * i);
newval = (newval & mask) |
(((val[i] / KSZ9031_PS_TO_REG) & maxval)
<< (field_sz * i));
}
return phy_write_mmd(phydev, 2, reg, newval);
}
/* Center KSZ9031RNX FLP timing at 16ms. */
static int ksz9031_center_flp_timing(struct phy_device *phydev)
{
int result;
result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI,
0x0006);
if (result)
return result;
result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO,
0x1A80);
if (result)
return result;
return genphy_restart_aneg(phydev);
}
/* Enable energy-detect power-down mode */
static int ksz9031_enable_edpd(struct phy_device *phydev)
{
int reg;
reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD);
if (reg < 0)
return reg;
return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD,
reg | MII_KSZ9031RN_EDPD_ENABLE);
}
static int ksz9031_config_rgmii_delay(struct phy_device *phydev)
{
u16 rx, tx, rx_clk, tx_clk;
int ret;
switch (phydev->interface) {
case PHY_INTERFACE_MODE_RGMII:
tx = TX_ND;
tx_clk = TX_CLK_ND;
rx = RX_ND;
rx_clk = RX_CLK_ND;
break;
case PHY_INTERFACE_MODE_RGMII_ID:
tx = TX_ID;
tx_clk = TX_CLK_ID;
rx = RX_ID;
rx_clk = RX_CLK_ID;
break;
case PHY_INTERFACE_MODE_RGMII_RXID:
tx = TX_ND;
tx_clk = TX_CLK_ND;
rx = RX_ID;
rx_clk = RX_CLK_ID;
break;
case PHY_INTERFACE_MODE_RGMII_TXID:
tx = TX_ID;
tx_clk = TX_CLK_ID;
rx = RX_ND;
rx_clk = RX_CLK_ND;
break;
default:
return 0;
}
ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW,
FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) |
FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx));
if (ret < 0)
return ret;
ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW,
FIELD_PREP(MII_KSZ9031RN_RXD3, rx) |
FIELD_PREP(MII_KSZ9031RN_RXD2, rx) |
FIELD_PREP(MII_KSZ9031RN_RXD1, rx) |
FIELD_PREP(MII_KSZ9031RN_RXD0, rx));
if (ret < 0)
return ret;
ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW,
FIELD_PREP(MII_KSZ9031RN_TXD3, tx) |
FIELD_PREP(MII_KSZ9031RN_TXD2, tx) |
FIELD_PREP(MII_KSZ9031RN_TXD1, tx) |
FIELD_PREP(MII_KSZ9031RN_TXD0, tx));
if (ret < 0)
return ret;
return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW,
FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) |
FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk));
}
static int ksz9031_config_init(struct phy_device *phydev)
{
const struct device_node *of_node;
static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
static const char *rx_data_skews[4] = {
"rxd0-skew-ps", "rxd1-skew-ps",
"rxd2-skew-ps", "rxd3-skew-ps"
};
static const char *tx_data_skews[4] = {
"txd0-skew-ps", "txd1-skew-ps",
"txd2-skew-ps", "txd3-skew-ps"
};
static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
const struct device *dev_walker;
int result;
result = ksz9031_enable_edpd(phydev);
if (result < 0)
return result;
/* The Micrel driver has a deprecated option to place phy OF
* properties in the MAC node. Walk up the tree of devices to
* find a device with an OF node.
*/
dev_walker = &phydev->mdio.dev;
do {
of_node = dev_walker->of_node;
dev_walker = dev_walker->parent;
} while (!of_node && dev_walker);
if (of_node) {
bool update = false;
if (phy_interface_is_rgmii(phydev)) {
result = ksz9031_config_rgmii_delay(phydev);
if (result < 0)
return result;
}
ksz9031_of_load_skew_values(phydev, of_node,
MII_KSZ9031RN_CLK_PAD_SKEW, 5,
clk_skews, 2, &update);
ksz9031_of_load_skew_values(phydev, of_node,
MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
control_skews, 2, &update);
ksz9031_of_load_skew_values(phydev, of_node,
MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
rx_data_skews, 4, &update);
ksz9031_of_load_skew_values(phydev, of_node,
MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
tx_data_skews, 4, &update);
if (update && !phy_interface_is_rgmii(phydev))
phydev_warn(phydev,
"*-skew-ps values should be used only with RGMII PHY modes\n");
/* Silicon Errata Sheet (DS80000691D or DS80000692D):
* When the device links in the 1000BASE-T slave mode only,
* the optional 125MHz reference output clock (CLK125_NDO)
* has wide duty cycle variation.
*
* The optional CLK125_NDO clock does not meet the RGMII
* 45/55 percent (min/max) duty cycle requirement and therefore
* cannot be used directly by the MAC side for clocking
* applications that have setup/hold time requirements on
* rising and falling clock edges.
*
* Workaround:
* Force the phy to be the master to receive a stable clock
* which meets the duty cycle requirement.
*/
if (of_property_read_bool(of_node, "micrel,force-master")) {
result = phy_read(phydev, MII_CTRL1000);
if (result < 0)
goto err_force_master;
/* enable master mode, config & prefer master */
result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER;
result = phy_write(phydev, MII_CTRL1000, result);
if (result < 0)
goto err_force_master;
}
}
return ksz9031_center_flp_timing(phydev);
err_force_master:
phydev_err(phydev, "failed to force the phy to master mode\n");
return result;
}
#define KSZ9131_SKEW_5BIT_MAX 2400
#define KSZ9131_SKEW_4BIT_MAX 800
#define KSZ9131_OFFSET 700
#define KSZ9131_STEP 100
static int ksz9131_of_load_skew_values(struct phy_device *phydev,
struct device_node *of_node,
u16 reg, size_t field_sz,
char *field[], u8 numfields)
{
int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET),
-(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)};
int skewval, skewmax = 0;
int matches = 0;
u16 maxval;
u16 newval;
u16 mask;
int i;
/* psec properties in dts should mean x pico seconds */
if (field_sz == 5)
skewmax = KSZ9131_SKEW_5BIT_MAX;
else
skewmax = KSZ9131_SKEW_4BIT_MAX;
for (i = 0; i < numfields; i++)
if (!of_property_read_s32(of_node, field[i], &skewval)) {
if (skewval < -KSZ9131_OFFSET)
skewval = -KSZ9131_OFFSET;
else if (skewval > skewmax)
skewval = skewmax;
val[i] = skewval + KSZ9131_OFFSET;
matches++;
}
if (!matches)
return 0;
if (matches < numfields)
newval = phy_read_mmd(phydev, 2, reg);
else
newval = 0;
maxval = (field_sz == 4) ? 0xf : 0x1f;
for (i = 0; i < numfields; i++)
if (val[i] != -(i + 1 + KSZ9131_OFFSET)) {
mask = 0xffff;
mask ^= maxval << (field_sz * i);
newval = (newval & mask) |
(((val[i] / KSZ9131_STEP) & maxval)
<< (field_sz * i));
}
return phy_write_mmd(phydev, 2, reg, newval);
}
#define KSZ9131RN_MMD_COMMON_CTRL_REG 2
#define KSZ9131RN_RXC_DLL_CTRL 76
#define KSZ9131RN_TXC_DLL_CTRL 77
#define KSZ9131RN_DLL_CTRL_BYPASS BIT_MASK(12)
#define KSZ9131RN_DLL_ENABLE_DELAY 0
#define KSZ9131RN_DLL_DISABLE_DELAY BIT(12)
static int ksz9131_config_rgmii_delay(struct phy_device *phydev)
{
u16 rxcdll_val, txcdll_val;
int ret;
switch (phydev->interface) {
case PHY_INTERFACE_MODE_RGMII:
rxcdll_val = KSZ9131RN_DLL_DISABLE_DELAY;
txcdll_val = KSZ9131RN_DLL_DISABLE_DELAY;
break;
case PHY_INTERFACE_MODE_RGMII_ID:
rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
break;
case PHY_INTERFACE_MODE_RGMII_RXID:
rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
txcdll_val = KSZ9131RN_DLL_DISABLE_DELAY;
break;
case PHY_INTERFACE_MODE_RGMII_TXID:
rxcdll_val = KSZ9131RN_DLL_DISABLE_DELAY;
txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
break;
default:
return 0;
}
ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
KSZ9131RN_RXC_DLL_CTRL, KSZ9131RN_DLL_CTRL_BYPASS,
rxcdll_val);
if (ret < 0)
return ret;
return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
KSZ9131RN_TXC_DLL_CTRL, KSZ9131RN_DLL_CTRL_BYPASS,
txcdll_val);
}
/* Silicon Errata DS80000693B
*
* When LEDs are configured in Individual Mode, LED1 is ON in a no-link
* condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves
* according to the datasheet (off if there is no link).
*/
static int ksz9131_led_errata(struct phy_device *phydev)
{
int reg;
reg = phy_read_mmd(phydev, 2, 0);
if (reg < 0)
return reg;
if (!(reg & BIT(4)))
return 0;
return phy_set_bits(phydev, 0x1e, BIT(9));
}
static int ksz9131_config_init(struct phy_device *phydev)
{
struct device_node *of_node;
char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"};
char *rx_data_skews[4] = {
"rxd0-skew-psec", "rxd1-skew-psec",
"rxd2-skew-psec", "rxd3-skew-psec"
};
char *tx_data_skews[4] = {
"txd0-skew-psec", "txd1-skew-psec",
"txd2-skew-psec", "txd3-skew-psec"
};
char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"};
const struct device *dev_walker;
int ret;
dev_walker = &phydev->mdio.dev;
do {
of_node = dev_walker->of_node;
dev_walker = dev_walker->parent;
} while (!of_node && dev_walker);
if (!of_node)
return 0;
if (phy_interface_is_rgmii(phydev)) {
ret = ksz9131_config_rgmii_delay(phydev);
if (ret < 0)
return ret;
}
ret = ksz9131_of_load_skew_values(phydev, of_node,
MII_KSZ9031RN_CLK_PAD_SKEW, 5,
clk_skews, 2);
if (ret < 0)
return ret;
ret = ksz9131_of_load_skew_values(phydev, of_node,
MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
control_skews, 2);
if (ret < 0)
return ret;
ret = ksz9131_of_load_skew_values(phydev, of_node,
MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
rx_data_skews, 4);
if (ret < 0)
return ret;
ret = ksz9131_of_load_skew_values(phydev, of_node,
MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
tx_data_skews, 4);
if (ret < 0)
return ret;
ret = ksz9131_led_errata(phydev);
if (ret < 0)
return ret;
return 0;
}
#define KSZ8873MLL_GLOBAL_CONTROL_4 0x06
#define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6)
#define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4)
static int ksz8873mll_read_status(struct phy_device *phydev)
{
int regval;
/* dummy read */
regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
phydev->duplex = DUPLEX_HALF;
else
phydev->duplex = DUPLEX_FULL;
if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
phydev->speed = SPEED_10;
else
phydev->speed = SPEED_100;
phydev->link = 1;
phydev->pause = phydev->asym_pause = 0;
return 0;
}
static int ksz9031_get_features(struct phy_device *phydev)
{
int ret;
ret = genphy_read_abilities(phydev);
if (ret < 0)
return ret;
/* Silicon Errata Sheet (DS80000691D or DS80000692D):
* Whenever the device's Asymmetric Pause capability is set to 1,
* link-up may fail after a link-up to link-down transition.
*
* The Errata Sheet is for ksz9031, but ksz9021 has the same issue
*
* Workaround:
* Do not enable the Asymmetric Pause capability bit.
*/
linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
/* We force setting the Pause capability as the core will force the
* Asymmetric Pause capability to 1 otherwise.
*/
linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
return 0;
}
static int ksz9031_read_status(struct phy_device *phydev)
{
int err;
int regval;
err = genphy_read_status(phydev);
if (err)
return err;
/* Make sure the PHY is not broken. Read idle error count,
* and reset the PHY if it is maxed out.
*/
regval = phy_read(phydev, MII_STAT1000);
if ((regval & 0xFF) == 0xFF) {
phy_init_hw(phydev);
phydev->link = 0;
if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev))
phydev->drv->config_intr(phydev);
return genphy_config_aneg(phydev);
}
return 0;
}
static int ksz8873mll_config_aneg(struct phy_device *phydev)
{
return 0;
}
static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl)
{
u16 val;
switch (ctrl) {
case ETH_TP_MDI:
val = KSZ886X_BMCR_DISABLE_AUTO_MDIX;
break;
case ETH_TP_MDI_X:
/* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit
* counter intuitive, the "-X" in "1 = Force MDI" in the data
* sheet seems to be missing:
* 1 = Force MDI (sic!) (transmit on RX+/RX- pins)
* 0 = Normal operation (transmit on TX+/TX- pins)
*/
val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI;
break;
case ETH_TP_MDI_AUTO:
val = 0;
break;
default:
return 0;
}
return phy_modify(phydev, MII_BMCR,
KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI |
KSZ886X_BMCR_DISABLE_AUTO_MDIX,
KSZ886X_BMCR_HP_MDIX | val);
}
static int ksz886x_config_aneg(struct phy_device *phydev)
{
int ret;
ret = genphy_config_aneg(phydev);
if (ret)
return ret;
/* The MDI-X configuration is automatically changed by the PHY after
* switching from autoneg off to on. So, take MDI-X configuration under
* own control and set it after autoneg configuration was done.
*/
return ksz886x_config_mdix(phydev, phydev->mdix_ctrl);
}
static int ksz886x_mdix_update(struct phy_device *phydev)
{
int ret;
ret = phy_read(phydev, MII_BMCR);
if (ret < 0)
return ret;
if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) {
if (ret & KSZ886X_BMCR_FORCE_MDI)
phydev->mdix_ctrl = ETH_TP_MDI_X;
else
phydev->mdix_ctrl = ETH_TP_MDI;
} else {
phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
}
ret = phy_read(phydev, MII_KSZPHY_CTRL);
if (ret < 0)
return ret;
/* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */
if (ret & KSZ886X_CTRL_MDIX_STAT)
phydev->mdix = ETH_TP_MDI_X;
else
phydev->mdix = ETH_TP_MDI;
return 0;
}
static int ksz886x_read_status(struct phy_device *phydev)
{
int ret;
ret = ksz886x_mdix_update(phydev);
if (ret < 0)
return ret;
return genphy_read_status(phydev);
}
static int kszphy_get_sset_count(struct phy_device *phydev)
{
return ARRAY_SIZE(kszphy_hw_stats);
}
static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
{
int i;
for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) {
strlcpy(data + i * ETH_GSTRING_LEN,
kszphy_hw_stats[i].string, ETH_GSTRING_LEN);
}
}
static u64 kszphy_get_stat(struct phy_device *phydev, int i)
{
struct kszphy_hw_stat stat = kszphy_hw_stats[i];
struct kszphy_priv *priv = phydev->priv;
int val;
u64 ret;
val = phy_read(phydev, stat.reg);
if (val < 0) {
ret = U64_MAX;
} else {
val = val & ((1 << stat.bits) - 1);
priv->stats[i] += val;
ret = priv->stats[i];
}
return ret;
}
static void kszphy_get_stats(struct phy_device *phydev,
struct ethtool_stats *stats, u64 *data)
{
int i;
for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
data[i] = kszphy_get_stat(phydev, i);
}
static int kszphy_suspend(struct phy_device *phydev)
{
/* Disable PHY Interrupts */
if (phy_interrupt_is_valid(phydev)) {
phydev->interrupts = PHY_INTERRUPT_DISABLED;
if (phydev->drv->config_intr)
phydev->drv->config_intr(phydev);
}
return genphy_suspend(phydev);
}
static int kszphy_resume(struct phy_device *phydev)
{
int ret;
genphy_resume(phydev);
/* After switching from power-down to normal mode, an internal global
* reset is automatically generated. Wait a minimum of 1 ms before
* read/write access to the PHY registers.
*/
usleep_range(1000, 2000);
ret = kszphy_config_reset(phydev);
if (ret)
return ret;
/* Enable PHY Interrupts */
if (phy_interrupt_is_valid(phydev)) {
phydev->interrupts = PHY_INTERRUPT_ENABLED;
if (phydev->drv->config_intr)
phydev->drv->config_intr(phydev);
}
return 0;
}
static int kszphy_probe(struct phy_device *phydev)
{
const struct kszphy_type *type = phydev->drv->driver_data;
const struct device_node *np = phydev->mdio.dev.of_node;
struct kszphy_priv *priv;
struct clk *clk;
int ret;
priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
phydev->priv = priv;
priv->type = type;
if (type->led_mode_reg) {
ret = of_property_read_u32(np, "micrel,led-mode",
&priv->led_mode);
if (ret)
priv->led_mode = -1;
if (priv->led_mode > 3) {
phydev_err(phydev, "invalid led mode: 0x%02x\n",
priv->led_mode);
priv->led_mode = -1;
}
} else {
priv->led_mode = -1;
}
clk = devm_clk_get(&phydev->mdio.dev, "rmii-ref");
/* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */
if (!IS_ERR_OR_NULL(clk)) {
unsigned long rate = clk_get_rate(clk);
bool rmii_ref_clk_sel_25_mhz;
priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
"micrel,rmii-reference-clock-select-25-mhz");
if (rate > 24500000 && rate < 25500000) {
priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
} else if (rate > 49500000 && rate < 50500000) {
priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
} else {
phydev_err(phydev, "Clock rate out of range: %ld\n",
rate);
return -EINVAL;
}
}
if (ksz8041_fiber_mode(phydev))
phydev->port = PORT_FIBRE;
/* Support legacy board-file configuration */
if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
priv->rmii_ref_clk_sel = true;
priv->rmii_ref_clk_sel_val = true;
}
return 0;
}
static int ksz886x_cable_test_start(struct phy_device *phydev)
{
if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA)
return -EOPNOTSUPP;
/* If autoneg is enabled, we won't be able to test cross pair
* short. In this case, the PHY will "detect" a link and
* confuse the internal state machine - disable auto neg here.
* If autoneg is disabled, we should set the speed to 10mbit.
*/
return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100);
}
static int ksz886x_cable_test_result_trans(u16 status)
{
switch (FIELD_GET(KSZ8081_LMD_STAT_MASK, status)) {
case KSZ8081_LMD_STAT_NORMAL:
return ETHTOOL_A_CABLE_RESULT_CODE_OK;
case KSZ8081_LMD_STAT_SHORT:
return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
case KSZ8081_LMD_STAT_OPEN:
return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
case KSZ8081_LMD_STAT_FAIL:
fallthrough;
default:
return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
}
}
static bool ksz886x_cable_test_failed(u16 status)
{
return FIELD_GET(KSZ8081_LMD_STAT_MASK, status) ==
KSZ8081_LMD_STAT_FAIL;
}
static bool ksz886x_cable_test_fault_length_valid(u16 status)
{
switch (FIELD_GET(KSZ8081_LMD_STAT_MASK, status)) {
case KSZ8081_LMD_STAT_OPEN:
fallthrough;
case KSZ8081_LMD_STAT_SHORT:
return true;
}
return false;
}
static int ksz886x_cable_test_fault_length(u16 status)
{
int dt;
/* According to the data sheet the distance to the fault is
* DELTA_TIME * 0.4 meters.
*/
dt = FIELD_GET(KSZ8081_LMD_DELTA_TIME_MASK, status);
return (dt * 400) / 10;
}
static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev)
{
int val, ret;
ret = phy_read_poll_timeout(phydev, KSZ8081_LMD, val,
!(val & KSZ8081_LMD_ENABLE_TEST),
30000, 100000, true);
return ret < 0 ? ret : 0;
}
static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair)
{
static const int ethtool_pair[] = {
ETHTOOL_A_CABLE_PAIR_A,
ETHTOOL_A_CABLE_PAIR_B,
};
int ret, val, mdix;
/* There is no way to choice the pair, like we do one ksz9031.
* We can workaround this limitation by using the MDI-X functionality.
*/
if (pair == 0)
mdix = ETH_TP_MDI;
else
mdix = ETH_TP_MDI_X;
switch (phydev->phy_id & MICREL_PHY_ID_MASK) {
case PHY_ID_KSZ8081:
ret = ksz8081_config_mdix(phydev, mdix);
break;
case PHY_ID_KSZ886X:
ret = ksz886x_config_mdix(phydev, mdix);
break;
default:
ret = -ENODEV;
}
if (ret)
return ret;
/* Now we are ready to fire. This command will send a 100ns pulse
* to the pair.
*/
ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST);
if (ret)
return ret;
ret = ksz886x_cable_test_wait_for_completion(phydev);
if (ret)
return ret;
val = phy_read(phydev, KSZ8081_LMD);
if (val < 0)
return val;
if (ksz886x_cable_test_failed(val))
return -EAGAIN;
ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
ksz886x_cable_test_result_trans(val));
if (ret)
return ret;
if (!ksz886x_cable_test_fault_length_valid(val))
return 0;
return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair],
ksz886x_cable_test_fault_length(val));
}
static int ksz886x_cable_test_get_status(struct phy_device *phydev,
bool *finished)
{
unsigned long pair_mask = 0x3;
int retries = 20;
int pair, ret;
*finished = false;
/* Try harder if link partner is active */
while (pair_mask && retries--) {
for_each_set_bit(pair, &pair_mask, 4) {
ret = ksz886x_cable_test_one_pair(phydev, pair);
if (ret == -EAGAIN)
continue;
if (ret < 0)
return ret;
clear_bit(pair, &pair_mask);
}
/* If link partner is in autonegotiation mode it will send 2ms
* of FLPs with at least 6ms of silence.
* Add 2ms sleep to have better chances to hit this silence.
*/
if (pair_mask)
msleep(2);
}
*finished = true;
return ret;
}
#define LAN_EXT_PAGE_ACCESS_CONTROL 0x16
#define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17
#define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000
#define LAN8814_QSGMII_SOFT_RESET 0x43
#define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0)
#define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13
#define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3)
#define LAN8814_ALIGN_SWAP 0x4a
#define LAN8814_ALIGN_TX_A_B_SWAP 0x1
#define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0)
#define LAN8804_ALIGN_SWAP 0x4a
#define LAN8804_ALIGN_TX_A_B_SWAP 0x1
#define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0)
#define LAN8814_CLOCK_MANAGEMENT 0xd
#define LAN8814_LINK_QUALITY 0x8e
static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr)
{
u32 data;
phy_lock_mdio_bus(phydev);
__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
(page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA);
phy_unlock_mdio_bus(phydev);
return data;
}
static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr,
u16 val)
{
phy_lock_mdio_bus(phydev);
__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC);
val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val);
if (val != 0)
phydev_err(phydev, "Error: phy_write has returned error %d\n",
val);
phy_unlock_mdio_bus(phydev);
return val;
}
static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable)
{
u16 val = 0;
if (enable)
val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ |
PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ |
PTP_TSU_INT_EN_PTP_RX_TS_EN_ |
PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_;
return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val);
}
static void lan8814_ptp_rx_ts_get(struct phy_device *phydev,
u32 *seconds, u32 *nano_seconds, u16 *seq_id)
{
*seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI);
*seconds = (*seconds << 16) |
lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO);
*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI);
*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO);
*seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2);
}
static void lan8814_ptp_tx_ts_get(struct phy_device *phydev,
u32 *seconds, u32 *nano_seconds, u16 *seq_id)
{
*seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI);
*seconds = *seconds << 16 |
lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO);
*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI);
*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO);
*seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2);
}
static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info)
{
struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
struct phy_device *phydev = ptp_priv->phydev;
struct lan8814_shared_priv *shared = phydev->shared->priv;
info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE;
info->phc_index = ptp_clock_index(shared->ptp_clock);
info->tx_types =
(1 << HWTSTAMP_TX_OFF) |
(1 << HWTSTAMP_TX_ON) |
(1 << HWTSTAMP_TX_ONESTEP_SYNC);
info->rx_filters =
(1 << HWTSTAMP_FILTER_NONE) |
(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
return 0;
}
static void lan8814_flush_fifo(struct phy_device *phydev, bool egress)
{
int i;
for (i = 0; i < FIFO_SIZE; ++i)
lanphy_read_page_reg(phydev, 5,
egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2);
/* Read to clear overflow status bit */
lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
}
static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr)
{
struct kszphy_ptp_priv *ptp_priv =
container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
struct phy_device *phydev = ptp_priv->phydev;
struct lan8814_shared_priv *shared = phydev->shared->priv;
struct lan8814_ptp_rx_ts *rx_ts, *tmp;
struct hwtstamp_config config;
int txcfg = 0, rxcfg = 0;
int pkt_ts_enable;
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
return -EFAULT;
ptp_priv->hwts_tx_type = config.tx_type;
ptp_priv->rx_filter = config.rx_filter;
switch (config.rx_filter) {
case HWTSTAMP_FILTER_NONE:
ptp_priv->layer = 0;
ptp_priv->version = 0;
break;
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
ptp_priv->layer = PTP_CLASS_L4;
ptp_priv->version = PTP_CLASS_V2;
break;
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
ptp_priv->layer = PTP_CLASS_L2;
ptp_priv->version = PTP_CLASS_V2;
break;
case HWTSTAMP_FILTER_PTP_V2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
ptp_priv->version = PTP_CLASS_V2;
break;
default:
return -ERANGE;
}
if (ptp_priv->layer & PTP_CLASS_L2) {
rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_;
txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_;
} else if (ptp_priv->layer & PTP_CLASS_L4) {
rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
}
lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg);
lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg);
pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC)
lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
if (config.rx_filter != HWTSTAMP_FILTER_NONE)
lan8814_config_ts_intr(ptp_priv->phydev, true);
else
lan8814_config_ts_intr(ptp_priv->phydev, false);
mutex_lock(&shared->shared_lock);
if (config.rx_filter != HWTSTAMP_FILTER_NONE)
shared->ref++;
else
shared->ref--;
if (shared->ref)
lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
PTP_CMD_CTL_PTP_ENABLE_);
else
lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
PTP_CMD_CTL_PTP_DISABLE_);
mutex_unlock(&shared->shared_lock);
/* In case of multiple starts and stops, these needs to be cleared */
list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
list_del(&rx_ts->list);
kfree(rx_ts);
}
skb_queue_purge(&ptp_priv->rx_queue);
skb_queue_purge(&ptp_priv->tx_queue);
lan8814_flush_fifo(ptp_priv->phydev, false);
lan8814_flush_fifo(ptp_priv->phydev, true);
return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0;
}
static void lan8814_txtstamp(struct mii_timestamper *mii_ts,
struct sk_buff *skb, int type)
{
struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
switch (ptp_priv->hwts_tx_type) {
case HWTSTAMP_TX_ONESTEP_SYNC:
if (ptp_msg_is_sync(skb, type)) {
kfree_skb(skb);
return;
}
fallthrough;
case HWTSTAMP_TX_ON:
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
skb_queue_tail(&ptp_priv->tx_queue, skb);
break;
case HWTSTAMP_TX_OFF:
default:
kfree_skb(skb);
break;
}
}
static void lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig)
{
struct ptp_header *ptp_header;
u32 type;
skb_push(skb, ETH_HLEN);
type = ptp_classify_raw(skb);
ptp_header = ptp_parse_header(skb, type);
skb_pull_inline(skb, ETH_HLEN);
*sig = (__force u16)(ntohs(ptp_header->sequence_id));
}
static bool lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv,
struct sk_buff *skb)
{
struct skb_shared_hwtstamps *shhwtstamps;
struct lan8814_ptp_rx_ts *rx_ts, *tmp;
unsigned long flags;
bool ret = false;
u16 skb_sig;
lan8814_get_sig_rx(skb, &skb_sig);
/* Iterate over all RX timestamps and match it with the received skbs */
spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
/* Check if we found the signature we were looking for. */
if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
continue;
shhwtstamps = skb_hwtstamps(skb);
memset(shhwtstamps, 0, sizeof(*shhwtstamps));
shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds,
rx_ts->nsec);
list_del(&rx_ts->list);
kfree(rx_ts);
ret = true;
break;
}
spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
if (ret)
netif_rx(skb);
return ret;
}
static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type)
{
struct kszphy_ptp_priv *ptp_priv =
container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
type == PTP_CLASS_NONE)
return false;
if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
return false;
/* If we failed to match then add it to the queue for when the timestamp
* will come
*/
if (!lan8814_match_rx_ts(ptp_priv, skb))
skb_queue_tail(&ptp_priv->rx_queue, skb);
return true;
}
static void lan8814_ptp_clock_set(struct phy_device *phydev,
u32 seconds, u32 nano_seconds)
{
u32 sec_low, sec_high, nsec_low, nsec_high;
sec_low = seconds & 0xffff;
sec_high = (seconds >> 16) & 0xffff;
nsec_low = nano_seconds & 0xffff;
nsec_high = (nano_seconds >> 16) & 0x3fff;
lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, sec_low);
lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, sec_high);
lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, nsec_low);
lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, nsec_high);
lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_);
}
static void lan8814_ptp_clock_get(struct phy_device *phydev,
u32 *seconds, u32 *nano_seconds)
{
lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_);
*seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID);
*seconds = (*seconds << 16) |
lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO);
*nano_seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI);
*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO);
}
static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci,
struct timespec64 *ts)
{
struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
ptp_clock_info);
struct phy_device *phydev = shared->phydev;
u32 nano_seconds;
u32 seconds;
mutex_lock(&shared->shared_lock);
lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds);
mutex_unlock(&shared->shared_lock);
ts->tv_sec = seconds;
ts->tv_nsec = nano_seconds;
return 0;
}
static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci,
const struct timespec64 *ts)
{
struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
ptp_clock_info);
struct phy_device *phydev = shared->phydev;
mutex_lock(&shared->shared_lock);
lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec);
mutex_unlock(&shared->shared_lock);
return 0;
}
static void lan8814_ptp_clock_step(struct phy_device *phydev,
s64 time_step_ns)
{
u32 nano_seconds_step;
u64 abs_time_step_ns;
u32 unsigned_seconds;
u32 nano_seconds;
u32 remainder;
s32 seconds;
if (time_step_ns > 15000000000LL) {
/* convert to clock set */
lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds);
unsigned_seconds += div_u64_rem(time_step_ns, 1000000000LL,
&remainder);
nano_seconds += remainder;
if (nano_seconds >= 1000000000) {
unsigned_seconds++;
nano_seconds -= 1000000000;
}
lan8814_ptp_clock_set(phydev, unsigned_seconds, nano_seconds);
return;
} else if (time_step_ns < -15000000000LL) {
/* convert to clock set */
time_step_ns = -time_step_ns;
lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds);
unsigned_seconds -= div_u64_rem(time_step_ns, 1000000000LL,
&remainder);
nano_seconds_step = remainder;
if (nano_seconds < nano_seconds_step) {
unsigned_seconds--;
nano_seconds += 1000000000;
}
nano_seconds -= nano_seconds_step;
lan8814_ptp_clock_set(phydev, unsigned_seconds,
nano_seconds);
return;
}
/* do clock step */
if (time_step_ns >= 0) {
abs_time_step_ns = (u64)time_step_ns;
seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000,
&remainder);
nano_seconds = remainder;
} else {
abs_time_step_ns = (u64)(-time_step_ns);
seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000,
&remainder));
nano_seconds = remainder;
if (nano_seconds > 0) {
/* subtracting nano seconds is not allowed
* convert to subtracting from seconds,
* and adding to nanoseconds
*/
seconds--;
nano_seconds = (1000000000 - nano_seconds);
}
}
if (nano_seconds > 0) {
/* add 8 ns to cover the likely normal increment */
nano_seconds += 8;
}
if (nano_seconds >= 1000000000) {
/* carry into seconds */
seconds++;
nano_seconds -= 1000000000;
}
while (seconds) {
if (seconds > 0) {
u32 adjustment_value = (u32)seconds;
u16 adjustment_value_lo, adjustment_value_hi;
if (adjustment_value > 0xF)
adjustment_value = 0xF;
adjustment_value_lo = adjustment_value & 0xffff;
adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
adjustment_value_lo);
lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
PTP_LTC_STEP_ADJ_DIR_ |
adjustment_value_hi);
seconds -= ((s32)adjustment_value);
} else {
u32 adjustment_value = (u32)(-seconds);
u16 adjustment_value_lo, adjustment_value_hi;
if (adjustment_value > 0xF)
adjustment_value = 0xF;
adjustment_value_lo = adjustment_value & 0xffff;
adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
adjustment_value_lo);
lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
adjustment_value_hi);
seconds += ((s32)adjustment_value);
}
lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
PTP_CMD_CTL_PTP_LTC_STEP_SEC_);
}
if (nano_seconds) {
u16 nano_seconds_lo;
u16 nano_seconds_hi;
nano_seconds_lo = nano_seconds & 0xffff;
nano_seconds_hi = (nano_seconds >> 16) & 0x3fff;
lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
nano_seconds_lo);
lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
PTP_LTC_STEP_ADJ_DIR_ |
nano_seconds_hi);
lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
PTP_CMD_CTL_PTP_LTC_STEP_NSEC_);
}
}
static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta)
{
struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
ptp_clock_info);
struct phy_device *phydev = shared->phydev;
mutex_lock(&shared->shared_lock);
lan8814_ptp_clock_step(phydev, delta);
mutex_unlock(&shared->shared_lock);
return 0;
}
static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm)
{
struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
ptp_clock_info);
struct phy_device *phydev = shared->phydev;
u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi;
bool positive = true;
u32 kszphy_rate_adj;
if (scaled_ppm < 0) {
scaled_ppm = -scaled_ppm;
positive = false;
}
kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16);
kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16;
kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff;
kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff;
if (positive)
kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_;
mutex_lock(&shared->shared_lock);
lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi);
lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo);
mutex_unlock(&shared->shared_lock);
return 0;
}
static void lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig)
{
struct ptp_header *ptp_header;
u32 type;
type = ptp_classify_raw(skb);
ptp_header = ptp_parse_header(skb, type);
*sig = (__force u16)(ntohs(ptp_header->sequence_id));
}
static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv)
{
struct phy_device *phydev = ptp_priv->phydev;
struct skb_shared_hwtstamps shhwtstamps;
struct sk_buff *skb, *skb_tmp;
unsigned long flags;
u32 seconds, nsec;
bool ret = false;
u16 skb_sig;
u16 seq_id;
lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id);
spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags);
skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) {
lan8814_get_sig_tx(skb, &skb_sig);
if (memcmp(&skb_sig, &seq_id, sizeof(seq_id)))
continue;
__skb_unlink(skb, &ptp_priv->tx_queue);
ret = true;
break;
}
spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags);
if (ret) {
memset(&shhwtstamps, 0, sizeof(shhwtstamps));
shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
skb_complete_tx_timestamp(skb, &shhwtstamps);
}
}
static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv)
{
struct phy_device *phydev = ptp_priv->phydev;
u32 reg;
do {
lan8814_dequeue_tx_skb(ptp_priv);
/* If other timestamps are available in the FIFO,
* process them.
*/
reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
} while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0);
}
static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv,
struct lan8814_ptp_rx_ts *rx_ts)
{
struct skb_shared_hwtstamps *shhwtstamps;
struct sk_buff *skb, *skb_tmp;
unsigned long flags;
bool ret = false;
u16 skb_sig;
spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags);
skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) {
lan8814_get_sig_rx(skb, &skb_sig);
if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
continue;
__skb_unlink(skb, &ptp_priv->rx_queue);
ret = true;
break;
}
spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags);
if (ret) {
shhwtstamps = skb_hwtstamps(skb);
memset(shhwtstamps, 0, sizeof(*shhwtstamps));
shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
netif_rx(skb);
}
return ret;
}
static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
{
struct phy_device *phydev = ptp_priv->phydev;
struct lan8814_ptp_rx_ts *rx_ts;
unsigned long flags;
u32 reg;
do {
rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
if (!rx_ts)
return;
lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec,
&rx_ts->seq_id);
/* If we failed to match the skb add it to the queue for when
* the frame will come
*/
if (!lan8814_match_skb(ptp_priv, rx_ts)) {
spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
list_add(&rx_ts->list, &ptp_priv->rx_ts_list);
spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
} else {
kfree(rx_ts);
}
/* If other timestamps are available in the FIFO,
* process them.
*/
reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
} while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0);
}
static void lan8814_handle_ptp_interrupt(struct phy_device *phydev)
{
struct kszphy_priv *priv = phydev->priv;
struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
u16 status;
status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
lan8814_get_tx_ts(ptp_priv);
if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
lan8814_get_rx_ts(ptp_priv);
if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
lan8814_flush_fifo(phydev, true);
skb_queue_purge(&ptp_priv->tx_queue);
}
if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
lan8814_flush_fifo(phydev, false);
skb_queue_purge(&ptp_priv->rx_queue);
}
}
static int lan8804_config_init(struct phy_device *phydev)
{
int val;
/* MDI-X setting for swap A,B transmit */
val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP);
val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK;
val |= LAN8804_ALIGN_TX_A_B_SWAP;
lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val);
/* Make sure that the PHY will not stop generating the clock when the
* link partner goes down
*/
lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e);
lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY);
return 0;
}
static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev)
{
u16 tsu_irq_status;
int irq_status;
irq_status = phy_read(phydev, LAN8814_INTS);
if (irq_status > 0 && (irq_status & LAN8814_INT_LINK))
phy_trigger_machine(phydev);
if (irq_status < 0) {
phy_error(phydev);
return IRQ_NONE;
}
while (1) {
tsu_irq_status = lanphy_read_page_reg(phydev, 4,
LAN8814_INTR_STS_REG);
if (tsu_irq_status > 0 &&
(tsu_irq_status & (LAN8814_INTR_STS_REG_1588_TSU0_ |
LAN8814_INTR_STS_REG_1588_TSU1_ |
LAN8814_INTR_STS_REG_1588_TSU2_ |
LAN8814_INTR_STS_REG_1588_TSU3_)))
lan8814_handle_ptp_interrupt(phydev);
else
break;
}
return IRQ_HANDLED;
}
static int lan8814_ack_interrupt(struct phy_device *phydev)
{
/* bit[12..0] int status, which is a read and clear register. */
int rc;
rc = phy_read(phydev, LAN8814_INTS);
return (rc < 0) ? rc : 0;
}
static int lan8814_config_intr(struct phy_device *phydev)
{
int err;
lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG,
LAN8814_INTR_CTRL_REG_POLARITY |
LAN8814_INTR_CTRL_REG_INTR_ENABLE);
/* enable / disable interrupts */
if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
err = lan8814_ack_interrupt(phydev);
if (err)
return err;
err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
} else {
err = phy_write(phydev, LAN8814_INTC, 0);
if (err)
return err;
err = lan8814_ack_interrupt(phydev);
}
return err;
}
static void lan8814_ptp_init(struct phy_device *phydev)
{
struct kszphy_priv *priv = phydev->priv;
struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
u32 temp;
lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_);
temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD);
temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp);
temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD);
temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp);
lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0);
lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0);
/* Removing default registers configs related to L2 and IP */
lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0);
lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0);
lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0);
lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0);
skb_queue_head_init(&ptp_priv->tx_queue);
skb_queue_head_init(&ptp_priv->rx_queue);
INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
spin_lock_init(&ptp_priv->rx_ts_lock);
ptp_priv->phydev = phydev;
ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp;
ptp_priv->mii_ts.ts_info = lan8814_ts_info;
phydev->mii_ts = &ptp_priv->mii_ts;
}
static int lan8814_ptp_probe_once(struct phy_device *phydev)
{
struct lan8814_shared_priv *shared = phydev->shared->priv;
/* Initialise shared lock for clock*/
mutex_init(&shared->shared_lock);
shared->ptp_clock_info.owner = THIS_MODULE;
snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name);
shared->ptp_clock_info.max_adj = 31249999;
shared->ptp_clock_info.n_alarm = 0;
shared->ptp_clock_info.n_ext_ts = 0;
shared->ptp_clock_info.n_pins = 0;
shared->ptp_clock_info.pps = 0;
shared->ptp_clock_info.pin_config = NULL;
shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine;
shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime;
shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64;
shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64;
shared->ptp_clock_info.getcrosststamp = NULL;
shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info,
&phydev->mdio.dev);
if (IS_ERR_OR_NULL(shared->ptp_clock)) {
phydev_err(phydev, "ptp_clock_register failed %lu\n",
PTR_ERR(shared->ptp_clock));
return -EINVAL;
}
phydev_dbg(phydev, "successfully registered ptp clock\n");
shared->phydev = phydev;
/* The EP.4 is shared between all the PHYs in the package and also it
* can be accessed by any of the PHYs
*/
lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_);
lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE,
PTP_OPERATING_MODE_STANDALONE_);
return 0;
}
static int lan8814_read_status(struct phy_device *phydev)
{
struct kszphy_priv *priv = phydev->priv;
struct kszphy_latencies *latencies = &priv->latencies;
int err;
int regval;
err = genphy_read_status(phydev);
if (err)
return err;
switch (phydev->speed) {
case SPEED_1000:
lanphy_write_page_reg(phydev, 5, PTP_RX_LATENCY_1000,
latencies->rx_1000);
lanphy_write_page_reg(phydev, 5, PTP_TX_LATENCY_1000,
latencies->tx_1000);
break;
case SPEED_100:
lanphy_write_page_reg(phydev, 5, PTP_RX_LATENCY_100,
latencies->rx_100);
lanphy_write_page_reg(phydev, 5, PTP_TX_LATENCY_100,
latencies->tx_100);
break;
case SPEED_10:
lanphy_write_page_reg(phydev, 5, PTP_RX_LATENCY_10,
latencies->rx_10);
lanphy_write_page_reg(phydev, 5, PTP_TX_LATENCY_10,
latencies->tx_10);
break;
default:
break;
}
/* Make sure the PHY is not broken. Read idle error count,
* and reset the PHY if it is maxed out.
*/
regval = phy_read(phydev, MII_STAT1000);
if ((regval & 0xFF) == 0xFF) {
phy_init_hw(phydev);
phydev->link = 0;
if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev))
phydev->drv->config_intr(phydev);
return genphy_config_aneg(phydev);
}
return 0;
}
static int lan8814_config_init(struct phy_device *phydev)
{
int val;
/* Reset the PHY */
val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET);
val |= LAN8814_QSGMII_SOFT_RESET_BIT;
lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val);
/* Disable ANEG with QSGMII PCS Host side */
val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG);
val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA;
lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val);
/* MDI-X setting for swap A,B transmit */
val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP);
val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK;
val |= LAN8814_ALIGN_TX_A_B_SWAP;
lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val);
return 0;
}
static void lan8814_parse_latency(struct phy_device *phydev)
{
const struct device_node *np = phydev->mdio.dev.of_node;
struct kszphy_priv *priv = phydev->priv;
struct kszphy_latencies *latency = &priv->latencies;
u32 val;
if (!of_property_read_u32(np, "lan8814,latency_rx_10", &val))
latency->rx_10 = val;
if (!of_property_read_u32(np, "lan8814,latency_tx_10", &val))
latency->tx_10 = val;
if (!of_property_read_u32(np, "lan8814,latency_rx_100", &val))
latency->rx_100 = val;
if (!of_property_read_u32(np, "lan8814,latency_tx_100", &val))
latency->tx_100 = val;
if (!of_property_read_u32(np, "lan8814,latency_rx_1000", &val))
latency->rx_1000 = val;
if (!of_property_read_u32(np, "lan8814,latency_tx_1000", &val))
latency->tx_1000 = val;
}
static int lan8814_probe(struct phy_device *phydev)
{
const struct device_node *np = phydev->mdio.dev.of_node;
struct kszphy_priv *priv;
u16 addr;
int err;
priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->led_mode = -1;
priv->latencies = lan8814_latencies;
phydev->priv = priv;
if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING) ||
of_property_read_bool(np, "lan8814,ignore-ts"))
return 0;
/* Strap-in value for PHY address, below register read gives starting
* phy address value
*/
addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F;
devm_phy_package_join(&phydev->mdio.dev, phydev,
addr, sizeof(struct lan8814_shared_priv));
if (phy_package_init_once(phydev)) {
err = lan8814_ptp_probe_once(phydev);
if (err)
return err;
}
lan8814_parse_latency(phydev);
lan8814_ptp_init(phydev);
return 0;
}
static struct phy_driver ksphy_driver[] = {
{
.phy_id = PHY_ID_KS8737,
.phy_id_mask = MICREL_PHY_ID_MASK,
.name = "Micrel KS8737",
/* PHY_BASIC_FEATURES */
.driver_data = &ks8737_type,
.config_init = kszphy_config_init,
.config_intr = kszphy_config_intr,
.handle_interrupt = kszphy_handle_interrupt,
.suspend = kszphy_suspend,
.resume = kszphy_resume,
}, {
.phy_id = PHY_ID_KSZ8021,
.phy_id_mask = 0x00ffffff,
.name = "Micrel KSZ8021 or KSZ8031",
/* PHY_BASIC_FEATURES */
.driver_data = &ksz8021_type,
.probe = kszphy_probe,
.config_init = kszphy_config_init,
.config_intr = kszphy_config_intr,
.handle_interrupt = kszphy_handle_interrupt,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.suspend = kszphy_suspend,
.resume = kszphy_resume,
}, {
.phy_id = PHY_ID_KSZ8031,
.phy_id_mask = 0x00ffffff,
.name = "Micrel KSZ8031",
/* PHY_BASIC_FEATURES */
.driver_data = &ksz8021_type,
.probe = kszphy_probe,
.config_init = kszphy_config_init,
.config_intr = kszphy_config_intr,
.handle_interrupt = kszphy_handle_interrupt,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.suspend = kszphy_suspend,
.resume = kszphy_resume,
}, {
.phy_id = PHY_ID_KSZ8041,
.phy_id_mask = MICREL_PHY_ID_MASK,
.name = "Micrel KSZ8041",
/* PHY_BASIC_FEATURES */
.driver_data = &ksz8041_type,
.probe = kszphy_probe,
.config_init = ksz8041_config_init,
.config_aneg = ksz8041_config_aneg,
.config_intr = kszphy_config_intr,
.handle_interrupt = kszphy_handle_interrupt,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
/* No suspend/resume callbacks because of errata DS80000700A,
* receiver error following software power down.
*/
}, {
.phy_id = PHY_ID_KSZ8041RNLI,
.phy_id_mask = MICREL_PHY_ID_MASK,
.name = "Micrel KSZ8041RNLI",
/* PHY_BASIC_FEATURES */
.driver_data = &ksz8041_type,
.probe = kszphy_probe,
.config_init = kszphy_config_init,
.config_intr = kszphy_config_intr,
.handle_interrupt = kszphy_handle_interrupt,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.suspend = kszphy_suspend,
.resume = kszphy_resume,
}, {
.name = "Micrel KSZ8051",
/* PHY_BASIC_FEATURES */
.driver_data = &ksz8051_type,
.probe = kszphy_probe,
.config_init = kszphy_config_init,
.config_intr = kszphy_config_intr,
.handle_interrupt = kszphy_handle_interrupt,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.match_phy_device = ksz8051_match_phy_device,
.suspend = kszphy_suspend,
.resume = kszphy_resume,
}, {
.phy_id = PHY_ID_KSZ8001,
.name = "Micrel KSZ8001 or KS8721",
.phy_id_mask = 0x00fffffc,
/* PHY_BASIC_FEATURES */
.driver_data = &ksz8041_type,
.probe = kszphy_probe,
.config_init = kszphy_config_init,
.config_intr = kszphy_config_intr,
.handle_interrupt = kszphy_handle_interrupt,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.suspend = kszphy_suspend,
.resume = kszphy_resume,
}, {
.phy_id = PHY_ID_KSZ8081,
.name = "Micrel KSZ8081 or KSZ8091",
.phy_id_mask = MICREL_PHY_ID_MASK,
.flags = PHY_POLL_CABLE_TEST,
/* PHY_BASIC_FEATURES */
.driver_data = &ksz8081_type,
.probe = kszphy_probe,
.config_init = ksz8081_config_init,
.soft_reset = genphy_soft_reset,
.config_aneg = ksz8081_config_aneg,
.read_status = ksz8081_read_status,
.config_intr = kszphy_config_intr,
.handle_interrupt = kszphy_handle_interrupt,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.suspend = kszphy_suspend,
.resume = kszphy_resume,
.cable_test_start = ksz886x_cable_test_start,
.cable_test_get_status = ksz886x_cable_test_get_status,
}, {
.phy_id = PHY_ID_KSZ8061,
.name = "Micrel KSZ8061",
.phy_id_mask = MICREL_PHY_ID_MASK,
/* PHY_BASIC_FEATURES */
.config_init = ksz8061_config_init,
.config_intr = kszphy_config_intr,
.handle_interrupt = kszphy_handle_interrupt,
.suspend = kszphy_suspend,
.resume = kszphy_resume,
}, {
.phy_id = PHY_ID_KSZ9021,
.phy_id_mask = 0x000ffffe,
.name = "Micrel KSZ9021 Gigabit PHY",
/* PHY_GBIT_FEATURES */
.driver_data = &ksz9021_type,
.probe = kszphy_probe,
.get_features = ksz9031_get_features,
.config_init = ksz9021_config_init,
.config_intr = kszphy_config_intr,
.handle_interrupt = kszphy_handle_interrupt,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.suspend = kszphy_suspend,
.resume = kszphy_resume,
.read_mmd = genphy_read_mmd_unsupported,
.write_mmd = genphy_write_mmd_unsupported,
}, {
.phy_id = PHY_ID_KSZ9031,
.phy_id_mask = MICREL_PHY_ID_MASK,
.name = "Micrel KSZ9031 Gigabit PHY",
.driver_data = &ksz9021_type,
.probe = kszphy_probe,
.get_features = ksz9031_get_features,
.config_init = ksz9031_config_init,
.soft_reset = genphy_soft_reset,
.read_status = ksz9031_read_status,
.config_intr = kszphy_config_intr,
.handle_interrupt = kszphy_handle_interrupt,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.suspend = kszphy_suspend,
.resume = kszphy_resume,
}, {
.phy_id = PHY_ID_LAN8814,
.phy_id_mask = MICREL_PHY_ID_MASK,
.name = "Microchip INDY Gigabit Quad PHY",
.config_init = lan8814_config_init,
.probe = lan8814_probe,
.soft_reset = genphy_soft_reset,
.read_status = lan8814_read_status,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.suspend = genphy_suspend,
.resume = kszphy_resume,
.config_intr = lan8814_config_intr,
.handle_interrupt = lan8814_handle_interrupt,
}, {
.phy_id = PHY_ID_LAN8804,
.phy_id_mask = MICREL_PHY_ID_MASK,
.name = "Microchip LAN966X Gigabit PHY",
.config_init = lan8804_config_init,
.driver_data = &ksz9021_type,
.probe = kszphy_probe,
.soft_reset = genphy_soft_reset,
.read_status = ksz9031_read_status,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.suspend = genphy_suspend,
.resume = kszphy_resume,
}, {
.phy_id = PHY_ID_KSZ9131,
.phy_id_mask = MICREL_PHY_ID_MASK,
.name = "Microchip KSZ9131 Gigabit PHY",
/* PHY_GBIT_FEATURES */
.driver_data = &ksz9021_type,
.probe = kszphy_probe,
.config_init = ksz9131_config_init,
.config_intr = kszphy_config_intr,
.handle_interrupt = kszphy_handle_interrupt,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.suspend = kszphy_suspend,
.resume = kszphy_resume,
}, {
.phy_id = PHY_ID_KSZ8873MLL,
.phy_id_mask = MICREL_PHY_ID_MASK,
.name = "Micrel KSZ8873MLL Switch",
/* PHY_BASIC_FEATURES */
.config_init = kszphy_config_init,
.config_aneg = ksz8873mll_config_aneg,
.read_status = ksz8873mll_read_status,
.suspend = genphy_suspend,
.resume = genphy_resume,
}, {
.phy_id = PHY_ID_KSZ886X,
.phy_id_mask = MICREL_PHY_ID_MASK,
.name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch",
/* PHY_BASIC_FEATURES */
.flags = PHY_POLL_CABLE_TEST,
.config_init = kszphy_config_init,
.config_aneg = ksz886x_config_aneg,
.read_status = ksz886x_read_status,
.suspend = genphy_suspend,
.resume = genphy_resume,
.cable_test_start = ksz886x_cable_test_start,
.cable_test_get_status = ksz886x_cable_test_get_status,
}, {
.name = "Micrel KSZ87XX Switch",
/* PHY_BASIC_FEATURES */
.config_init = kszphy_config_init,
.match_phy_device = ksz8795_match_phy_device,
.suspend = genphy_suspend,
.resume = genphy_resume,
}, {
.phy_id = PHY_ID_KSZ9477,
.phy_id_mask = MICREL_PHY_ID_MASK,
.name = "Microchip KSZ9477",
/* PHY_GBIT_FEATURES */
.config_init = kszphy_config_init,
.suspend = genphy_suspend,
.resume = genphy_resume,
} };
module_phy_driver(ksphy_driver);
MODULE_DESCRIPTION("Micrel PHY driver");
MODULE_AUTHOR("David J. Choi");
MODULE_LICENSE("GPL");
static struct mdio_device_id __maybe_unused micrel_tbl[] = {
{ PHY_ID_KSZ9021, 0x000ffffe },
{ PHY_ID_KSZ9031, MICREL_PHY_ID_MASK },
{ PHY_ID_KSZ9131, MICREL_PHY_ID_MASK },
{ PHY_ID_KSZ8001, 0x00fffffc },
{ PHY_ID_KS8737, MICREL_PHY_ID_MASK },
{ PHY_ID_KSZ8021, 0x00ffffff },
{ PHY_ID_KSZ8031, 0x00ffffff },
{ PHY_ID_KSZ8041, MICREL_PHY_ID_MASK },
{ PHY_ID_KSZ8051, MICREL_PHY_ID_MASK },
{ PHY_ID_KSZ8061, MICREL_PHY_ID_MASK },
{ PHY_ID_KSZ8081, MICREL_PHY_ID_MASK },
{ PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK },
{ PHY_ID_KSZ886X, MICREL_PHY_ID_MASK },
{ PHY_ID_LAN8814, MICREL_PHY_ID_MASK },
{ PHY_ID_LAN8804, MICREL_PHY_ID_MASK },
{ }
};
MODULE_DEVICE_TABLE(mdio, micrel_tbl);