blob: b2f4ec9c537f0037e3fa5b7d8ceef7beabc9e6aa [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* xfrm_input.c
*
* Changes:
* YOSHIFUJI Hideaki @USAGI
* Split up af-specific portion
*
*/
#include <linux/bottom_half.h>
#include <linux/cache.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/percpu.h>
#include <net/dst.h>
#include <net/ip.h>
#include <net/xfrm.h>
#include <net/ip_tunnels.h>
#include <net/ip6_tunnel.h>
#include "xfrm_inout.h"
struct xfrm_trans_tasklet {
struct tasklet_struct tasklet;
struct sk_buff_head queue;
};
struct xfrm_trans_cb {
union {
struct inet_skb_parm h4;
#if IS_ENABLED(CONFIG_IPV6)
struct inet6_skb_parm h6;
#endif
} header;
int (*finish)(struct net *net, struct sock *sk, struct sk_buff *skb);
struct net *net;
};
#define XFRM_TRANS_SKB_CB(__skb) ((struct xfrm_trans_cb *)&((__skb)->cb[0]))
static DEFINE_SPINLOCK(xfrm_input_afinfo_lock);
static struct xfrm_input_afinfo const __rcu *xfrm_input_afinfo[2][AF_INET6 + 1];
static struct gro_cells gro_cells;
static struct net_device xfrm_napi_dev;
static DEFINE_PER_CPU(struct xfrm_trans_tasklet, xfrm_trans_tasklet);
int xfrm_input_register_afinfo(const struct xfrm_input_afinfo *afinfo)
{
int err = 0;
if (WARN_ON(afinfo->family > AF_INET6))
return -EAFNOSUPPORT;
spin_lock_bh(&xfrm_input_afinfo_lock);
if (unlikely(xfrm_input_afinfo[afinfo->is_ipip][afinfo->family]))
err = -EEXIST;
else
rcu_assign_pointer(xfrm_input_afinfo[afinfo->is_ipip][afinfo->family], afinfo);
spin_unlock_bh(&xfrm_input_afinfo_lock);
return err;
}
EXPORT_SYMBOL(xfrm_input_register_afinfo);
int xfrm_input_unregister_afinfo(const struct xfrm_input_afinfo *afinfo)
{
int err = 0;
spin_lock_bh(&xfrm_input_afinfo_lock);
if (likely(xfrm_input_afinfo[afinfo->is_ipip][afinfo->family])) {
if (unlikely(xfrm_input_afinfo[afinfo->is_ipip][afinfo->family] != afinfo))
err = -EINVAL;
else
RCU_INIT_POINTER(xfrm_input_afinfo[afinfo->is_ipip][afinfo->family], NULL);
}
spin_unlock_bh(&xfrm_input_afinfo_lock);
synchronize_rcu();
return err;
}
EXPORT_SYMBOL(xfrm_input_unregister_afinfo);
static const struct xfrm_input_afinfo *xfrm_input_get_afinfo(u8 family, bool is_ipip)
{
const struct xfrm_input_afinfo *afinfo;
if (WARN_ON_ONCE(family > AF_INET6))
return NULL;
rcu_read_lock();
afinfo = rcu_dereference(xfrm_input_afinfo[is_ipip][family]);
if (unlikely(!afinfo))
rcu_read_unlock();
return afinfo;
}
static int xfrm_rcv_cb(struct sk_buff *skb, unsigned int family, u8 protocol,
int err)
{
bool is_ipip = (protocol == IPPROTO_IPIP || protocol == IPPROTO_IPV6);
const struct xfrm_input_afinfo *afinfo;
int ret;
afinfo = xfrm_input_get_afinfo(family, is_ipip);
if (!afinfo)
return -EAFNOSUPPORT;
ret = afinfo->callback(skb, protocol, err);
rcu_read_unlock();
return ret;
}
struct sec_path *secpath_set(struct sk_buff *skb)
{
struct sec_path *sp, *tmp = skb_ext_find(skb, SKB_EXT_SEC_PATH);
sp = skb_ext_add(skb, SKB_EXT_SEC_PATH);
if (!sp)
return NULL;
if (tmp) /* reused existing one (was COW'd if needed) */
return sp;
/* allocated new secpath */
memset(sp->ovec, 0, sizeof(sp->ovec));
sp->olen = 0;
sp->len = 0;
return sp;
}
EXPORT_SYMBOL(secpath_set);
/* Fetch spi and seq from ipsec header */
int xfrm_parse_spi(struct sk_buff *skb, u8 nexthdr, __be32 *spi, __be32 *seq)
{
int offset, offset_seq;
int hlen;
switch (nexthdr) {
case IPPROTO_AH:
hlen = sizeof(struct ip_auth_hdr);
offset = offsetof(struct ip_auth_hdr, spi);
offset_seq = offsetof(struct ip_auth_hdr, seq_no);
break;
case IPPROTO_ESP:
hlen = sizeof(struct ip_esp_hdr);
offset = offsetof(struct ip_esp_hdr, spi);
offset_seq = offsetof(struct ip_esp_hdr, seq_no);
break;
case IPPROTO_COMP:
if (!pskb_may_pull(skb, sizeof(struct ip_comp_hdr)))
return -EINVAL;
*spi = htonl(ntohs(*(__be16 *)(skb_transport_header(skb) + 2)));
*seq = 0;
return 0;
default:
return 1;
}
if (!pskb_may_pull(skb, hlen))
return -EINVAL;
*spi = *(__be32 *)(skb_transport_header(skb) + offset);
*seq = *(__be32 *)(skb_transport_header(skb) + offset_seq);
return 0;
}
EXPORT_SYMBOL(xfrm_parse_spi);
static int xfrm4_remove_beet_encap(struct xfrm_state *x, struct sk_buff *skb)
{
struct iphdr *iph;
int optlen = 0;
int err = -EINVAL;
if (unlikely(XFRM_MODE_SKB_CB(skb)->protocol == IPPROTO_BEETPH)) {
struct ip_beet_phdr *ph;
int phlen;
if (!pskb_may_pull(skb, sizeof(*ph)))
goto out;
ph = (struct ip_beet_phdr *)skb->data;
phlen = sizeof(*ph) + ph->padlen;
optlen = ph->hdrlen * 8 + (IPV4_BEET_PHMAXLEN - phlen);
if (optlen < 0 || optlen & 3 || optlen > 250)
goto out;
XFRM_MODE_SKB_CB(skb)->protocol = ph->nexthdr;
if (!pskb_may_pull(skb, phlen))
goto out;
__skb_pull(skb, phlen);
}
skb_push(skb, sizeof(*iph));
skb_reset_network_header(skb);
skb_mac_header_rebuild(skb);
xfrm4_beet_make_header(skb);
iph = ip_hdr(skb);
iph->ihl += optlen / 4;
iph->tot_len = htons(skb->len);
iph->daddr = x->sel.daddr.a4;
iph->saddr = x->sel.saddr.a4;
iph->check = 0;
iph->check = ip_fast_csum(skb_network_header(skb), iph->ihl);
err = 0;
out:
return err;
}
static void ipip_ecn_decapsulate(struct sk_buff *skb)
{
struct iphdr *inner_iph = ipip_hdr(skb);
if (INET_ECN_is_ce(XFRM_MODE_SKB_CB(skb)->tos))
IP_ECN_set_ce(inner_iph);
}
static int xfrm4_remove_tunnel_encap(struct xfrm_state *x, struct sk_buff *skb)
{
int err = -EINVAL;
if (XFRM_MODE_SKB_CB(skb)->protocol != IPPROTO_IPIP)
goto out;
if (!pskb_may_pull(skb, sizeof(struct iphdr)))
goto out;
err = skb_unclone(skb, GFP_ATOMIC);
if (err)
goto out;
if (x->props.flags & XFRM_STATE_DECAP_DSCP)
ipv4_copy_dscp(XFRM_MODE_SKB_CB(skb)->tos, ipip_hdr(skb));
if (!(x->props.flags & XFRM_STATE_NOECN))
ipip_ecn_decapsulate(skb);
skb_reset_network_header(skb);
skb_mac_header_rebuild(skb);
if (skb->mac_len)
eth_hdr(skb)->h_proto = skb->protocol;
err = 0;
out:
return err;
}
static void ipip6_ecn_decapsulate(struct sk_buff *skb)
{
struct ipv6hdr *inner_iph = ipipv6_hdr(skb);
if (INET_ECN_is_ce(XFRM_MODE_SKB_CB(skb)->tos))
IP6_ECN_set_ce(skb, inner_iph);
}
static int xfrm6_remove_tunnel_encap(struct xfrm_state *x, struct sk_buff *skb)
{
int err = -EINVAL;
if (XFRM_MODE_SKB_CB(skb)->protocol != IPPROTO_IPV6)
goto out;
if (!pskb_may_pull(skb, sizeof(struct ipv6hdr)))
goto out;
err = skb_unclone(skb, GFP_ATOMIC);
if (err)
goto out;
if (x->props.flags & XFRM_STATE_DECAP_DSCP)
ipv6_copy_dscp(ipv6_get_dsfield(ipv6_hdr(skb)),
ipipv6_hdr(skb));
if (!(x->props.flags & XFRM_STATE_NOECN))
ipip6_ecn_decapsulate(skb);
skb_reset_network_header(skb);
skb_mac_header_rebuild(skb);
if (skb->mac_len)
eth_hdr(skb)->h_proto = skb->protocol;
err = 0;
out:
return err;
}
static int xfrm6_remove_beet_encap(struct xfrm_state *x, struct sk_buff *skb)
{
struct ipv6hdr *ip6h;
int size = sizeof(struct ipv6hdr);
int err;
err = skb_cow_head(skb, size + skb->mac_len);
if (err)
goto out;
__skb_push(skb, size);
skb_reset_network_header(skb);
skb_mac_header_rebuild(skb);
xfrm6_beet_make_header(skb);
ip6h = ipv6_hdr(skb);
ip6h->payload_len = htons(skb->len - size);
ip6h->daddr = x->sel.daddr.in6;
ip6h->saddr = x->sel.saddr.in6;
err = 0;
out:
return err;
}
/* Remove encapsulation header.
*
* The IP header will be moved over the top of the encapsulation
* header.
*
* On entry, the transport header shall point to where the IP header
* should be and the network header shall be set to where the IP
* header currently is. skb->data shall point to the start of the
* payload.
*/
static int
xfrm_inner_mode_encap_remove(struct xfrm_state *x,
const struct xfrm_mode *inner_mode,
struct sk_buff *skb)
{
switch (inner_mode->encap) {
case XFRM_MODE_BEET:
if (inner_mode->family == AF_INET)
return xfrm4_remove_beet_encap(x, skb);
if (inner_mode->family == AF_INET6)
return xfrm6_remove_beet_encap(x, skb);
break;
case XFRM_MODE_TUNNEL:
if (inner_mode->family == AF_INET)
return xfrm4_remove_tunnel_encap(x, skb);
if (inner_mode->family == AF_INET6)
return xfrm6_remove_tunnel_encap(x, skb);
break;
}
WARN_ON_ONCE(1);
return -EOPNOTSUPP;
}
static int xfrm_prepare_input(struct xfrm_state *x, struct sk_buff *skb)
{
const struct xfrm_mode *inner_mode = &x->inner_mode;
switch (x->outer_mode.family) {
case AF_INET:
xfrm4_extract_header(skb);
break;
case AF_INET6:
xfrm6_extract_header(skb);
break;
default:
WARN_ON_ONCE(1);
return -EAFNOSUPPORT;
}
if (x->sel.family == AF_UNSPEC) {
inner_mode = xfrm_ip2inner_mode(x, XFRM_MODE_SKB_CB(skb)->protocol);
if (!inner_mode)
return -EAFNOSUPPORT;
}
switch (inner_mode->family) {
case AF_INET:
skb->protocol = htons(ETH_P_IP);
break;
case AF_INET6:
skb->protocol = htons(ETH_P_IPV6);
break;
default:
WARN_ON_ONCE(1);
break;
}
return xfrm_inner_mode_encap_remove(x, inner_mode, skb);
}
/* Remove encapsulation header.
*
* The IP header will be moved over the top of the encapsulation header.
*
* On entry, skb_transport_header() shall point to where the IP header
* should be and skb_network_header() shall be set to where the IP header
* currently is. skb->data shall point to the start of the payload.
*/
static int xfrm4_transport_input(struct xfrm_state *x, struct sk_buff *skb)
{
int ihl = skb->data - skb_transport_header(skb);
if (skb->transport_header != skb->network_header) {
memmove(skb_transport_header(skb),
skb_network_header(skb), ihl);
skb->network_header = skb->transport_header;
}
ip_hdr(skb)->tot_len = htons(skb->len + ihl);
skb_reset_transport_header(skb);
return 0;
}
static int xfrm6_transport_input(struct xfrm_state *x, struct sk_buff *skb)
{
#if IS_ENABLED(CONFIG_IPV6)
int ihl = skb->data - skb_transport_header(skb);
if (skb->transport_header != skb->network_header) {
memmove(skb_transport_header(skb),
skb_network_header(skb), ihl);
skb->network_header = skb->transport_header;
}
ipv6_hdr(skb)->payload_len = htons(skb->len + ihl -
sizeof(struct ipv6hdr));
skb_reset_transport_header(skb);
return 0;
#else
WARN_ON_ONCE(1);
return -EAFNOSUPPORT;
#endif
}
static int xfrm_inner_mode_input(struct xfrm_state *x,
const struct xfrm_mode *inner_mode,
struct sk_buff *skb)
{
switch (inner_mode->encap) {
case XFRM_MODE_BEET:
case XFRM_MODE_TUNNEL:
return xfrm_prepare_input(x, skb);
case XFRM_MODE_TRANSPORT:
if (inner_mode->family == AF_INET)
return xfrm4_transport_input(x, skb);
if (inner_mode->family == AF_INET6)
return xfrm6_transport_input(x, skb);
break;
case XFRM_MODE_ROUTEOPTIMIZATION:
WARN_ON_ONCE(1);
break;
default:
WARN_ON_ONCE(1);
break;
}
return -EOPNOTSUPP;
}
int xfrm_input(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type)
{
const struct xfrm_state_afinfo *afinfo;
struct net *net = dev_net(skb->dev);
const struct xfrm_mode *inner_mode;
int err;
__be32 seq;
__be32 seq_hi;
struct xfrm_state *x = NULL;
xfrm_address_t *daddr;
u32 mark = skb->mark;
unsigned int family = AF_UNSPEC;
int decaps = 0;
int async = 0;
bool xfrm_gro = false;
bool crypto_done = false;
struct xfrm_offload *xo = xfrm_offload(skb);
struct sec_path *sp;
if (encap_type < 0) {
x = xfrm_input_state(skb);
if (unlikely(x->km.state != XFRM_STATE_VALID)) {
if (x->km.state == XFRM_STATE_ACQ)
XFRM_INC_STATS(net, LINUX_MIB_XFRMACQUIREERROR);
else
XFRM_INC_STATS(net,
LINUX_MIB_XFRMINSTATEINVALID);
if (encap_type == -1)
dev_put(skb->dev);
goto drop;
}
family = x->outer_mode.family;
/* An encap_type of -1 indicates async resumption. */
if (encap_type == -1) {
async = 1;
seq = XFRM_SKB_CB(skb)->seq.input.low;
goto resume;
}
/* encap_type < -1 indicates a GRO call. */
encap_type = 0;
seq = XFRM_SPI_SKB_CB(skb)->seq;
if (xo && (xo->flags & CRYPTO_DONE)) {
crypto_done = true;
family = XFRM_SPI_SKB_CB(skb)->family;
if (!(xo->status & CRYPTO_SUCCESS)) {
if (xo->status &
(CRYPTO_TRANSPORT_AH_AUTH_FAILED |
CRYPTO_TRANSPORT_ESP_AUTH_FAILED |
CRYPTO_TUNNEL_AH_AUTH_FAILED |
CRYPTO_TUNNEL_ESP_AUTH_FAILED)) {
xfrm_audit_state_icvfail(x, skb,
x->type->proto);
x->stats.integrity_failed++;
XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEPROTOERROR);
goto drop;
}
if (xo->status & CRYPTO_INVALID_PROTOCOL) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEPROTOERROR);
goto drop;
}
XFRM_INC_STATS(net, LINUX_MIB_XFRMINBUFFERERROR);
goto drop;
}
if (xfrm_parse_spi(skb, nexthdr, &spi, &seq)) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMINHDRERROR);
goto drop;
}
}
goto lock;
}
family = XFRM_SPI_SKB_CB(skb)->family;
/* if tunnel is present override skb->mark value with tunnel i_key */
switch (family) {
case AF_INET:
if (XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip4)
mark = be32_to_cpu(XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip4->parms.i_key);
break;
case AF_INET6:
if (XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip6)
mark = be32_to_cpu(XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip6->parms.i_key);
break;
}
sp = secpath_set(skb);
if (!sp) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMINERROR);
goto drop;
}
seq = 0;
if (!spi && xfrm_parse_spi(skb, nexthdr, &spi, &seq)) {
secpath_reset(skb);
XFRM_INC_STATS(net, LINUX_MIB_XFRMINHDRERROR);
goto drop;
}
daddr = (xfrm_address_t *)(skb_network_header(skb) +
XFRM_SPI_SKB_CB(skb)->daddroff);
do {
sp = skb_sec_path(skb);
if (sp->len == XFRM_MAX_DEPTH) {
secpath_reset(skb);
XFRM_INC_STATS(net, LINUX_MIB_XFRMINBUFFERERROR);
goto drop;
}
x = xfrm_state_lookup(net, mark, daddr, spi, nexthdr, family);
if (x == NULL) {
secpath_reset(skb);
XFRM_INC_STATS(net, LINUX_MIB_XFRMINNOSTATES);
xfrm_audit_state_notfound(skb, family, spi, seq);
goto drop;
}
skb->mark = xfrm_smark_get(skb->mark, x);
sp->xvec[sp->len++] = x;
skb_dst_force(skb);
if (!skb_dst(skb)) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMINERROR);
goto drop;
}
lock:
spin_lock(&x->lock);
if (unlikely(x->km.state != XFRM_STATE_VALID)) {
if (x->km.state == XFRM_STATE_ACQ)
XFRM_INC_STATS(net, LINUX_MIB_XFRMACQUIREERROR);
else
XFRM_INC_STATS(net,
LINUX_MIB_XFRMINSTATEINVALID);
goto drop_unlock;
}
if ((x->encap ? x->encap->encap_type : 0) != encap_type) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEMISMATCH);
goto drop_unlock;
}
if (xfrm_replay_check(x, skb, seq)) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATESEQERROR);
goto drop_unlock;
}
if (xfrm_state_check_expire(x)) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEEXPIRED);
goto drop_unlock;
}
spin_unlock(&x->lock);
if (xfrm_tunnel_check(skb, x, family)) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEMODEERROR);
goto drop;
}
seq_hi = htonl(xfrm_replay_seqhi(x, seq));
XFRM_SKB_CB(skb)->seq.input.low = seq;
XFRM_SKB_CB(skb)->seq.input.hi = seq_hi;
dev_hold(skb->dev);
if (crypto_done)
nexthdr = x->type_offload->input_tail(x, skb);
else
nexthdr = x->type->input(x, skb);
if (nexthdr == -EINPROGRESS)
return 0;
resume:
dev_put(skb->dev);
spin_lock(&x->lock);
if (nexthdr < 0) {
if (nexthdr == -EBADMSG) {
xfrm_audit_state_icvfail(x, skb,
x->type->proto);
x->stats.integrity_failed++;
}
XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEPROTOERROR);
goto drop_unlock;
}
/* only the first xfrm gets the encap type */
encap_type = 0;
if (xfrm_replay_recheck(x, skb, seq)) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATESEQERROR);
goto drop_unlock;
}
xfrm_replay_advance(x, seq);
x->curlft.bytes += skb->len;
x->curlft.packets++;
spin_unlock(&x->lock);
XFRM_MODE_SKB_CB(skb)->protocol = nexthdr;
inner_mode = &x->inner_mode;
if (x->sel.family == AF_UNSPEC) {
inner_mode = xfrm_ip2inner_mode(x, XFRM_MODE_SKB_CB(skb)->protocol);
if (inner_mode == NULL) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEMODEERROR);
goto drop;
}
}
if (xfrm_inner_mode_input(x, inner_mode, skb)) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEMODEERROR);
goto drop;
}
if (x->outer_mode.flags & XFRM_MODE_FLAG_TUNNEL) {
decaps = 1;
break;
}
/*
* We need the inner address. However, we only get here for
* transport mode so the outer address is identical.
*/
daddr = &x->id.daddr;
family = x->outer_mode.family;
err = xfrm_parse_spi(skb, nexthdr, &spi, &seq);
if (err < 0) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMINHDRERROR);
goto drop;
}
crypto_done = false;
} while (!err);
err = xfrm_rcv_cb(skb, family, x->type->proto, 0);
if (err)
goto drop;
nf_reset_ct(skb);
if (decaps) {
sp = skb_sec_path(skb);
if (sp)
sp->olen = 0;
skb_dst_drop(skb);
gro_cells_receive(&gro_cells, skb);
return 0;
} else {
xo = xfrm_offload(skb);
if (xo)
xfrm_gro = xo->flags & XFRM_GRO;
err = -EAFNOSUPPORT;
rcu_read_lock();
afinfo = xfrm_state_afinfo_get_rcu(x->inner_mode.family);
if (likely(afinfo))
err = afinfo->transport_finish(skb, xfrm_gro || async);
rcu_read_unlock();
if (xfrm_gro) {
sp = skb_sec_path(skb);
if (sp)
sp->olen = 0;
skb_dst_drop(skb);
gro_cells_receive(&gro_cells, skb);
return err;
}
return err;
}
drop_unlock:
spin_unlock(&x->lock);
drop:
xfrm_rcv_cb(skb, family, x && x->type ? x->type->proto : nexthdr, -1);
kfree_skb(skb);
return 0;
}
EXPORT_SYMBOL(xfrm_input);
int xfrm_input_resume(struct sk_buff *skb, int nexthdr)
{
return xfrm_input(skb, nexthdr, 0, -1);
}
EXPORT_SYMBOL(xfrm_input_resume);
static void xfrm_trans_reinject(struct tasklet_struct *t)
{
struct xfrm_trans_tasklet *trans = from_tasklet(trans, t, tasklet);
struct sk_buff_head queue;
struct sk_buff *skb;
__skb_queue_head_init(&queue);
skb_queue_splice_init(&trans->queue, &queue);
while ((skb = __skb_dequeue(&queue)))
XFRM_TRANS_SKB_CB(skb)->finish(XFRM_TRANS_SKB_CB(skb)->net,
NULL, skb);
}
int xfrm_trans_queue_net(struct net *net, struct sk_buff *skb,
int (*finish)(struct net *, struct sock *,
struct sk_buff *))
{
struct xfrm_trans_tasklet *trans;
trans = this_cpu_ptr(&xfrm_trans_tasklet);
if (skb_queue_len(&trans->queue) >= READ_ONCE(netdev_max_backlog))
return -ENOBUFS;
BUILD_BUG_ON(sizeof(struct xfrm_trans_cb) > sizeof(skb->cb));
XFRM_TRANS_SKB_CB(skb)->finish = finish;
XFRM_TRANS_SKB_CB(skb)->net = net;
__skb_queue_tail(&trans->queue, skb);
tasklet_schedule(&trans->tasklet);
return 0;
}
EXPORT_SYMBOL(xfrm_trans_queue_net);
int xfrm_trans_queue(struct sk_buff *skb,
int (*finish)(struct net *, struct sock *,
struct sk_buff *))
{
return xfrm_trans_queue_net(dev_net(skb->dev), skb, finish);
}
EXPORT_SYMBOL(xfrm_trans_queue);
void __init xfrm_input_init(void)
{
int err;
int i;
init_dummy_netdev(&xfrm_napi_dev);
err = gro_cells_init(&gro_cells, &xfrm_napi_dev);
if (err)
gro_cells.cells = NULL;
for_each_possible_cpu(i) {
struct xfrm_trans_tasklet *trans;
trans = &per_cpu(xfrm_trans_tasklet, i);
__skb_queue_head_init(&trans->queue);
tasklet_setup(&trans->tasklet, xfrm_trans_reinject);
}
}