blob: 895d89bea7faa68f6d9d11f24c8068fcb1b64b1a [file] [log] [blame]
/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#define SWSMU_CODE_LAYER_L2
#include <linux/firmware.h>
#include <linux/pci.h>
#include <linux/i2c.h>
#include "amdgpu.h"
#include "amdgpu_smu.h"
#include "atomfirmware.h"
#include "amdgpu_atomfirmware.h"
#include "amdgpu_atombios.h"
#include "smu_v11_0.h"
#include "smu11_driver_if_sienna_cichlid.h"
#include "soc15_common.h"
#include "atom.h"
#include "sienna_cichlid_ppt.h"
#include "smu_v11_0_7_pptable.h"
#include "smu_v11_0_7_ppsmc.h"
#include "nbio/nbio_2_3_offset.h"
#include "nbio/nbio_2_3_sh_mask.h"
#include "thm/thm_11_0_2_offset.h"
#include "thm/thm_11_0_2_sh_mask.h"
#include "mp/mp_11_0_offset.h"
#include "mp/mp_11_0_sh_mask.h"
#include "asic_reg/mp/mp_11_0_sh_mask.h"
#include "smu_cmn.h"
/*
* DO NOT use these for err/warn/info/debug messages.
* Use dev_err, dev_warn, dev_info and dev_dbg instead.
* They are more MGPU friendly.
*/
#undef pr_err
#undef pr_warn
#undef pr_info
#undef pr_debug
#define to_amdgpu_device(x) (container_of(x, struct amdgpu_device, pm.smu_i2c))
#define FEATURE_MASK(feature) (1ULL << feature)
#define SMC_DPM_FEATURE ( \
FEATURE_MASK(FEATURE_DPM_PREFETCHER_BIT) | \
FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT) | \
FEATURE_MASK(FEATURE_DPM_UCLK_BIT) | \
FEATURE_MASK(FEATURE_DPM_LINK_BIT) | \
FEATURE_MASK(FEATURE_DPM_SOCCLK_BIT) | \
FEATURE_MASK(FEATURE_DPM_FCLK_BIT) | \
FEATURE_MASK(FEATURE_DPM_DCEFCLK_BIT) | \
FEATURE_MASK(FEATURE_DPM_MP0CLK_BIT))
#define SMU_11_0_7_GFX_BUSY_THRESHOLD 15
static struct cmn2asic_msg_mapping sienna_cichlid_message_map[SMU_MSG_MAX_COUNT] = {
MSG_MAP(TestMessage, PPSMC_MSG_TestMessage, 1),
MSG_MAP(GetSmuVersion, PPSMC_MSG_GetSmuVersion, 1),
MSG_MAP(GetDriverIfVersion, PPSMC_MSG_GetDriverIfVersion, 1),
MSG_MAP(SetAllowedFeaturesMaskLow, PPSMC_MSG_SetAllowedFeaturesMaskLow, 0),
MSG_MAP(SetAllowedFeaturesMaskHigh, PPSMC_MSG_SetAllowedFeaturesMaskHigh, 0),
MSG_MAP(EnableAllSmuFeatures, PPSMC_MSG_EnableAllSmuFeatures, 0),
MSG_MAP(DisableAllSmuFeatures, PPSMC_MSG_DisableAllSmuFeatures, 0),
MSG_MAP(EnableSmuFeaturesLow, PPSMC_MSG_EnableSmuFeaturesLow, 1),
MSG_MAP(EnableSmuFeaturesHigh, PPSMC_MSG_EnableSmuFeaturesHigh, 1),
MSG_MAP(DisableSmuFeaturesLow, PPSMC_MSG_DisableSmuFeaturesLow, 1),
MSG_MAP(DisableSmuFeaturesHigh, PPSMC_MSG_DisableSmuFeaturesHigh, 1),
MSG_MAP(GetEnabledSmuFeaturesLow, PPSMC_MSG_GetRunningSmuFeaturesLow, 1),
MSG_MAP(GetEnabledSmuFeaturesHigh, PPSMC_MSG_GetRunningSmuFeaturesHigh, 1),
MSG_MAP(SetWorkloadMask, PPSMC_MSG_SetWorkloadMask, 1),
MSG_MAP(SetPptLimit, PPSMC_MSG_SetPptLimit, 0),
MSG_MAP(SetDriverDramAddrHigh, PPSMC_MSG_SetDriverDramAddrHigh, 0),
MSG_MAP(SetDriverDramAddrLow, PPSMC_MSG_SetDriverDramAddrLow, 0),
MSG_MAP(SetToolsDramAddrHigh, PPSMC_MSG_SetToolsDramAddrHigh, 0),
MSG_MAP(SetToolsDramAddrLow, PPSMC_MSG_SetToolsDramAddrLow, 0),
MSG_MAP(TransferTableSmu2Dram, PPSMC_MSG_TransferTableSmu2Dram, 0),
MSG_MAP(TransferTableDram2Smu, PPSMC_MSG_TransferTableDram2Smu, 0),
MSG_MAP(UseDefaultPPTable, PPSMC_MSG_UseDefaultPPTable, 0),
MSG_MAP(RunDcBtc, PPSMC_MSG_RunDcBtc, 0),
MSG_MAP(EnterBaco, PPSMC_MSG_EnterBaco, 0),
MSG_MAP(SetSoftMinByFreq, PPSMC_MSG_SetSoftMinByFreq, 0),
MSG_MAP(SetSoftMaxByFreq, PPSMC_MSG_SetSoftMaxByFreq, 0),
MSG_MAP(SetHardMinByFreq, PPSMC_MSG_SetHardMinByFreq, 1),
MSG_MAP(SetHardMaxByFreq, PPSMC_MSG_SetHardMaxByFreq, 0),
MSG_MAP(GetMinDpmFreq, PPSMC_MSG_GetMinDpmFreq, 1),
MSG_MAP(GetMaxDpmFreq, PPSMC_MSG_GetMaxDpmFreq, 1),
MSG_MAP(GetDpmFreqByIndex, PPSMC_MSG_GetDpmFreqByIndex, 1),
MSG_MAP(SetGeminiMode, PPSMC_MSG_SetGeminiMode, 0),
MSG_MAP(SetGeminiApertureHigh, PPSMC_MSG_SetGeminiApertureHigh, 0),
MSG_MAP(SetGeminiApertureLow, PPSMC_MSG_SetGeminiApertureLow, 0),
MSG_MAP(OverridePcieParameters, PPSMC_MSG_OverridePcieParameters, 0),
MSG_MAP(ReenableAcDcInterrupt, PPSMC_MSG_ReenableAcDcInterrupt, 0),
MSG_MAP(NotifyPowerSource, PPSMC_MSG_NotifyPowerSource, 0),
MSG_MAP(SetUclkFastSwitch, PPSMC_MSG_SetUclkFastSwitch, 0),
MSG_MAP(SetVideoFps, PPSMC_MSG_SetVideoFps, 0),
MSG_MAP(PrepareMp1ForUnload, PPSMC_MSG_PrepareMp1ForUnload, 1),
MSG_MAP(AllowGfxOff, PPSMC_MSG_AllowGfxOff, 0),
MSG_MAP(DisallowGfxOff, PPSMC_MSG_DisallowGfxOff, 0),
MSG_MAP(GetPptLimit, PPSMC_MSG_GetPptLimit, 0),
MSG_MAP(GetDcModeMaxDpmFreq, PPSMC_MSG_GetDcModeMaxDpmFreq, 1),
MSG_MAP(ExitBaco, PPSMC_MSG_ExitBaco, 0),
MSG_MAP(PowerUpVcn, PPSMC_MSG_PowerUpVcn, 0),
MSG_MAP(PowerDownVcn, PPSMC_MSG_PowerDownVcn, 0),
MSG_MAP(PowerUpJpeg, PPSMC_MSG_PowerUpJpeg, 0),
MSG_MAP(PowerDownJpeg, PPSMC_MSG_PowerDownJpeg, 0),
MSG_MAP(BacoAudioD3PME, PPSMC_MSG_BacoAudioD3PME, 0),
MSG_MAP(ArmD3, PPSMC_MSG_ArmD3, 0),
MSG_MAP(Mode1Reset, PPSMC_MSG_Mode1Reset, 0),
MSG_MAP(SetMGpuFanBoostLimitRpm, PPSMC_MSG_SetMGpuFanBoostLimitRpm, 0),
};
static struct cmn2asic_mapping sienna_cichlid_clk_map[SMU_CLK_COUNT] = {
CLK_MAP(GFXCLK, PPCLK_GFXCLK),
CLK_MAP(SCLK, PPCLK_GFXCLK),
CLK_MAP(SOCCLK, PPCLK_SOCCLK),
CLK_MAP(FCLK, PPCLK_FCLK),
CLK_MAP(UCLK, PPCLK_UCLK),
CLK_MAP(MCLK, PPCLK_UCLK),
CLK_MAP(DCLK, PPCLK_DCLK_0),
CLK_MAP(DCLK1, PPCLK_DCLK_1),
CLK_MAP(VCLK, PPCLK_VCLK_0),
CLK_MAP(VCLK1, PPCLK_VCLK_1),
CLK_MAP(DCEFCLK, PPCLK_DCEFCLK),
CLK_MAP(DISPCLK, PPCLK_DISPCLK),
CLK_MAP(PIXCLK, PPCLK_PIXCLK),
CLK_MAP(PHYCLK, PPCLK_PHYCLK),
};
static struct cmn2asic_mapping sienna_cichlid_feature_mask_map[SMU_FEATURE_COUNT] = {
FEA_MAP(DPM_PREFETCHER),
FEA_MAP(DPM_GFXCLK),
FEA_MAP(DPM_GFX_GPO),
FEA_MAP(DPM_UCLK),
FEA_MAP(DPM_FCLK),
FEA_MAP(DPM_SOCCLK),
FEA_MAP(DPM_MP0CLK),
FEA_MAP(DPM_LINK),
FEA_MAP(DPM_DCEFCLK),
FEA_MAP(DPM_XGMI),
FEA_MAP(MEM_VDDCI_SCALING),
FEA_MAP(MEM_MVDD_SCALING),
FEA_MAP(DS_GFXCLK),
FEA_MAP(DS_SOCCLK),
FEA_MAP(DS_FCLK),
FEA_MAP(DS_LCLK),
FEA_MAP(DS_DCEFCLK),
FEA_MAP(DS_UCLK),
FEA_MAP(GFX_ULV),
FEA_MAP(FW_DSTATE),
FEA_MAP(GFXOFF),
FEA_MAP(BACO),
FEA_MAP(MM_DPM_PG),
FEA_MAP(RSMU_SMN_CG),
FEA_MAP(PPT),
FEA_MAP(TDC),
FEA_MAP(APCC_PLUS),
FEA_MAP(GTHR),
FEA_MAP(ACDC),
FEA_MAP(VR0HOT),
FEA_MAP(VR1HOT),
FEA_MAP(FW_CTF),
FEA_MAP(FAN_CONTROL),
FEA_MAP(THERMAL),
FEA_MAP(GFX_DCS),
FEA_MAP(RM),
FEA_MAP(LED_DISPLAY),
FEA_MAP(GFX_SS),
FEA_MAP(OUT_OF_BAND_MONITOR),
FEA_MAP(TEMP_DEPENDENT_VMIN),
FEA_MAP(MMHUB_PG),
FEA_MAP(ATHUB_PG),
FEA_MAP(APCC_DFLL),
};
static struct cmn2asic_mapping sienna_cichlid_table_map[SMU_TABLE_COUNT] = {
TAB_MAP(PPTABLE),
TAB_MAP(WATERMARKS),
TAB_MAP(AVFS_PSM_DEBUG),
TAB_MAP(AVFS_FUSE_OVERRIDE),
TAB_MAP(PMSTATUSLOG),
TAB_MAP(SMU_METRICS),
TAB_MAP(DRIVER_SMU_CONFIG),
TAB_MAP(ACTIVITY_MONITOR_COEFF),
TAB_MAP(OVERDRIVE),
TAB_MAP(I2C_COMMANDS),
TAB_MAP(PACE),
};
static struct cmn2asic_mapping sienna_cichlid_pwr_src_map[SMU_POWER_SOURCE_COUNT] = {
PWR_MAP(AC),
PWR_MAP(DC),
};
static struct cmn2asic_mapping sienna_cichlid_workload_map[PP_SMC_POWER_PROFILE_COUNT] = {
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT, WORKLOAD_PPLIB_DEFAULT_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_FULLSCREEN3D, WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_POWERSAVING, WORKLOAD_PPLIB_POWER_SAVING_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VIDEO, WORKLOAD_PPLIB_VIDEO_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VR, WORKLOAD_PPLIB_VR_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_COMPUTE, WORKLOAD_PPLIB_CUSTOM_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_CUSTOM, WORKLOAD_PPLIB_CUSTOM_BIT),
};
static int
sienna_cichlid_get_allowed_feature_mask(struct smu_context *smu,
uint32_t *feature_mask, uint32_t num)
{
struct amdgpu_device *adev = smu->adev;
if (num > 2)
return -EINVAL;
memset(feature_mask, 0, sizeof(uint32_t) * num);
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_PREFETCHER_BIT)
| FEATURE_MASK(FEATURE_DPM_FCLK_BIT)
| FEATURE_MASK(FEATURE_DPM_MP0CLK_BIT)
| FEATURE_MASK(FEATURE_DS_SOCCLK_BIT)
| FEATURE_MASK(FEATURE_DS_DCEFCLK_BIT)
| FEATURE_MASK(FEATURE_DS_FCLK_BIT)
| FEATURE_MASK(FEATURE_DS_UCLK_BIT)
| FEATURE_MASK(FEATURE_FW_DSTATE_BIT)
| FEATURE_MASK(FEATURE_DF_CSTATE_BIT)
| FEATURE_MASK(FEATURE_RSMU_SMN_CG_BIT)
| FEATURE_MASK(FEATURE_GFX_SS_BIT)
| FEATURE_MASK(FEATURE_VR0HOT_BIT)
| FEATURE_MASK(FEATURE_PPT_BIT)
| FEATURE_MASK(FEATURE_TDC_BIT)
| FEATURE_MASK(FEATURE_BACO_BIT)
| FEATURE_MASK(FEATURE_APCC_DFLL_BIT)
| FEATURE_MASK(FEATURE_FW_CTF_BIT)
| FEATURE_MASK(FEATURE_FAN_CONTROL_BIT)
| FEATURE_MASK(FEATURE_THERMAL_BIT)
| FEATURE_MASK(FEATURE_OUT_OF_BAND_MONITOR_BIT);
if (adev->pm.pp_feature & PP_SCLK_DPM_MASK) {
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT);
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_GFX_GPO_BIT);
}
if (adev->pm.pp_feature & PP_MCLK_DPM_MASK)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_UCLK_BIT)
| FEATURE_MASK(FEATURE_MEM_VDDCI_SCALING_BIT)
| FEATURE_MASK(FEATURE_MEM_MVDD_SCALING_BIT);
if (adev->pm.pp_feature & PP_PCIE_DPM_MASK)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_LINK_BIT);
if (adev->pm.pp_feature & PP_DCEFCLK_DPM_MASK)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_DCEFCLK_BIT);
if (adev->pm.pp_feature & PP_SOCCLK_DPM_MASK)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_SOCCLK_BIT);
if (adev->pm.pp_feature & PP_ULV_MASK)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_GFX_ULV_BIT);
if (adev->pm.pp_feature & PP_SCLK_DEEP_SLEEP_MASK)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DS_GFXCLK_BIT);
if (adev->pm.pp_feature & PP_GFXOFF_MASK)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_GFXOFF_BIT);
if (smu->adev->pg_flags & AMD_PG_SUPPORT_ATHUB)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_ATHUB_PG_BIT);
if (smu->adev->pg_flags & AMD_PG_SUPPORT_MMHUB)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_MMHUB_PG_BIT);
if (smu->adev->pg_flags & AMD_PG_SUPPORT_VCN ||
smu->adev->pg_flags & AMD_PG_SUPPORT_JPEG)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_MM_DPM_PG_BIT);
return 0;
}
static int sienna_cichlid_check_powerplay_table(struct smu_context *smu)
{
struct smu_table_context *table_context = &smu->smu_table;
struct smu_11_0_7_powerplay_table *powerplay_table =
table_context->power_play_table;
struct smu_baco_context *smu_baco = &smu->smu_baco;
if (powerplay_table->platform_caps & SMU_11_0_7_PP_PLATFORM_CAP_BACO ||
powerplay_table->platform_caps & SMU_11_0_7_PP_PLATFORM_CAP_MACO)
smu_baco->platform_support = true;
table_context->thermal_controller_type =
powerplay_table->thermal_controller_type;
return 0;
}
static int sienna_cichlid_append_powerplay_table(struct smu_context *smu)
{
struct smu_table_context *table_context = &smu->smu_table;
PPTable_t *smc_pptable = table_context->driver_pptable;
struct atom_smc_dpm_info_v4_9 *smc_dpm_table;
int index, ret;
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
smc_dpm_info);
ret = amdgpu_atombios_get_data_table(smu->adev, index, NULL, NULL, NULL,
(uint8_t **)&smc_dpm_table);
if (ret)
return ret;
memcpy(smc_pptable->I2cControllers, smc_dpm_table->I2cControllers,
sizeof(*smc_dpm_table) - sizeof(smc_dpm_table->table_header));
return 0;
}
static int sienna_cichlid_store_powerplay_table(struct smu_context *smu)
{
struct smu_table_context *table_context = &smu->smu_table;
struct smu_11_0_7_powerplay_table *powerplay_table =
table_context->power_play_table;
memcpy(table_context->driver_pptable, &powerplay_table->smc_pptable,
sizeof(PPTable_t));
return 0;
}
static int sienna_cichlid_setup_pptable(struct smu_context *smu)
{
int ret = 0;
ret = smu_v11_0_setup_pptable(smu);
if (ret)
return ret;
ret = sienna_cichlid_store_powerplay_table(smu);
if (ret)
return ret;
ret = sienna_cichlid_append_powerplay_table(smu);
if (ret)
return ret;
ret = sienna_cichlid_check_powerplay_table(smu);
if (ret)
return ret;
return ret;
}
static int sienna_cichlid_tables_init(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *tables = smu_table->tables;
SMU_TABLE_INIT(tables, SMU_TABLE_PPTABLE, sizeof(PPTable_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_WATERMARKS, sizeof(Watermarks_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_I2C_COMMANDS, sizeof(SwI2cRequest_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_OVERDRIVE, sizeof(OverDriveTable_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_PMSTATUSLOG, SMU11_TOOL_SIZE,
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_ACTIVITY_MONITOR_COEFF,
sizeof(DpmActivityMonitorCoeffInt_t), PAGE_SIZE,
AMDGPU_GEM_DOMAIN_VRAM);
smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL);
if (!smu_table->metrics_table)
goto err0_out;
smu_table->metrics_time = 0;
smu_table->gpu_metrics_table_size = sizeof(struct gpu_metrics_v1_0);
smu_table->gpu_metrics_table = kzalloc(smu_table->gpu_metrics_table_size, GFP_KERNEL);
if (!smu_table->gpu_metrics_table)
goto err1_out;
smu_table->watermarks_table = kzalloc(sizeof(Watermarks_t), GFP_KERNEL);
if (!smu_table->watermarks_table)
goto err2_out;
return 0;
err2_out:
kfree(smu_table->gpu_metrics_table);
err1_out:
kfree(smu_table->metrics_table);
err0_out:
return -ENOMEM;
}
static int sienna_cichlid_get_smu_metrics_data(struct smu_context *smu,
MetricsMember_t member,
uint32_t *value)
{
struct smu_table_context *smu_table= &smu->smu_table;
SmuMetrics_t *metrics = (SmuMetrics_t *)smu_table->metrics_table;
int ret = 0;
mutex_lock(&smu->metrics_lock);
ret = smu_cmn_get_metrics_table_locked(smu,
NULL,
false);
if (ret) {
mutex_unlock(&smu->metrics_lock);
return ret;
}
switch (member) {
case METRICS_CURR_GFXCLK:
*value = metrics->CurrClock[PPCLK_GFXCLK];
break;
case METRICS_CURR_SOCCLK:
*value = metrics->CurrClock[PPCLK_SOCCLK];
break;
case METRICS_CURR_UCLK:
*value = metrics->CurrClock[PPCLK_UCLK];
break;
case METRICS_CURR_VCLK:
*value = metrics->CurrClock[PPCLK_VCLK_0];
break;
case METRICS_CURR_VCLK1:
*value = metrics->CurrClock[PPCLK_VCLK_1];
break;
case METRICS_CURR_DCLK:
*value = metrics->CurrClock[PPCLK_DCLK_0];
break;
case METRICS_CURR_DCLK1:
*value = metrics->CurrClock[PPCLK_DCLK_1];
break;
case METRICS_CURR_DCEFCLK:
*value = metrics->CurrClock[PPCLK_DCEFCLK];
break;
case METRICS_CURR_FCLK:
*value = metrics->CurrClock[PPCLK_FCLK];
break;
case METRICS_AVERAGE_GFXCLK:
if (metrics->AverageGfxActivity <= SMU_11_0_7_GFX_BUSY_THRESHOLD)
*value = metrics->AverageGfxclkFrequencyPostDs;
else
*value = metrics->AverageGfxclkFrequencyPreDs;
break;
case METRICS_AVERAGE_FCLK:
*value = metrics->AverageFclkFrequencyPostDs;
break;
case METRICS_AVERAGE_UCLK:
*value = metrics->AverageUclkFrequencyPostDs;
break;
case METRICS_AVERAGE_GFXACTIVITY:
*value = metrics->AverageGfxActivity;
break;
case METRICS_AVERAGE_MEMACTIVITY:
*value = metrics->AverageUclkActivity;
break;
case METRICS_AVERAGE_SOCKETPOWER:
*value = metrics->AverageSocketPower << 8;
break;
case METRICS_TEMPERATURE_EDGE:
*value = metrics->TemperatureEdge *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_TEMPERATURE_HOTSPOT:
*value = metrics->TemperatureHotspot *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_TEMPERATURE_MEM:
*value = metrics->TemperatureMem *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_TEMPERATURE_VRGFX:
*value = metrics->TemperatureVrGfx *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_TEMPERATURE_VRSOC:
*value = metrics->TemperatureVrSoc *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_THROTTLER_STATUS:
*value = metrics->ThrottlerStatus;
break;
case METRICS_CURR_FANSPEED:
*value = metrics->CurrFanSpeed;
break;
default:
*value = UINT_MAX;
break;
}
mutex_unlock(&smu->metrics_lock);
return ret;
}
static int sienna_cichlid_allocate_dpm_context(struct smu_context *smu)
{
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
smu_dpm->dpm_context = kzalloc(sizeof(struct smu_11_0_dpm_context),
GFP_KERNEL);
if (!smu_dpm->dpm_context)
return -ENOMEM;
smu_dpm->dpm_context_size = sizeof(struct smu_11_0_dpm_context);
return 0;
}
static int sienna_cichlid_init_smc_tables(struct smu_context *smu)
{
int ret = 0;
ret = sienna_cichlid_tables_init(smu);
if (ret)
return ret;
ret = sienna_cichlid_allocate_dpm_context(smu);
if (ret)
return ret;
return smu_v11_0_init_smc_tables(smu);
}
static int sienna_cichlid_set_default_dpm_table(struct smu_context *smu)
{
struct smu_11_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context;
PPTable_t *driver_ppt = smu->smu_table.driver_pptable;
struct smu_11_0_dpm_table *dpm_table;
struct amdgpu_device *adev = smu->adev;
int ret = 0;
/* socclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.soc_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
ret = smu_v11_0_set_single_dpm_table(smu,
SMU_SOCCLK,
dpm_table);
if (ret)
return ret;
dpm_table->is_fine_grained =
!driver_ppt->DpmDescriptor[PPCLK_SOCCLK].SnapToDiscrete;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.socclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
/* gfxclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.gfx_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT)) {
ret = smu_v11_0_set_single_dpm_table(smu,
SMU_GFXCLK,
dpm_table);
if (ret)
return ret;
dpm_table->is_fine_grained =
!driver_ppt->DpmDescriptor[PPCLK_GFXCLK].SnapToDiscrete;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.gfxclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
/* uclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.uclk_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
ret = smu_v11_0_set_single_dpm_table(smu,
SMU_UCLK,
dpm_table);
if (ret)
return ret;
dpm_table->is_fine_grained =
!driver_ppt->DpmDescriptor[PPCLK_UCLK].SnapToDiscrete;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.uclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
/* fclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.fclk_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_FCLK_BIT)) {
ret = smu_v11_0_set_single_dpm_table(smu,
SMU_FCLK,
dpm_table);
if (ret)
return ret;
dpm_table->is_fine_grained =
!driver_ppt->DpmDescriptor[PPCLK_FCLK].SnapToDiscrete;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.fclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
/* vclk0 dpm table setup */
dpm_table = &dpm_context->dpm_tables.vclk_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_MM_DPM_PG_BIT)) {
ret = smu_v11_0_set_single_dpm_table(smu,
SMU_VCLK,
dpm_table);
if (ret)
return ret;
dpm_table->is_fine_grained =
!driver_ppt->DpmDescriptor[PPCLK_VCLK_0].SnapToDiscrete;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.vclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
/* vclk1 dpm table setup */
if (adev->vcn.num_vcn_inst > 1) {
dpm_table = &dpm_context->dpm_tables.vclk1_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_MM_DPM_PG_BIT)) {
ret = smu_v11_0_set_single_dpm_table(smu,
SMU_VCLK1,
dpm_table);
if (ret)
return ret;
dpm_table->is_fine_grained =
!driver_ppt->DpmDescriptor[PPCLK_VCLK_1].SnapToDiscrete;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value =
smu->smu_table.boot_values.vclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
}
/* dclk0 dpm table setup */
dpm_table = &dpm_context->dpm_tables.dclk_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_MM_DPM_PG_BIT)) {
ret = smu_v11_0_set_single_dpm_table(smu,
SMU_DCLK,
dpm_table);
if (ret)
return ret;
dpm_table->is_fine_grained =
!driver_ppt->DpmDescriptor[PPCLK_DCLK_0].SnapToDiscrete;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
/* dclk1 dpm table setup */
if (adev->vcn.num_vcn_inst > 1) {
dpm_table = &dpm_context->dpm_tables.dclk1_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_MM_DPM_PG_BIT)) {
ret = smu_v11_0_set_single_dpm_table(smu,
SMU_DCLK1,
dpm_table);
if (ret)
return ret;
dpm_table->is_fine_grained =
!driver_ppt->DpmDescriptor[PPCLK_DCLK_1].SnapToDiscrete;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value =
smu->smu_table.boot_values.dclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
}
/* dcefclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.dcef_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
ret = smu_v11_0_set_single_dpm_table(smu,
SMU_DCEFCLK,
dpm_table);
if (ret)
return ret;
dpm_table->is_fine_grained =
!driver_ppt->DpmDescriptor[PPCLK_DCEFCLK].SnapToDiscrete;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dcefclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
/* pixelclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.pixel_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
ret = smu_v11_0_set_single_dpm_table(smu,
SMU_PIXCLK,
dpm_table);
if (ret)
return ret;
dpm_table->is_fine_grained =
!driver_ppt->DpmDescriptor[PPCLK_PIXCLK].SnapToDiscrete;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dcefclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
/* displayclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.display_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
ret = smu_v11_0_set_single_dpm_table(smu,
SMU_DISPCLK,
dpm_table);
if (ret)
return ret;
dpm_table->is_fine_grained =
!driver_ppt->DpmDescriptor[PPCLK_DISPCLK].SnapToDiscrete;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dcefclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
/* phyclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.phy_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
ret = smu_v11_0_set_single_dpm_table(smu,
SMU_PHYCLK,
dpm_table);
if (ret)
return ret;
dpm_table->is_fine_grained =
!driver_ppt->DpmDescriptor[PPCLK_PHYCLK].SnapToDiscrete;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dcefclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
return 0;
}
static int sienna_cichlid_dpm_set_vcn_enable(struct smu_context *smu, bool enable)
{
struct amdgpu_device *adev = smu->adev;
int ret = 0;
if (enable) {
/* vcn dpm on is a prerequisite for vcn power gate messages */
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_MM_DPM_PG_BIT)) {
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerUpVcn, 0, NULL);
if (ret)
return ret;
if (adev->vcn.num_vcn_inst > 1) {
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerUpVcn,
0x10000, NULL);
if (ret)
return ret;
}
}
} else {
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_MM_DPM_PG_BIT)) {
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerDownVcn, 0, NULL);
if (ret)
return ret;
if (adev->vcn.num_vcn_inst > 1) {
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerDownVcn,
0x10000, NULL);
if (ret)
return ret;
}
}
}
return ret;
}
static int sienna_cichlid_dpm_set_jpeg_enable(struct smu_context *smu, bool enable)
{
int ret = 0;
if (enable) {
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_MM_DPM_PG_BIT)) {
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerUpJpeg, 0, NULL);
if (ret)
return ret;
}
} else {
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_MM_DPM_PG_BIT)) {
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerDownJpeg, 0, NULL);
if (ret)
return ret;
}
}
return ret;
}
static int sienna_cichlid_get_current_clk_freq_by_table(struct smu_context *smu,
enum smu_clk_type clk_type,
uint32_t *value)
{
MetricsMember_t member_type;
int clk_id = 0;
clk_id = smu_cmn_to_asic_specific_index(smu,
CMN2ASIC_MAPPING_CLK,
clk_type);
if (clk_id < 0)
return clk_id;
switch (clk_id) {
case PPCLK_GFXCLK:
member_type = METRICS_CURR_GFXCLK;
break;
case PPCLK_UCLK:
member_type = METRICS_CURR_UCLK;
break;
case PPCLK_SOCCLK:
member_type = METRICS_CURR_SOCCLK;
break;
case PPCLK_FCLK:
member_type = METRICS_CURR_FCLK;
break;
case PPCLK_VCLK_0:
member_type = METRICS_CURR_VCLK;
break;
case PPCLK_VCLK_1:
member_type = METRICS_CURR_VCLK1;
break;
case PPCLK_DCLK_0:
member_type = METRICS_CURR_DCLK;
break;
case PPCLK_DCLK_1:
member_type = METRICS_CURR_DCLK1;
break;
case PPCLK_DCEFCLK:
member_type = METRICS_CURR_DCEFCLK;
break;
default:
return -EINVAL;
}
return sienna_cichlid_get_smu_metrics_data(smu,
member_type,
value);
}
static bool sienna_cichlid_is_support_fine_grained_dpm(struct smu_context *smu, enum smu_clk_type clk_type)
{
PPTable_t *pptable = smu->smu_table.driver_pptable;
DpmDescriptor_t *dpm_desc = NULL;
uint32_t clk_index = 0;
clk_index = smu_cmn_to_asic_specific_index(smu,
CMN2ASIC_MAPPING_CLK,
clk_type);
dpm_desc = &pptable->DpmDescriptor[clk_index];
/* 0 - Fine grained DPM, 1 - Discrete DPM */
return dpm_desc->SnapToDiscrete == 0 ? true : false;
}
static int sienna_cichlid_print_clk_levels(struct smu_context *smu,
enum smu_clk_type clk_type, char *buf)
{
struct amdgpu_device *adev = smu->adev;
struct smu_table_context *table_context = &smu->smu_table;
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
struct smu_11_0_dpm_context *dpm_context = smu_dpm->dpm_context;
PPTable_t *pptable = (PPTable_t *)table_context->driver_pptable;
int i, size = 0, ret = 0;
uint32_t cur_value = 0, value = 0, count = 0;
uint32_t freq_values[3] = {0};
uint32_t mark_index = 0;
uint32_t gen_speed, lane_width;
switch (clk_type) {
case SMU_GFXCLK:
case SMU_SCLK:
case SMU_SOCCLK:
case SMU_MCLK:
case SMU_UCLK:
case SMU_FCLK:
case SMU_DCEFCLK:
ret = sienna_cichlid_get_current_clk_freq_by_table(smu, clk_type, &cur_value);
if (ret)
goto print_clk_out;
/* no need to disable gfxoff when retrieving the current gfxclk */
if ((clk_type == SMU_GFXCLK) || (clk_type == SMU_SCLK))
amdgpu_gfx_off_ctrl(adev, false);
ret = smu_v11_0_get_dpm_level_count(smu, clk_type, &count);
if (ret)
goto print_clk_out;
if (!sienna_cichlid_is_support_fine_grained_dpm(smu, clk_type)) {
for (i = 0; i < count; i++) {
ret = smu_v11_0_get_dpm_freq_by_index(smu, clk_type, i, &value);
if (ret)
goto print_clk_out;
size += sprintf(buf + size, "%d: %uMhz %s\n", i, value,
cur_value == value ? "*" : "");
}
} else {
ret = smu_v11_0_get_dpm_freq_by_index(smu, clk_type, 0, &freq_values[0]);
if (ret)
goto print_clk_out;
ret = smu_v11_0_get_dpm_freq_by_index(smu, clk_type, count - 1, &freq_values[2]);
if (ret)
goto print_clk_out;
freq_values[1] = cur_value;
mark_index = cur_value == freq_values[0] ? 0 :
cur_value == freq_values[2] ? 2 : 1;
count = 3;
if (mark_index != 1) {
count = 2;
freq_values[1] = freq_values[2];
}
for (i = 0; i < count; i++) {
size += sprintf(buf + size, "%d: %uMhz %s\n", i, freq_values[i],
cur_value == freq_values[i] ? "*" : "");
}
}
break;
case SMU_PCIE:
gen_speed = smu_v11_0_get_current_pcie_link_speed_level(smu);
lane_width = smu_v11_0_get_current_pcie_link_width_level(smu);
for (i = 0; i < NUM_LINK_LEVELS; i++)
size += sprintf(buf + size, "%d: %s %s %dMhz %s\n", i,
(dpm_context->dpm_tables.pcie_table.pcie_gen[i] == 0) ? "2.5GT/s," :
(dpm_context->dpm_tables.pcie_table.pcie_gen[i] == 1) ? "5.0GT/s," :
(dpm_context->dpm_tables.pcie_table.pcie_gen[i] == 2) ? "8.0GT/s," :
(dpm_context->dpm_tables.pcie_table.pcie_gen[i] == 3) ? "16.0GT/s," : "",
(dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 1) ? "x1" :
(dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 2) ? "x2" :
(dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 3) ? "x4" :
(dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 4) ? "x8" :
(dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 5) ? "x12" :
(dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 6) ? "x16" : "",
pptable->LclkFreq[i],
(gen_speed == dpm_context->dpm_tables.pcie_table.pcie_gen[i]) &&
(lane_width == dpm_context->dpm_tables.pcie_table.pcie_lane[i]) ?
"*" : "");
break;
default:
break;
}
print_clk_out:
if ((clk_type == SMU_GFXCLK) || (clk_type == SMU_SCLK))
amdgpu_gfx_off_ctrl(adev, true);
return size;
}
static int sienna_cichlid_force_clk_levels(struct smu_context *smu,
enum smu_clk_type clk_type, uint32_t mask)
{
struct amdgpu_device *adev = smu->adev;
int ret = 0, size = 0;
uint32_t soft_min_level = 0, soft_max_level = 0, min_freq = 0, max_freq = 0;
soft_min_level = mask ? (ffs(mask) - 1) : 0;
soft_max_level = mask ? (fls(mask) - 1) : 0;
if ((clk_type == SMU_GFXCLK) || (clk_type == SMU_SCLK))
amdgpu_gfx_off_ctrl(adev, false);
switch (clk_type) {
case SMU_GFXCLK:
case SMU_SCLK:
case SMU_SOCCLK:
case SMU_MCLK:
case SMU_UCLK:
case SMU_DCEFCLK:
case SMU_FCLK:
/* There is only 2 levels for fine grained DPM */
if (sienna_cichlid_is_support_fine_grained_dpm(smu, clk_type)) {
soft_max_level = (soft_max_level >= 1 ? 1 : 0);
soft_min_level = (soft_min_level >= 1 ? 1 : 0);
}
ret = smu_v11_0_get_dpm_freq_by_index(smu, clk_type, soft_min_level, &min_freq);
if (ret)
goto forec_level_out;
ret = smu_v11_0_get_dpm_freq_by_index(smu, clk_type, soft_max_level, &max_freq);
if (ret)
goto forec_level_out;
ret = smu_v11_0_set_soft_freq_limited_range(smu, clk_type, min_freq, max_freq);
if (ret)
goto forec_level_out;
break;
default:
break;
}
forec_level_out:
if ((clk_type == SMU_GFXCLK) || (clk_type == SMU_SCLK))
amdgpu_gfx_off_ctrl(adev, true);
return size;
}
static int sienna_cichlid_populate_umd_state_clk(struct smu_context *smu)
{
struct smu_11_0_dpm_context *dpm_context =
smu->smu_dpm.dpm_context;
struct smu_11_0_dpm_table *gfx_table =
&dpm_context->dpm_tables.gfx_table;
struct smu_11_0_dpm_table *mem_table =
&dpm_context->dpm_tables.uclk_table;
struct smu_11_0_dpm_table *soc_table =
&dpm_context->dpm_tables.soc_table;
struct smu_umd_pstate_table *pstate_table =
&smu->pstate_table;
pstate_table->gfxclk_pstate.min = gfx_table->min;
pstate_table->gfxclk_pstate.peak = gfx_table->max;
pstate_table->uclk_pstate.min = mem_table->min;
pstate_table->uclk_pstate.peak = mem_table->max;
pstate_table->socclk_pstate.min = soc_table->min;
pstate_table->socclk_pstate.peak = soc_table->max;
return 0;
}
static int sienna_cichlid_pre_display_config_changed(struct smu_context *smu)
{
int ret = 0;
uint32_t max_freq = 0;
/* Sienna_Cichlid do not support to change display num currently */
return 0;
#if 0
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, 0, NULL);
if (ret)
return ret;
#endif
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
ret = smu_v11_0_get_dpm_ultimate_freq(smu, SMU_UCLK, NULL, &max_freq);
if (ret)
return ret;
ret = smu_v11_0_set_hard_freq_limited_range(smu, SMU_UCLK, 0, max_freq);
if (ret)
return ret;
}
return ret;
}
static int sienna_cichlid_display_config_changed(struct smu_context *smu)
{
int ret = 0;
if ((smu->watermarks_bitmap & WATERMARKS_EXIST) &&
smu_cmn_feature_is_supported(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) &&
smu_cmn_feature_is_supported(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
#if 0
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays,
smu->display_config->num_display,
NULL);
#endif
if (ret)
return ret;
}
return ret;
}
static int sienna_cichlid_get_gpu_power(struct smu_context *smu, uint32_t *value)
{
if (!value)
return -EINVAL;
return sienna_cichlid_get_smu_metrics_data(smu,
METRICS_AVERAGE_SOCKETPOWER,
value);
}
static int sienna_cichlid_get_current_activity_percent(struct smu_context *smu,
enum amd_pp_sensors sensor,
uint32_t *value)
{
int ret = 0;
if (!value)
return -EINVAL;
switch (sensor) {
case AMDGPU_PP_SENSOR_GPU_LOAD:
ret = sienna_cichlid_get_smu_metrics_data(smu,
METRICS_AVERAGE_GFXACTIVITY,
value);
break;
case AMDGPU_PP_SENSOR_MEM_LOAD:
ret = sienna_cichlid_get_smu_metrics_data(smu,
METRICS_AVERAGE_MEMACTIVITY,
value);
break;
default:
dev_err(smu->adev->dev, "Invalid sensor for retrieving clock activity\n");
return -EINVAL;
}
return ret;
}
static bool sienna_cichlid_is_dpm_running(struct smu_context *smu)
{
int ret = 0;
uint32_t feature_mask[2];
uint64_t feature_enabled;
ret = smu_cmn_get_enabled_mask(smu, feature_mask, 2);
if (ret)
return false;
feature_enabled = (uint64_t)feature_mask[1] << 32 | feature_mask[0];
return !!(feature_enabled & SMC_DPM_FEATURE);
}
static int sienna_cichlid_get_fan_speed_rpm(struct smu_context *smu,
uint32_t *speed)
{
if (!speed)
return -EINVAL;
return sienna_cichlid_get_smu_metrics_data(smu,
METRICS_CURR_FANSPEED,
speed);
}
static int sienna_cichlid_get_fan_parameters(struct smu_context *smu)
{
PPTable_t *pptable = smu->smu_table.driver_pptable;
smu->fan_max_rpm = pptable->FanMaximumRpm;
return 0;
}
static int sienna_cichlid_get_power_profile_mode(struct smu_context *smu, char *buf)
{
DpmActivityMonitorCoeffInt_t activity_monitor;
uint32_t i, size = 0;
int16_t workload_type = 0;
static const char *profile_name[] = {
"BOOTUP_DEFAULT",
"3D_FULL_SCREEN",
"POWER_SAVING",
"VIDEO",
"VR",
"COMPUTE",
"CUSTOM"};
static const char *title[] = {
"PROFILE_INDEX(NAME)",
"CLOCK_TYPE(NAME)",
"FPS",
"MinFreqType",
"MinActiveFreqType",
"MinActiveFreq",
"BoosterFreqType",
"BoosterFreq",
"PD_Data_limit_c",
"PD_Data_error_coeff",
"PD_Data_error_rate_coeff"};
int result = 0;
if (!buf)
return -EINVAL;
size += sprintf(buf + size, "%16s %s %s %s %s %s %s %s %s %s %s\n",
title[0], title[1], title[2], title[3], title[4], title[5],
title[6], title[7], title[8], title[9], title[10]);
for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) {
/* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */
workload_type = smu_cmn_to_asic_specific_index(smu,
CMN2ASIC_MAPPING_WORKLOAD,
i);
if (workload_type < 0)
return -EINVAL;
result = smu_cmn_update_table(smu,
SMU_TABLE_ACTIVITY_MONITOR_COEFF, workload_type,
(void *)(&activity_monitor), false);
if (result) {
dev_err(smu->adev->dev, "[%s] Failed to get activity monitor!", __func__);
return result;
}
size += sprintf(buf + size, "%2d %14s%s:\n",
i, profile_name[i], (i == smu->power_profile_mode) ? "*" : " ");
size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
" ",
0,
"GFXCLK",
activity_monitor.Gfx_FPS,
activity_monitor.Gfx_MinFreqStep,
activity_monitor.Gfx_MinActiveFreqType,
activity_monitor.Gfx_MinActiveFreq,
activity_monitor.Gfx_BoosterFreqType,
activity_monitor.Gfx_BoosterFreq,
activity_monitor.Gfx_PD_Data_limit_c,
activity_monitor.Gfx_PD_Data_error_coeff,
activity_monitor.Gfx_PD_Data_error_rate_coeff);
size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
" ",
1,
"SOCCLK",
activity_monitor.Fclk_FPS,
activity_monitor.Fclk_MinFreqStep,
activity_monitor.Fclk_MinActiveFreqType,
activity_monitor.Fclk_MinActiveFreq,
activity_monitor.Fclk_BoosterFreqType,
activity_monitor.Fclk_BoosterFreq,
activity_monitor.Fclk_PD_Data_limit_c,
activity_monitor.Fclk_PD_Data_error_coeff,
activity_monitor.Fclk_PD_Data_error_rate_coeff);
size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
" ",
2,
"MEMLK",
activity_monitor.Mem_FPS,
activity_monitor.Mem_MinFreqStep,
activity_monitor.Mem_MinActiveFreqType,
activity_monitor.Mem_MinActiveFreq,
activity_monitor.Mem_BoosterFreqType,
activity_monitor.Mem_BoosterFreq,
activity_monitor.Mem_PD_Data_limit_c,
activity_monitor.Mem_PD_Data_error_coeff,
activity_monitor.Mem_PD_Data_error_rate_coeff);
}
return size;
}
static int sienna_cichlid_set_power_profile_mode(struct smu_context *smu, long *input, uint32_t size)
{
DpmActivityMonitorCoeffInt_t activity_monitor;
int workload_type, ret = 0;
smu->power_profile_mode = input[size];
if (smu->power_profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) {
dev_err(smu->adev->dev, "Invalid power profile mode %d\n", smu->power_profile_mode);
return -EINVAL;
}
if (smu->power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) {
ret = smu_cmn_update_table(smu,
SMU_TABLE_ACTIVITY_MONITOR_COEFF, WORKLOAD_PPLIB_CUSTOM_BIT,
(void *)(&activity_monitor), false);
if (ret) {
dev_err(smu->adev->dev, "[%s] Failed to get activity monitor!", __func__);
return ret;
}
switch (input[0]) {
case 0: /* Gfxclk */
activity_monitor.Gfx_FPS = input[1];
activity_monitor.Gfx_MinFreqStep = input[2];
activity_monitor.Gfx_MinActiveFreqType = input[3];
activity_monitor.Gfx_MinActiveFreq = input[4];
activity_monitor.Gfx_BoosterFreqType = input[5];
activity_monitor.Gfx_BoosterFreq = input[6];
activity_monitor.Gfx_PD_Data_limit_c = input[7];
activity_monitor.Gfx_PD_Data_error_coeff = input[8];
activity_monitor.Gfx_PD_Data_error_rate_coeff = input[9];
break;
case 1: /* Socclk */
activity_monitor.Fclk_FPS = input[1];
activity_monitor.Fclk_MinFreqStep = input[2];
activity_monitor.Fclk_MinActiveFreqType = input[3];
activity_monitor.Fclk_MinActiveFreq = input[4];
activity_monitor.Fclk_BoosterFreqType = input[5];
activity_monitor.Fclk_BoosterFreq = input[6];
activity_monitor.Fclk_PD_Data_limit_c = input[7];
activity_monitor.Fclk_PD_Data_error_coeff = input[8];
activity_monitor.Fclk_PD_Data_error_rate_coeff = input[9];
break;
case 2: /* Memlk */
activity_monitor.Mem_FPS = input[1];
activity_monitor.Mem_MinFreqStep = input[2];
activity_monitor.Mem_MinActiveFreqType = input[3];
activity_monitor.Mem_MinActiveFreq = input[4];
activity_monitor.Mem_BoosterFreqType = input[5];
activity_monitor.Mem_BoosterFreq = input[6];
activity_monitor.Mem_PD_Data_limit_c = input[7];
activity_monitor.Mem_PD_Data_error_coeff = input[8];
activity_monitor.Mem_PD_Data_error_rate_coeff = input[9];
break;
}
ret = smu_cmn_update_table(smu,
SMU_TABLE_ACTIVITY_MONITOR_COEFF, WORKLOAD_PPLIB_CUSTOM_BIT,
(void *)(&activity_monitor), true);
if (ret) {
dev_err(smu->adev->dev, "[%s] Failed to set activity monitor!", __func__);
return ret;
}
}
/* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */
workload_type = smu_cmn_to_asic_specific_index(smu,
CMN2ASIC_MAPPING_WORKLOAD,
smu->power_profile_mode);
if (workload_type < 0)
return -EINVAL;
smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetWorkloadMask,
1 << workload_type, NULL);
return ret;
}
static int sienna_cichlid_notify_smc_display_config(struct smu_context *smu)
{
struct smu_clocks min_clocks = {0};
struct pp_display_clock_request clock_req;
int ret = 0;
min_clocks.dcef_clock = smu->display_config->min_dcef_set_clk;
min_clocks.dcef_clock_in_sr = smu->display_config->min_dcef_deep_sleep_set_clk;
min_clocks.memory_clock = smu->display_config->min_mem_set_clock;
if (smu_cmn_feature_is_supported(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
clock_req.clock_type = amd_pp_dcef_clock;
clock_req.clock_freq_in_khz = min_clocks.dcef_clock * 10;
ret = smu_v11_0_display_clock_voltage_request(smu, &clock_req);
if (!ret) {
if (smu_cmn_feature_is_supported(smu, SMU_FEATURE_DS_DCEFCLK_BIT)) {
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetMinDeepSleepDcefclk,
min_clocks.dcef_clock_in_sr/100,
NULL);
if (ret) {
dev_err(smu->adev->dev, "Attempt to set divider for DCEFCLK Failed!");
return ret;
}
}
} else {
dev_info(smu->adev->dev, "Attempt to set Hard Min for DCEFCLK Failed!");
}
}
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
ret = smu_v11_0_set_hard_freq_limited_range(smu, SMU_UCLK, min_clocks.memory_clock/100, 0);
if (ret) {
dev_err(smu->adev->dev, "[%s] Set hard min uclk failed!", __func__);
return ret;
}
}
return 0;
}
static int sienna_cichlid_set_watermarks_table(struct smu_context *smu,
struct pp_smu_wm_range_sets *clock_ranges)
{
Watermarks_t *table = smu->smu_table.watermarks_table;
int ret = 0;
int i;
if (clock_ranges) {
if (clock_ranges->num_reader_wm_sets > NUM_WM_RANGES ||
clock_ranges->num_writer_wm_sets > NUM_WM_RANGES)
return -EINVAL;
for (i = 0; i < clock_ranges->num_reader_wm_sets; i++) {
table->WatermarkRow[WM_DCEFCLK][i].MinClock =
clock_ranges->reader_wm_sets[i].min_drain_clk_mhz;
table->WatermarkRow[WM_DCEFCLK][i].MaxClock =
clock_ranges->reader_wm_sets[i].max_drain_clk_mhz;
table->WatermarkRow[WM_DCEFCLK][i].MinUclk =
clock_ranges->reader_wm_sets[i].min_fill_clk_mhz;
table->WatermarkRow[WM_DCEFCLK][i].MaxUclk =
clock_ranges->reader_wm_sets[i].max_fill_clk_mhz;
table->WatermarkRow[WM_DCEFCLK][i].WmSetting =
clock_ranges->reader_wm_sets[i].wm_inst;
}
for (i = 0; i < clock_ranges->num_writer_wm_sets; i++) {
table->WatermarkRow[WM_SOCCLK][i].MinClock =
clock_ranges->writer_wm_sets[i].min_fill_clk_mhz;
table->WatermarkRow[WM_SOCCLK][i].MaxClock =
clock_ranges->writer_wm_sets[i].max_fill_clk_mhz;
table->WatermarkRow[WM_SOCCLK][i].MinUclk =
clock_ranges->writer_wm_sets[i].min_drain_clk_mhz;
table->WatermarkRow[WM_SOCCLK][i].MaxUclk =
clock_ranges->writer_wm_sets[i].max_drain_clk_mhz;
table->WatermarkRow[WM_SOCCLK][i].WmSetting =
clock_ranges->writer_wm_sets[i].wm_inst;
}
smu->watermarks_bitmap |= WATERMARKS_EXIST;
}
if ((smu->watermarks_bitmap & WATERMARKS_EXIST) &&
!(smu->watermarks_bitmap & WATERMARKS_LOADED)) {
ret = smu_cmn_write_watermarks_table(smu);
if (ret) {
dev_err(smu->adev->dev, "Failed to update WMTABLE!");
return ret;
}
smu->watermarks_bitmap |= WATERMARKS_LOADED;
}
return 0;
}
static int sienna_cichlid_thermal_get_temperature(struct smu_context *smu,
enum amd_pp_sensors sensor,
uint32_t *value)
{
int ret = 0;
if (!value)
return -EINVAL;
switch (sensor) {
case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
ret = sienna_cichlid_get_smu_metrics_data(smu,
METRICS_TEMPERATURE_HOTSPOT,
value);
break;
case AMDGPU_PP_SENSOR_EDGE_TEMP:
ret = sienna_cichlid_get_smu_metrics_data(smu,
METRICS_TEMPERATURE_EDGE,
value);
break;
case AMDGPU_PP_SENSOR_MEM_TEMP:
ret = sienna_cichlid_get_smu_metrics_data(smu,
METRICS_TEMPERATURE_MEM,
value);
break;
default:
dev_err(smu->adev->dev, "Invalid sensor for retrieving temp\n");
return -EINVAL;
}
return ret;
}
static int sienna_cichlid_read_sensor(struct smu_context *smu,
enum amd_pp_sensors sensor,
void *data, uint32_t *size)
{
int ret = 0;
struct smu_table_context *table_context = &smu->smu_table;
PPTable_t *pptable = table_context->driver_pptable;
if(!data || !size)
return -EINVAL;
mutex_lock(&smu->sensor_lock);
switch (sensor) {
case AMDGPU_PP_SENSOR_MAX_FAN_RPM:
*(uint32_t *)data = pptable->FanMaximumRpm;
*size = 4;
break;
case AMDGPU_PP_SENSOR_MEM_LOAD:
case AMDGPU_PP_SENSOR_GPU_LOAD:
ret = sienna_cichlid_get_current_activity_percent(smu, sensor, (uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_GPU_POWER:
ret = sienna_cichlid_get_gpu_power(smu, (uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
case AMDGPU_PP_SENSOR_EDGE_TEMP:
case AMDGPU_PP_SENSOR_MEM_TEMP:
ret = sienna_cichlid_thermal_get_temperature(smu, sensor, (uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_GFX_MCLK:
ret = sienna_cichlid_get_current_clk_freq_by_table(smu, SMU_UCLK, (uint32_t *)data);
*(uint32_t *)data *= 100;
*size = 4;
break;
case AMDGPU_PP_SENSOR_GFX_SCLK:
ret = sienna_cichlid_get_current_clk_freq_by_table(smu, SMU_GFXCLK, (uint32_t *)data);
*(uint32_t *)data *= 100;
*size = 4;
break;
case AMDGPU_PP_SENSOR_VDDGFX:
ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data);
*size = 4;
break;
default:
ret = -EOPNOTSUPP;
break;
}
mutex_unlock(&smu->sensor_lock);
return ret;
}
static int sienna_cichlid_get_uclk_dpm_states(struct smu_context *smu, uint32_t *clocks_in_khz, uint32_t *num_states)
{
uint32_t num_discrete_levels = 0;
uint16_t *dpm_levels = NULL;
uint16_t i = 0;
struct smu_table_context *table_context = &smu->smu_table;
PPTable_t *driver_ppt = NULL;
if (!clocks_in_khz || !num_states || !table_context->driver_pptable)
return -EINVAL;
driver_ppt = table_context->driver_pptable;
num_discrete_levels = driver_ppt->DpmDescriptor[PPCLK_UCLK].NumDiscreteLevels;
dpm_levels = driver_ppt->FreqTableUclk;
if (num_discrete_levels == 0 || dpm_levels == NULL)
return -EINVAL;
*num_states = num_discrete_levels;
for (i = 0; i < num_discrete_levels; i++) {
/* convert to khz */
*clocks_in_khz = (*dpm_levels) * 1000;
clocks_in_khz++;
dpm_levels++;
}
return 0;
}
static int sienna_cichlid_get_thermal_temperature_range(struct smu_context *smu,
struct smu_temperature_range *range)
{
struct smu_table_context *table_context = &smu->smu_table;
struct smu_11_0_7_powerplay_table *powerplay_table =
table_context->power_play_table;
PPTable_t *pptable = smu->smu_table.driver_pptable;
if (!range)
return -EINVAL;
memcpy(range, &smu11_thermal_policy[0], sizeof(struct smu_temperature_range));
range->max = pptable->TemperatureLimit[TEMP_EDGE] *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->edge_emergency_max = (pptable->TemperatureLimit[TEMP_EDGE] + CTF_OFFSET_EDGE) *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->hotspot_crit_max = pptable->TemperatureLimit[TEMP_HOTSPOT] *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->hotspot_emergency_max = (pptable->TemperatureLimit[TEMP_HOTSPOT] + CTF_OFFSET_HOTSPOT) *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->mem_crit_max = pptable->TemperatureLimit[TEMP_MEM] *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->mem_emergency_max = (pptable->TemperatureLimit[TEMP_MEM] + CTF_OFFSET_MEM)*
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->software_shutdown_temp = powerplay_table->software_shutdown_temp;
return 0;
}
static int sienna_cichlid_display_disable_memory_clock_switch(struct smu_context *smu,
bool disable_memory_clock_switch)
{
int ret = 0;
struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks =
(struct smu_11_0_max_sustainable_clocks *)
smu->smu_table.max_sustainable_clocks;
uint32_t min_memory_clock = smu->hard_min_uclk_req_from_dal;
uint32_t max_memory_clock = max_sustainable_clocks->uclock;
if(smu->disable_uclk_switch == disable_memory_clock_switch)
return 0;
if(disable_memory_clock_switch)
ret = smu_v11_0_set_hard_freq_limited_range(smu, SMU_UCLK, max_memory_clock, 0);
else
ret = smu_v11_0_set_hard_freq_limited_range(smu, SMU_UCLK, min_memory_clock, 0);
if(!ret)
smu->disable_uclk_switch = disable_memory_clock_switch;
return ret;
}
static int sienna_cichlid_get_power_limit(struct smu_context *smu)
{
struct smu_11_0_7_powerplay_table *powerplay_table =
(struct smu_11_0_7_powerplay_table *)smu->smu_table.power_play_table;
PPTable_t *pptable = smu->smu_table.driver_pptable;
uint32_t power_limit, od_percent;
if (smu_v11_0_get_current_power_limit(smu, &power_limit)) {
/* the last hope to figure out the ppt limit */
if (!pptable) {
dev_err(smu->adev->dev, "Cannot get PPT limit due to pptable missing!");
return -EINVAL;
}
power_limit =
pptable->SocketPowerLimitAc[PPT_THROTTLER_PPT0];
}
smu->current_power_limit = power_limit;
if (smu->od_enabled) {
od_percent = le32_to_cpu(powerplay_table->overdrive_table.max[SMU_11_0_7_ODSETTING_POWERPERCENTAGE]);
dev_dbg(smu->adev->dev, "ODSETTING_POWERPERCENTAGE: %d (default: %d)\n", od_percent, power_limit);
power_limit *= (100 + od_percent);
power_limit /= 100;
}
smu->max_power_limit = power_limit;
return 0;
}
static int sienna_cichlid_update_pcie_parameters(struct smu_context *smu,
uint32_t pcie_gen_cap,
uint32_t pcie_width_cap)
{
struct smu_11_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context;
PPTable_t *pptable = smu->smu_table.driver_pptable;
uint32_t smu_pcie_arg;
int ret, i;
/* lclk dpm table setup */
for (i = 0; i < MAX_PCIE_CONF; i++) {
dpm_context->dpm_tables.pcie_table.pcie_gen[i] = pptable->PcieGenSpeed[i];
dpm_context->dpm_tables.pcie_table.pcie_lane[i] = pptable->PcieLaneCount[i];
}
for (i = 0; i < NUM_LINK_LEVELS; i++) {
smu_pcie_arg = (i << 16) |
((pptable->PcieGenSpeed[i] <= pcie_gen_cap) ?
(pptable->PcieGenSpeed[i] << 8) :
(pcie_gen_cap << 8)) |
((pptable->PcieLaneCount[i] <= pcie_width_cap) ?
pptable->PcieLaneCount[i] :
pcie_width_cap);
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_OverridePcieParameters,
smu_pcie_arg,
NULL);
if (ret)
return ret;
if (pptable->PcieGenSpeed[i] > pcie_gen_cap)
dpm_context->dpm_tables.pcie_table.pcie_gen[i] = pcie_gen_cap;
if (pptable->PcieLaneCount[i] > pcie_width_cap)
dpm_context->dpm_tables.pcie_table.pcie_lane[i] = pcie_width_cap;
}
return 0;
}
static int sienna_cichlid_get_dpm_ultimate_freq(struct smu_context *smu,
enum smu_clk_type clk_type,
uint32_t *min, uint32_t *max)
{
struct amdgpu_device *adev = smu->adev;
int ret;
if (clk_type == SMU_GFXCLK)
amdgpu_gfx_off_ctrl(adev, false);
ret = smu_v11_0_get_dpm_ultimate_freq(smu, clk_type, min, max);
if (clk_type == SMU_GFXCLK)
amdgpu_gfx_off_ctrl(adev, true);
return ret;
}
static int sienna_cichlid_run_btc(struct smu_context *smu)
{
return smu_cmn_send_smc_msg(smu, SMU_MSG_RunDcBtc, NULL);
}
static bool sienna_cichlid_is_baco_supported(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
uint32_t val;
if (amdgpu_sriov_vf(adev) || (!smu_v11_0_baco_is_support(smu)))
return false;
val = RREG32_SOC15(NBIO, 0, mmRCC_BIF_STRAP0);
return (val & RCC_BIF_STRAP0__STRAP_PX_CAPABLE_MASK) ? true : false;
}
static bool sienna_cichlid_is_mode1_reset_supported(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
uint32_t val;
u32 smu_version;
/**
* SRIOV env will not support SMU mode1 reset
* PM FW support mode1 reset from 58.26
*/
smu_cmn_get_smc_version(smu, NULL, &smu_version);
if (amdgpu_sriov_vf(adev) || (smu_version < 0x003a1a00))
return false;
/**
* mode1 reset relies on PSP, so we should check if
* PSP is alive.
*/
val = RREG32_SOC15(MP0, 0, mmMP0_SMN_C2PMSG_81);
return val != 0x0;
}
static void sienna_cichlid_dump_pptable(struct smu_context *smu)
{
struct smu_table_context *table_context = &smu->smu_table;
PPTable_t *pptable = table_context->driver_pptable;
int i;
dev_info(smu->adev->dev, "Dumped PPTable:\n");
dev_info(smu->adev->dev, "Version = 0x%08x\n", pptable->Version);
dev_info(smu->adev->dev, "FeaturesToRun[0] = 0x%08x\n", pptable->FeaturesToRun[0]);
dev_info(smu->adev->dev, "FeaturesToRun[1] = 0x%08x\n", pptable->FeaturesToRun[1]);
for (i = 0; i < PPT_THROTTLER_COUNT; i++) {
dev_info(smu->adev->dev, "SocketPowerLimitAc[%d] = 0x%x\n", i, pptable->SocketPowerLimitAc[i]);
dev_info(smu->adev->dev, "SocketPowerLimitAcTau[%d] = 0x%x\n", i, pptable->SocketPowerLimitAcTau[i]);
dev_info(smu->adev->dev, "SocketPowerLimitDc[%d] = 0x%x\n", i, pptable->SocketPowerLimitDc[i]);
dev_info(smu->adev->dev, "SocketPowerLimitDcTau[%d] = 0x%x\n", i, pptable->SocketPowerLimitDcTau[i]);
}
for (i = 0; i < TDC_THROTTLER_COUNT; i++) {
dev_info(smu->adev->dev, "TdcLimit[%d] = 0x%x\n", i, pptable->TdcLimit[i]);
dev_info(smu->adev->dev, "TdcLimitTau[%d] = 0x%x\n", i, pptable->TdcLimitTau[i]);
}
for (i = 0; i < TEMP_COUNT; i++) {
dev_info(smu->adev->dev, "TemperatureLimit[%d] = 0x%x\n", i, pptable->TemperatureLimit[i]);
}
dev_info(smu->adev->dev, "FitLimit = 0x%x\n", pptable->FitLimit);
dev_info(smu->adev->dev, "TotalPowerConfig = 0x%x\n", pptable->TotalPowerConfig);
dev_info(smu->adev->dev, "TotalPowerPadding[0] = 0x%x\n", pptable->TotalPowerPadding[0]);
dev_info(smu->adev->dev, "TotalPowerPadding[1] = 0x%x\n", pptable->TotalPowerPadding[1]);
dev_info(smu->adev->dev, "TotalPowerPadding[2] = 0x%x\n", pptable->TotalPowerPadding[2]);
dev_info(smu->adev->dev, "ApccPlusResidencyLimit = 0x%x\n", pptable->ApccPlusResidencyLimit);
for (i = 0; i < NUM_SMNCLK_DPM_LEVELS; i++) {
dev_info(smu->adev->dev, "SmnclkDpmFreq[%d] = 0x%x\n", i, pptable->SmnclkDpmFreq[i]);
dev_info(smu->adev->dev, "SmnclkDpmVoltage[%d] = 0x%x\n", i, pptable->SmnclkDpmVoltage[i]);
}
dev_info(smu->adev->dev, "PaddingAPCC[0] = 0x%x\n", pptable->PaddingAPCC[0]);
dev_info(smu->adev->dev, "PaddingAPCC[1] = 0x%x\n", pptable->PaddingAPCC[1]);
dev_info(smu->adev->dev, "PaddingAPCC[2] = 0x%x\n", pptable->PaddingAPCC[2]);
dev_info(smu->adev->dev, "PaddingAPCC[3] = 0x%x\n", pptable->PaddingAPCC[3]);
dev_info(smu->adev->dev, "ThrottlerControlMask = 0x%x\n", pptable->ThrottlerControlMask);
dev_info(smu->adev->dev, "FwDStateMask = 0x%x\n", pptable->FwDStateMask);
dev_info(smu->adev->dev, "UlvVoltageOffsetSoc = 0x%x\n", pptable->UlvVoltageOffsetSoc);
dev_info(smu->adev->dev, "UlvVoltageOffsetGfx = 0x%x\n", pptable->UlvVoltageOffsetGfx);
dev_info(smu->adev->dev, "MinVoltageUlvGfx = 0x%x\n", pptable->MinVoltageUlvGfx);
dev_info(smu->adev->dev, "MinVoltageUlvSoc = 0x%x\n", pptable->MinVoltageUlvSoc);
dev_info(smu->adev->dev, "SocLIVmin = 0x%x\n", pptable->SocLIVmin);
dev_info(smu->adev->dev, "PaddingLIVmin = 0x%x\n", pptable->PaddingLIVmin);
dev_info(smu->adev->dev, "GceaLinkMgrIdleThreshold = 0x%x\n", pptable->GceaLinkMgrIdleThreshold);
dev_info(smu->adev->dev, "paddingRlcUlvParams[0] = 0x%x\n", pptable->paddingRlcUlvParams[0]);
dev_info(smu->adev->dev, "paddingRlcUlvParams[1] = 0x%x\n", pptable->paddingRlcUlvParams[1]);
dev_info(smu->adev->dev, "paddingRlcUlvParams[2] = 0x%x\n", pptable->paddingRlcUlvParams[2]);
dev_info(smu->adev->dev, "MinVoltageGfx = 0x%x\n", pptable->MinVoltageGfx);
dev_info(smu->adev->dev, "MinVoltageSoc = 0x%x\n", pptable->MinVoltageSoc);
dev_info(smu->adev->dev, "MaxVoltageGfx = 0x%x\n", pptable->MaxVoltageGfx);
dev_info(smu->adev->dev, "MaxVoltageSoc = 0x%x\n", pptable->MaxVoltageSoc);
dev_info(smu->adev->dev, "LoadLineResistanceGfx = 0x%x\n", pptable->LoadLineResistanceGfx);
dev_info(smu->adev->dev, "LoadLineResistanceSoc = 0x%x\n", pptable->LoadLineResistanceSoc);
dev_info(smu->adev->dev, "VDDGFX_TVmin = 0x%x\n", pptable->VDDGFX_TVmin);
dev_info(smu->adev->dev, "VDDSOC_TVmin = 0x%x\n", pptable->VDDSOC_TVmin);
dev_info(smu->adev->dev, "VDDGFX_Vmin_HiTemp = 0x%x\n", pptable->VDDGFX_Vmin_HiTemp);
dev_info(smu->adev->dev, "VDDGFX_Vmin_LoTemp = 0x%x\n", pptable->VDDGFX_Vmin_LoTemp);
dev_info(smu->adev->dev, "VDDSOC_Vmin_HiTemp = 0x%x\n", pptable->VDDSOC_Vmin_HiTemp);
dev_info(smu->adev->dev, "VDDSOC_Vmin_LoTemp = 0x%x\n", pptable->VDDSOC_Vmin_LoTemp);
dev_info(smu->adev->dev, "VDDGFX_TVminHystersis = 0x%x\n", pptable->VDDGFX_TVminHystersis);
dev_info(smu->adev->dev, "VDDSOC_TVminHystersis = 0x%x\n", pptable->VDDSOC_TVminHystersis);
dev_info(smu->adev->dev, "[PPCLK_GFXCLK]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n"
" .SsFmin = 0x%04x\n"
" .Padding_16 = 0x%04x\n",
pptable->DpmDescriptor[PPCLK_GFXCLK].VoltageMode,
pptable->DpmDescriptor[PPCLK_GFXCLK].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_GFXCLK].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_GFXCLK].Padding,
pptable->DpmDescriptor[PPCLK_GFXCLK].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_GFXCLK].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_GFXCLK].SsCurve.a,
pptable->DpmDescriptor[PPCLK_GFXCLK].SsCurve.b,
pptable->DpmDescriptor[PPCLK_GFXCLK].SsCurve.c,
pptable->DpmDescriptor[PPCLK_GFXCLK].SsFmin,
pptable->DpmDescriptor[PPCLK_GFXCLK].Padding16);
dev_info(smu->adev->dev, "[PPCLK_SOCCLK]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n"
" .SsFmin = 0x%04x\n"
" .Padding_16 = 0x%04x\n",
pptable->DpmDescriptor[PPCLK_SOCCLK].VoltageMode,
pptable->DpmDescriptor[PPCLK_SOCCLK].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_SOCCLK].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_SOCCLK].Padding,
pptable->DpmDescriptor[PPCLK_SOCCLK].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_SOCCLK].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_SOCCLK].SsCurve.a,
pptable->DpmDescriptor[PPCLK_SOCCLK].SsCurve.b,
pptable->DpmDescriptor[PPCLK_SOCCLK].SsCurve.c,
pptable->DpmDescriptor[PPCLK_SOCCLK].SsFmin,
pptable->DpmDescriptor[PPCLK_SOCCLK].Padding16);
dev_info(smu->adev->dev, "[PPCLK_UCLK]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n"
" .SsFmin = 0x%04x\n"
" .Padding_16 = 0x%04x\n",
pptable->DpmDescriptor[PPCLK_UCLK].VoltageMode,
pptable->DpmDescriptor[PPCLK_UCLK].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_UCLK].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_UCLK].Padding,
pptable->DpmDescriptor[PPCLK_UCLK].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_UCLK].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_UCLK].SsCurve.a,
pptable->DpmDescriptor[PPCLK_UCLK].SsCurve.b,
pptable->DpmDescriptor[PPCLK_UCLK].SsCurve.c,
pptable->DpmDescriptor[PPCLK_UCLK].SsFmin,
pptable->DpmDescriptor[PPCLK_UCLK].Padding16);
dev_info(smu->adev->dev, "[PPCLK_FCLK]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n"
" .SsFmin = 0x%04x\n"
" .Padding_16 = 0x%04x\n",
pptable->DpmDescriptor[PPCLK_FCLK].VoltageMode,
pptable->DpmDescriptor[PPCLK_FCLK].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_FCLK].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_FCLK].Padding,
pptable->DpmDescriptor[PPCLK_FCLK].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_FCLK].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_FCLK].SsCurve.a,
pptable->DpmDescriptor[PPCLK_FCLK].SsCurve.b,
pptable->DpmDescriptor[PPCLK_FCLK].SsCurve.c,
pptable->DpmDescriptor[PPCLK_FCLK].SsFmin,
pptable->DpmDescriptor[PPCLK_FCLK].Padding16);
dev_info(smu->adev->dev, "[PPCLK_DCLK_0]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n"
" .SsFmin = 0x%04x\n"
" .Padding_16 = 0x%04x\n",
pptable->DpmDescriptor[PPCLK_DCLK_0].VoltageMode,
pptable->DpmDescriptor[PPCLK_DCLK_0].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_DCLK_0].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_DCLK_0].Padding,
pptable->DpmDescriptor[PPCLK_DCLK_0].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_DCLK_0].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_DCLK_0].SsCurve.a,
pptable->DpmDescriptor[PPCLK_DCLK_0].SsCurve.b,
pptable->DpmDescriptor[PPCLK_DCLK_0].SsCurve.c,
pptable->DpmDescriptor[PPCLK_DCLK_0].SsFmin,
pptable->DpmDescriptor[PPCLK_DCLK_0].Padding16);
dev_info(smu->adev->dev, "[PPCLK_VCLK_0]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n"
" .SsFmin = 0x%04x\n"
" .Padding_16 = 0x%04x\n",
pptable->DpmDescriptor[PPCLK_VCLK_0].VoltageMode,
pptable->DpmDescriptor[PPCLK_VCLK_0].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_VCLK_0].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_VCLK_0].Padding,
pptable->DpmDescriptor[PPCLK_VCLK_0].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_VCLK_0].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_VCLK_0].SsCurve.a,
pptable->DpmDescriptor[PPCLK_VCLK_0].SsCurve.b,
pptable->DpmDescriptor[PPCLK_VCLK_0].SsCurve.c,
pptable->DpmDescriptor[PPCLK_VCLK_0].SsFmin,
pptable->DpmDescriptor[PPCLK_VCLK_0].Padding16);
dev_info(smu->adev->dev, "[PPCLK_DCLK_1]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n"
" .SsFmin = 0x%04x\n"
" .Padding_16 = 0x%04x\n",
pptable->DpmDescriptor[PPCLK_DCLK_1].VoltageMode,
pptable->DpmDescriptor[PPCLK_DCLK_1].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_DCLK_1].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_DCLK_1].Padding,
pptable->DpmDescriptor[PPCLK_DCLK_1].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_DCLK_1].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_DCLK_1].SsCurve.a,
pptable->DpmDescriptor[PPCLK_DCLK_1].SsCurve.b,
pptable->DpmDescriptor[PPCLK_DCLK_1].SsCurve.c,
pptable->DpmDescriptor[PPCLK_DCLK_1].SsFmin,
pptable->DpmDescriptor[PPCLK_DCLK_1].Padding16);
dev_info(smu->adev->dev, "[PPCLK_VCLK_1]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n"
" .SsFmin = 0x%04x\n"
" .Padding_16 = 0x%04x\n",
pptable->DpmDescriptor[PPCLK_VCLK_1].VoltageMode,
pptable->DpmDescriptor[PPCLK_VCLK_1].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_VCLK_1].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_VCLK_1].Padding,
pptable->DpmDescriptor[PPCLK_VCLK_1].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_VCLK_1].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_VCLK_1].SsCurve.a,
pptable->DpmDescriptor[PPCLK_VCLK_1].SsCurve.b,
pptable->DpmDescriptor[PPCLK_VCLK_1].SsCurve.c,
pptable->DpmDescriptor[PPCLK_VCLK_1].SsFmin,
pptable->DpmDescriptor[PPCLK_VCLK_1].Padding16);
dev_info(smu->adev->dev, "FreqTableGfx\n");
for (i = 0; i < NUM_GFXCLK_DPM_LEVELS; i++)
dev_info(smu->adev->dev, " .[%02d] = 0x%x\n", i, pptable->FreqTableGfx[i]);
dev_info(smu->adev->dev, "FreqTableVclk\n");
for (i = 0; i < NUM_VCLK_DPM_LEVELS; i++)
dev_info(smu->adev->dev, " .[%02d] = 0x%x\n", i, pptable->FreqTableVclk[i]);
dev_info(smu->adev->dev, "FreqTableDclk\n");
for (i = 0; i < NUM_DCLK_DPM_LEVELS; i++)
dev_info(smu->adev->dev, " .[%02d] = 0x%x\n", i, pptable->FreqTableDclk[i]);
dev_info(smu->adev->dev, "FreqTableSocclk\n");
for (i = 0; i < NUM_SOCCLK_DPM_LEVELS; i++)
dev_info(smu->adev->dev, " .[%02d] = 0x%x\n", i, pptable->FreqTableSocclk[i]);
dev_info(smu->adev->dev, "FreqTableUclk\n");
for (i = 0; i < NUM_UCLK_DPM_LEVELS; i++)
dev_info(smu->adev->dev, " .[%02d] = 0x%x\n", i, pptable->FreqTableUclk[i]);
dev_info(smu->adev->dev, "FreqTableFclk\n");
for (i = 0; i < NUM_FCLK_DPM_LEVELS; i++)
dev_info(smu->adev->dev, " .[%02d] = 0x%x\n", i, pptable->FreqTableFclk[i]);
dev_info(smu->adev->dev, "Paddingclks[0] = 0x%x\n", pptable->Paddingclks[0]);
dev_info(smu->adev->dev, "Paddingclks[1] = 0x%x\n", pptable->Paddingclks[1]);
dev_info(smu->adev->dev, "Paddingclks[2] = 0x%x\n", pptable->Paddingclks[2]);
dev_info(smu->adev->dev, "Paddingclks[3] = 0x%x\n", pptable->Paddingclks[3]);
dev_info(smu->adev->dev, "Paddingclks[4] = 0x%x\n", pptable->Paddingclks[4]);
dev_info(smu->adev->dev, "Paddingclks[5] = 0x%x\n", pptable->Paddingclks[5]);
dev_info(smu->adev->dev, "Paddingclks[6] = 0x%x\n", pptable->Paddingclks[6]);
dev_info(smu->adev->dev, "Paddingclks[7] = 0x%x\n", pptable->Paddingclks[7]);
dev_info(smu->adev->dev, "Paddingclks[8] = 0x%x\n", pptable->Paddingclks[8]);
dev_info(smu->adev->dev, "Paddingclks[9] = 0x%x\n", pptable->Paddingclks[9]);
dev_info(smu->adev->dev, "Paddingclks[10] = 0x%x\n", pptable->Paddingclks[10]);
dev_info(smu->adev->dev, "Paddingclks[11] = 0x%x\n", pptable->Paddingclks[11]);
dev_info(smu->adev->dev, "Paddingclks[12] = 0x%x\n", pptable->Paddingclks[12]);
dev_info(smu->adev->dev, "Paddingclks[13] = 0x%x\n", pptable->Paddingclks[13]);
dev_info(smu->adev->dev, "Paddingclks[14] = 0x%x\n", pptable->Paddingclks[14]);
dev_info(smu->adev->dev, "Paddingclks[15] = 0x%x\n", pptable->Paddingclks[15]);
dev_info(smu->adev->dev, "DcModeMaxFreq\n");
dev_info(smu->adev->dev, " .PPCLK_GFXCLK = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_GFXCLK]);
dev_info(smu->adev->dev, " .PPCLK_SOCCLK = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_SOCCLK]);
dev_info(smu->adev->dev, " .PPCLK_UCLK = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_UCLK]);
dev_info(smu->adev->dev, " .PPCLK_FCLK = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_FCLK]);
dev_info(smu->adev->dev, " .PPCLK_DCLK_0 = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_DCLK_0]);
dev_info(smu->adev->dev, " .PPCLK_VCLK_0 = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_VCLK_0]);
dev_info(smu->adev->dev, " .PPCLK_DCLK_1 = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_DCLK_1]);
dev_info(smu->adev->dev, " .PPCLK_VCLK_1 = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_VCLK_1]);
dev_info(smu->adev->dev, "FreqTableUclkDiv\n");
for (i = 0; i < NUM_UCLK_DPM_LEVELS; i++)
dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->FreqTableUclkDiv[i]);
dev_info(smu->adev->dev, "FclkBoostFreq = 0x%x\n", pptable->FclkBoostFreq);
dev_info(smu->adev->dev, "FclkParamPadding = 0x%x\n", pptable->FclkParamPadding);
dev_info(smu->adev->dev, "Mp0clkFreq\n");
for (i = 0; i < NUM_MP0CLK_DPM_LEVELS; i++)
dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->Mp0clkFreq[i]);
dev_info(smu->adev->dev, "Mp0DpmVoltage\n");
for (i = 0; i < NUM_MP0CLK_DPM_LEVELS; i++)
dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->Mp0DpmVoltage[i]);
dev_info(smu->adev->dev, "MemVddciVoltage\n");
for (i = 0; i < NUM_UCLK_DPM_LEVELS; i++)
dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->MemVddciVoltage[i]);
dev_info(smu->adev->dev, "MemMvddVoltage\n");
for (i = 0; i < NUM_UCLK_DPM_LEVELS; i++)
dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->MemMvddVoltage[i]);
dev_info(smu->adev->dev, "GfxclkFgfxoffEntry = 0x%x\n", pptable->GfxclkFgfxoffEntry);
dev_info(smu->adev->dev, "GfxclkFinit = 0x%x\n", pptable->GfxclkFinit);
dev_info(smu->adev->dev, "GfxclkFidle = 0x%x\n", pptable->GfxclkFidle);
dev_info(smu->adev->dev, "GfxclkSource = 0x%x\n", pptable->GfxclkSource);
dev_info(smu->adev->dev, "GfxclkPadding = 0x%x\n", pptable->GfxclkPadding);
dev_info(smu->adev->dev, "GfxGpoSubFeatureMask = 0x%x\n", pptable->GfxGpoSubFeatureMask);
dev_info(smu->adev->dev, "GfxGpoEnabledWorkPolicyMask = 0x%x\n", pptable->GfxGpoEnabledWorkPolicyMask);
dev_info(smu->adev->dev, "GfxGpoDisabledWorkPolicyMask = 0x%x\n", pptable->GfxGpoDisabledWorkPolicyMask);
dev_info(smu->adev->dev, "GfxGpoPadding[0] = 0x%x\n", pptable->GfxGpoPadding[0]);
dev_info(smu->adev->dev, "GfxGpoVotingAllow = 0x%x\n", pptable->GfxGpoVotingAllow);
dev_info(smu->adev->dev, "GfxGpoPadding32[0] = 0x%x\n", pptable->GfxGpoPadding32[0]);
dev_info(smu->adev->dev, "GfxGpoPadding32[1] = 0x%x\n", pptable->GfxGpoPadding32[1]);
dev_info(smu->adev->dev, "GfxGpoPadding32[2] = 0x%x\n", pptable->GfxGpoPadding32[2]);
dev_info(smu->adev->dev, "GfxGpoPadding32[3] = 0x%x\n", pptable->GfxGpoPadding32[3]);
dev_info(smu->adev->dev, "GfxDcsFopt = 0x%x\n", pptable->GfxDcsFopt);
dev_info(smu->adev->dev, "GfxDcsFclkFopt = 0x%x\n", pptable->GfxDcsFclkFopt);
dev_info(smu->adev->dev, "GfxDcsUclkFopt = 0x%x\n", pptable->GfxDcsUclkFopt);
dev_info(smu->adev->dev, "DcsGfxOffVoltage = 0x%x\n", pptable->DcsGfxOffVoltage);
dev_info(smu->adev->dev, "DcsMinGfxOffTime = 0x%x\n", pptable->DcsMinGfxOffTime);
dev_info(smu->adev->dev, "DcsMaxGfxOffTime = 0x%x\n", pptable->DcsMaxGfxOffTime);
dev_info(smu->adev->dev, "DcsMinCreditAccum = 0x%x\n", pptable->DcsMinCreditAccum);
dev_info(smu->adev->dev, "DcsExitHysteresis = 0x%x\n", pptable->DcsExitHysteresis);
dev_info(smu->adev->dev, "DcsTimeout = 0x%x\n", pptable->DcsTimeout);
dev_info(smu->adev->dev, "DcsParamPadding[0] = 0x%x\n", pptable->DcsParamPadding[0]);
dev_info(smu->adev->dev, "DcsParamPadding[1] = 0x%x\n", pptable->DcsParamPadding[1]);
dev_info(smu->adev->dev, "DcsParamPadding[2] = 0x%x\n", pptable->DcsParamPadding[2]);
dev_info(smu->adev->dev, "DcsParamPadding[3] = 0x%x\n", pptable->DcsParamPadding[3]);
dev_info(smu->adev->dev, "DcsParamPadding[4] = 0x%x\n", pptable->DcsParamPadding[4]);
dev_info(smu->adev->dev, "FlopsPerByteTable\n");
for (i = 0; i < RLC_PACE_TABLE_NUM_LEVELS; i++)
dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->FlopsPerByteTable[i]);
dev_info(smu->adev->dev, "LowestUclkReservedForUlv = 0x%x\n", pptable->LowestUclkReservedForUlv);
dev_info(smu->adev->dev, "vddingMem[0] = 0x%x\n", pptable->PaddingMem[0]);
dev_info(smu->adev->dev, "vddingMem[1] = 0x%x\n", pptable->PaddingMem[1]);
dev_info(smu->adev->dev, "vddingMem[2] = 0x%x\n", pptable->PaddingMem[2]);
dev_info(smu->adev->dev, "UclkDpmPstates\n");
for (i = 0; i < NUM_UCLK_DPM_LEVELS; i++)
dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->UclkDpmPstates[i]);
dev_info(smu->adev->dev, "UclkDpmSrcFreqRange\n");
dev_info(smu->adev->dev, " .Fmin = 0x%x\n",
pptable->UclkDpmSrcFreqRange.Fmin);
dev_info(smu->adev->dev, " .Fmax = 0x%x\n",
pptable->UclkDpmSrcFreqRange.Fmax);
dev_info(smu->adev->dev, "UclkDpmTargFreqRange\n");
dev_info(smu->adev->dev, " .Fmin = 0x%x\n",
pptable->UclkDpmTargFreqRange.Fmin);
dev_info(smu->adev->dev, " .Fmax = 0x%x\n",
pptable->UclkDpmTargFreqRange.Fmax);
dev_info(smu->adev->dev, "UclkDpmMidstepFreq = 0x%x\n", pptable->UclkDpmMidstepFreq);
dev_info(smu->adev->dev, "UclkMidstepPadding = 0x%x\n", pptable->UclkMidstepPadding);
dev_info(smu->adev->dev, "PcieGenSpeed\n");
for (i = 0; i < NUM_LINK_LEVELS; i++)
dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->PcieGenSpeed[i]);
dev_info(smu->adev->dev, "PcieLaneCount\n");
for (i = 0; i < NUM_LINK_LEVELS; i++)
dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->PcieLaneCount[i]);
dev_info(smu->adev->dev, "LclkFreq\n");
for (i = 0; i < NUM_LINK_LEVELS; i++)
dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->LclkFreq[i]);
dev_info(smu->adev->dev, "FanStopTemp = 0x%x\n", pptable->FanStopTemp);
dev_info(smu->adev->dev, "FanStartTemp = 0x%x\n", pptable->FanStartTemp);
dev_info(smu->adev->dev, "FanGain\n");
for (i = 0; i < TEMP_COUNT; i++)
dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->FanGain[i]);
dev_info(smu->adev->dev, "FanPwmMin = 0x%x\n", pptable->FanPwmMin);
dev_info(smu->adev->dev, "FanAcousticLimitRpm = 0x%x\n", pptable->FanAcousticLimitRpm);
dev_info(smu->adev->dev, "FanThrottlingRpm = 0x%x\n", pptable->FanThrottlingRpm);
dev_info(smu->adev->dev, "FanMaximumRpm = 0x%x\n", pptable->FanMaximumRpm);
dev_info(smu->adev->dev, "MGpuFanBoostLimitRpm = 0x%x\n", pptable->MGpuFanBoostLimitRpm);
dev_info(smu->adev->dev, "FanTargetTemperature = 0x%x\n", pptable->FanTargetTemperature);
dev_info(smu->adev->dev, "FanTargetGfxclk = 0x%x\n", pptable->FanTargetGfxclk);
dev_info(smu->adev->dev, "FanPadding16 = 0x%x\n", pptable->FanPadding16);
dev_info(smu->adev->dev, "FanTempInputSelect = 0x%x\n", pptable->FanTempInputSelect);
dev_info(smu->adev->dev, "FanPadding = 0x%x\n", pptable->FanPadding);
dev_info(smu->adev->dev, "FanZeroRpmEnable = 0x%x\n", pptable->FanZeroRpmEnable);
dev_info(smu->adev->dev, "FanTachEdgePerRev = 0x%x\n", pptable->FanTachEdgePerRev);
dev_info(smu->adev->dev, "FuzzyFan_ErrorSetDelta = 0x%x\n", pptable->FuzzyFan_ErrorSetDelta);
dev_info(smu->adev->dev, "FuzzyFan_ErrorRateSetDelta = 0x%x\n", pptable->FuzzyFan_ErrorRateSetDelta);
dev_info(smu->adev->dev, "FuzzyFan_PwmSetDelta = 0x%x\n", pptable->FuzzyFan_PwmSetDelta);
dev_info(smu->adev->dev, "FuzzyFan_Reserved = 0x%x\n", pptable->FuzzyFan_Reserved);
dev_info(smu->adev->dev, "OverrideAvfsGb[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->OverrideAvfsGb[AVFS_VOLTAGE_GFX]);
dev_info(smu->adev->dev, "OverrideAvfsGb[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->OverrideAvfsGb[AVFS_VOLTAGE_SOC]);
dev_info(smu->adev->dev, "dBtcGbGfxDfllModelSelect = 0x%x\n", pptable->dBtcGbGfxDfllModelSelect);
dev_info(smu->adev->dev, "Padding8_Avfs = 0x%x\n", pptable->Padding8_Avfs);
dev_info(smu->adev->dev, "qAvfsGb[AVFS_VOLTAGE_GFX]{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->qAvfsGb[AVFS_VOLTAGE_GFX].a,
pptable->qAvfsGb[AVFS_VOLTAGE_GFX].b,
pptable->qAvfsGb[AVFS_VOLTAGE_GFX].c);
dev_info(smu->adev->dev, "qAvfsGb[AVFS_VOLTAGE_SOC]{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->qAvfsGb[AVFS_VOLTAGE_SOC].a,
pptable->qAvfsGb[AVFS_VOLTAGE_SOC].b,
pptable->qAvfsGb[AVFS_VOLTAGE_SOC].c);
dev_info(smu->adev->dev, "dBtcGbGfxPll{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->dBtcGbGfxPll.a,
pptable->dBtcGbGfxPll.b,
pptable->dBtcGbGfxPll.c);
dev_info(smu->adev->dev, "dBtcGbGfxAfll{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->dBtcGbGfxDfll.a,
pptable->dBtcGbGfxDfll.b,
pptable->dBtcGbGfxDfll.c);
dev_info(smu->adev->dev, "dBtcGbSoc{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->dBtcGbSoc.a,
pptable->dBtcGbSoc.b,
pptable->dBtcGbSoc.c);
dev_info(smu->adev->dev, "qAgingGb[AVFS_VOLTAGE_GFX]{m = 0x%x b = 0x%x}\n",
pptable->qAgingGb[AVFS_VOLTAGE_GFX].m,
pptable->qAgingGb[AVFS_VOLTAGE_GFX].b);
dev_info(smu->adev->dev, "qAgingGb[AVFS_VOLTAGE_SOC]{m = 0x%x b = 0x%x}\n",
pptable->qAgingGb[AVFS_VOLTAGE_SOC].m,
pptable->qAgingGb[AVFS_VOLTAGE_SOC].b);
dev_info(smu->adev->dev, "PiecewiseLinearDroopIntGfxDfll\n");
for (i = 0; i < NUM_PIECE_WISE_LINEAR_DROOP_MODEL_VF_POINTS; i++) {
dev_info(smu->adev->dev, " Fset[%d] = 0x%x\n",
i, pptable->PiecewiseLinearDroopIntGfxDfll.Fset[i]);
dev_info(smu->adev->dev, " Vdroop[%d] = 0x%x\n",
i, pptable->PiecewiseLinearDroopIntGfxDfll.Vdroop[i]);
}
dev_info(smu->adev->dev, "qStaticVoltageOffset[AVFS_VOLTAGE_GFX]{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->qStaticVoltageOffset[AVFS_VOLTAGE_GFX].a,
pptable->qStaticVoltageOffset[AVFS_VOLTAGE_GFX].b,
pptable->qStaticVoltageOffset[AVFS_VOLTAGE_GFX].c);
dev_info(smu->adev->dev, "qStaticVoltageOffset[AVFS_VOLTAGE_SOC]{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->qStaticVoltageOffset[AVFS_VOLTAGE_SOC].a,
pptable->qStaticVoltageOffset[AVFS_VOLTAGE_SOC].b,
pptable->qStaticVoltageOffset[AVFS_VOLTAGE_SOC].c);
dev_info(smu->adev->dev, "DcTol[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcTol[AVFS_VOLTAGE_GFX]);
dev_info(smu->adev->dev, "DcTol[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcTol[AVFS_VOLTAGE_SOC]);
dev_info(smu->adev->dev, "DcBtcEnabled[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcEnabled[AVFS_VOLTAGE_GFX]);
dev_info(smu->adev->dev, "DcBtcEnabled[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcEnabled[AVFS_VOLTAGE_SOC]);
dev_info(smu->adev->dev, "Padding8_GfxBtc[0] = 0x%x\n", pptable->Padding8_GfxBtc[0]);
dev_info(smu->adev->dev, "Padding8_GfxBtc[1] = 0x%x\n", pptable->Padding8_GfxBtc[1]);
dev_info(smu->adev->dev, "DcBtcMin[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcMin[AVFS_VOLTAGE_GFX]);
dev_info(smu->adev->dev, "DcBtcMin[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcMin[AVFS_VOLTAGE_SOC]);
dev_info(smu->adev->dev, "DcBtcMax[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcMax[AVFS_VOLTAGE_GFX]);
dev_info(smu->adev->dev, "DcBtcMax[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcMax[AVFS_VOLTAGE_SOC]);
dev_info(smu->adev->dev, "DcBtcGb[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcGb[AVFS_VOLTAGE_GFX]);
dev_info(smu->adev->dev, "DcBtcGb[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcGb[AVFS_VOLTAGE_SOC]);
dev_info(smu->adev->dev, "XgmiDpmPstates\n");
for (i = 0; i < NUM_XGMI_LEVELS; i++)
dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->XgmiDpmPstates[i]);
dev_info(smu->adev->dev, "XgmiDpmSpare[0] = 0x%02x\n", pptable->XgmiDpmSpare[0]);
dev_info(smu->adev->dev, "XgmiDpmSpare[1] = 0x%02x\n", pptable->XgmiDpmSpare[1]);
dev_info(smu->adev->dev, "DebugOverrides = 0x%x\n", pptable->DebugOverrides);
dev_info(smu->adev->dev, "ReservedEquation0{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->ReservedEquation0.a,
pptable->ReservedEquation0.b,
pptable->ReservedEquation0.c);
dev_info(smu->adev->dev, "ReservedEquation1{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->ReservedEquation1.a,
pptable->ReservedEquation1.b,
pptable->ReservedEquation1.c);
dev_info(smu->adev->dev, "ReservedEquation2{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->ReservedEquation2.a,
pptable->ReservedEquation2.b,
pptable->ReservedEquation2.c);
dev_info(smu->adev->dev, "ReservedEquation3{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->ReservedEquation3.a,
pptable->ReservedEquation3.b,
pptable->ReservedEquation3.c);
dev_info(smu->adev->dev, "SkuReserved[0] = 0x%x\n", pptable->SkuReserved[0]);
dev_info(smu->adev->dev, "SkuReserved[1] = 0x%x\n", pptable->SkuReserved[1]);
dev_info(smu->adev->dev, "SkuReserved[2] = 0x%x\n", pptable->SkuReserved[2]);
dev_info(smu->adev->dev, "SkuReserved[3] = 0x%x\n", pptable->SkuReserved[3]);
dev_info(smu->adev->dev, "SkuReserved[4] = 0x%x\n", pptable->SkuReserved[4]);
dev_info(smu->adev->dev, "SkuReserved[5] = 0x%x\n", pptable->SkuReserved[5]);
dev_info(smu->adev->dev, "SkuReserved[6] = 0x%x\n", pptable->SkuReserved[6]);
dev_info(smu->adev->dev, "SkuReserved[7] = 0x%x\n", pptable->SkuReserved[7]);
dev_info(smu->adev->dev, "SkuReserved[8] = 0x%x\n", pptable->SkuReserved[8]);
dev_info(smu->adev->dev, "GamingClk[0] = 0x%x\n", pptable->GamingClk[0]);
dev_info(smu->adev->dev, "GamingClk[1] = 0x%x\n", pptable->GamingClk[1]);
dev_info(smu->adev->dev, "GamingClk[2] = 0x%x\n", pptable->GamingClk[2]);
dev_info(smu->adev->dev, "GamingClk[3] = 0x%x\n", pptable->GamingClk[3]);
dev_info(smu->adev->dev, "GamingClk[4] = 0x%x\n", pptable->GamingClk[4]);
dev_info(smu->adev->dev, "GamingClk[5] = 0x%x\n", pptable->GamingClk[5]);
for (i = 0; i < NUM_I2C_CONTROLLERS; i++) {
dev_info(smu->adev->dev, "I2cControllers[%d]:\n", i);
dev_info(smu->adev->dev, " .Enabled = 0x%x\n",
pptable->I2cControllers[i].Enabled);
dev_info(smu->adev->dev, " .Speed = 0x%x\n",
pptable->I2cControllers[i].Speed);
dev_info(smu->adev->dev, " .SlaveAddress = 0x%x\n",
pptable->I2cControllers[i].SlaveAddress);
dev_info(smu->adev->dev, " .ControllerPort = 0x%x\n",
pptable->I2cControllers[i].ControllerPort);
dev_info(smu->adev->dev, " .ControllerName = 0x%x\n",
pptable->I2cControllers[i].ControllerName);
dev_info(smu->adev->dev, " .ThermalThrottler = 0x%x\n",
pptable->I2cControllers[i].ThermalThrotter);
dev_info(smu->adev->dev, " .I2cProtocol = 0x%x\n",
pptable->I2cControllers[i].I2cProtocol);
dev_info(smu->adev->dev, " .PaddingConfig = 0x%x\n",
pptable->I2cControllers[i].PaddingConfig);
}
dev_info(smu->adev->dev, "GpioScl = 0x%x\n", pptable->GpioScl);
dev_info(smu->adev->dev, "GpioSda = 0x%x\n", pptable->GpioSda);
dev_info(smu->adev->dev, "FchUsbPdSlaveAddr = 0x%x\n", pptable->FchUsbPdSlaveAddr);
dev_info(smu->adev->dev, "I2cSpare[0] = 0x%x\n", pptable->I2cSpare[0]);
dev_info(smu->adev->dev, "Board Parameters:\n");
dev_info(smu->adev->dev, "VddGfxVrMapping = 0x%x\n", pptable->VddGfxVrMapping);
dev_info(smu->adev->dev, "VddSocVrMapping = 0x%x\n", pptable->VddSocVrMapping);
dev_info(smu->adev->dev, "VddMem0VrMapping = 0x%x\n", pptable->VddMem0VrMapping);
dev_info(smu->adev->dev, "VddMem1VrMapping = 0x%x\n", pptable->VddMem1VrMapping);
dev_info(smu->adev->dev, "GfxUlvPhaseSheddingMask = 0x%x\n", pptable->GfxUlvPhaseSheddingMask);
dev_info(smu->adev->dev, "SocUlvPhaseSheddingMask = 0x%x\n", pptable->SocUlvPhaseSheddingMask);
dev_info(smu->adev->dev, "VddciUlvPhaseSheddingMask = 0x%x\n", pptable->VddciUlvPhaseSheddingMask);
dev_info(smu->adev->dev, "MvddUlvPhaseSheddingMask = 0x%x\n", pptable->MvddUlvPhaseSheddingMask);
dev_info(smu->adev->dev, "GfxMaxCurrent = 0x%x\n", pptable->GfxMaxCurrent);
dev_info(smu->adev->dev, "GfxOffset = 0x%x\n", pptable->GfxOffset);
dev_info(smu->adev->dev, "Padding_TelemetryGfx = 0x%x\n", pptable->Padding_TelemetryGfx);
dev_info(smu->adev->dev, "SocMaxCurrent = 0x%x\n", pptable->SocMaxCurrent);
dev_info(smu->adev->dev, "SocOffset = 0x%x\n", pptable->SocOffset);
dev_info(smu->adev->dev, "Padding_TelemetrySoc = 0x%x\n", pptable->Padding_TelemetrySoc);
dev_info(smu->adev->dev, "Mem0MaxCurrent = 0x%x\n", pptable->Mem0MaxCurrent);
dev_info(smu->adev->dev, "Mem0Offset = 0x%x\n", pptable->Mem0Offset);
dev_info(smu->adev->dev, "Padding_TelemetryMem0 = 0x%x\n", pptable->Padding_TelemetryMem0);
dev_info(smu->adev->dev, "Mem1MaxCurrent = 0x%x\n", pptable->Mem1MaxCurrent);
dev_info(smu->adev->dev, "Mem1Offset = 0x%x\n", pptable->Mem1Offset);
dev_info(smu->adev->dev, "Padding_TelemetryMem1 = 0x%x\n", pptable->Padding_TelemetryMem1);
dev_info(smu->adev->dev, "MvddRatio = 0x%x\n", pptable->MvddRatio);
dev_info(smu->adev->dev, "AcDcGpio = 0x%x\n", pptable->AcDcGpio);
dev_info(smu->adev->dev, "AcDcPolarity = 0x%x\n", pptable->AcDcPolarity);
dev_info(smu->adev->dev, "VR0HotGpio = 0x%x\n", pptable->VR0HotGpio);
dev_info(smu->adev->dev, "VR0HotPolarity = 0x%x\n", pptable->VR0HotPolarity);
dev_info(smu->adev->dev, "VR1HotGpio = 0x%x\n", pptable->VR1HotGpio);
dev_info(smu->adev->dev, "VR1HotPolarity = 0x%x\n", pptable->VR1HotPolarity);
dev_info(smu->adev->dev, "GthrGpio = 0x%x\n", pptable->GthrGpio);
dev_info(smu->adev->dev, "GthrPolarity = 0x%x\n", pptable->GthrPolarity);
dev_info(smu->adev->dev, "LedPin0 = 0x%x\n", pptable->LedPin0);
dev_info(smu->adev->dev, "LedPin1 = 0x%x\n", pptable->LedPin1);
dev_info(smu->adev->dev, "LedPin2 = 0x%x\n", pptable->LedPin2);
dev_info(smu->adev->dev, "LedEnableMask = 0x%x\n", pptable->LedEnableMask);
dev_info(smu->adev->dev, "LedPcie = 0x%x\n", pptable->LedPcie);
dev_info(smu->adev->dev, "LedError = 0x%x\n", pptable->LedError);
dev_info(smu->adev->dev, "LedSpare1[0] = 0x%x\n", pptable->LedSpare1[0]);
dev_info(smu->adev->dev, "LedSpare1[1] = 0x%x\n", pptable->LedSpare1[1]);
dev_info(smu->adev->dev, "PllGfxclkSpreadEnabled = 0x%x\n", pptable->PllGfxclkSpreadEnabled);
dev_info(smu->adev->dev, "PllGfxclkSpreadPercent = 0x%x\n", pptable->PllGfxclkSpreadPercent);
dev_info(smu->adev->dev, "PllGfxclkSpreadFreq = 0x%x\n", pptable->PllGfxclkSpreadFreq);
dev_info(smu->adev->dev, "DfllGfxclkSpreadEnabled = 0x%x\n", pptable->DfllGfxclkSpreadEnabled);
dev_info(smu->adev->dev, "DfllGfxclkSpreadPercent = 0x%x\n", pptable->DfllGfxclkSpreadPercent);
dev_info(smu->adev->dev, "DfllGfxclkSpreadFreq = 0x%x\n", pptable->DfllGfxclkSpreadFreq);
dev_info(smu->adev->dev, "UclkSpreadPadding = 0x%x\n", pptable->UclkSpreadPadding);
dev_info(smu->adev->dev, "UclkSpreadFreq = 0x%x\n", pptable->UclkSpreadFreq);
dev_info(smu->adev->dev, "FclkSpreadEnabled = 0x%x\n", pptable->FclkSpreadEnabled);
dev_info(smu->adev->dev, "FclkSpreadPercent = 0x%x\n", pptable->FclkSpreadPercent);
dev_info(smu->adev->dev, "FclkSpreadFreq = 0x%x\n", pptable->FclkSpreadFreq);
dev_info(smu->adev->dev, "MemoryChannelEnabled = 0x%x\n", pptable->MemoryChannelEnabled);
dev_info(smu->adev->dev, "DramBitWidth = 0x%x\n", pptable->DramBitWidth);
dev_info(smu->adev->dev, "PaddingMem1[0] = 0x%x\n", pptable->PaddingMem1[0]);
dev_info(smu->adev->dev, "PaddingMem1[1] = 0x%x\n", pptable->PaddingMem1[1]);
dev_info(smu->adev->dev, "PaddingMem1[2] = 0x%x\n", pptable->PaddingMem1[2]);
dev_info(smu->adev->dev, "TotalBoardPower = 0x%x\n", pptable->TotalBoardPower);
dev_info(smu->adev->dev, "BoardPowerPadding = 0x%x\n", pptable->BoardPowerPadding);
dev_info(smu->adev->dev, "XgmiLinkSpeed\n");
for (i = 0; i < NUM_XGMI_PSTATE_LEVELS; i++)
dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->XgmiLinkSpeed[i]);
dev_info(smu->adev->dev, "XgmiLinkWidth\n");
for (i = 0; i < NUM_XGMI_PSTATE_LEVELS; i++)
dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->XgmiLinkWidth[i]);
dev_info(smu->adev->dev, "XgmiFclkFreq\n");
for (i = 0; i < NUM_XGMI_PSTATE_LEVELS; i++)
dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->XgmiFclkFreq[i]);
dev_info(smu->adev->dev, "XgmiSocVoltage\n");
for (i = 0; i < NUM_XGMI_PSTATE_LEVELS; i++)
dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->XgmiSocVoltage[i]);
dev_info(smu->adev->dev, "HsrEnabled = 0x%x\n", pptable->HsrEnabled);
dev_info(smu->adev->dev, "VddqOffEnabled = 0x%x\n", pptable->VddqOffEnabled);
dev_info(smu->adev->dev, "PaddingUmcFlags[0] = 0x%x\n", pptable->PaddingUmcFlags[0]);
dev_info(smu->adev->dev, "PaddingUmcFlags[1] = 0x%x\n", pptable->PaddingUmcFlags[1]);
dev_info(smu->adev->dev, "BoardReserved[0] = 0x%x\n", pptable->BoardReserved[0]);
dev_info(smu->adev->dev, "BoardReserved[1] = 0x%x\n", pptable->BoardReserved[1]);
dev_info(smu->adev->dev, "BoardReserved[2] = 0x%x\n", pptable->BoardReserved[2]);
dev_info(smu->adev->dev, "BoardReserved[3] = 0x%x\n", pptable->BoardReserved[3]);
dev_info(smu->adev->dev, "BoardReserved[4] = 0x%x\n", pptable->BoardReserved[4]);
dev_info(smu->adev->dev, "BoardReserved[5] = 0x%x\n", pptable->BoardReserved[5]);
dev_info(smu->adev->dev, "BoardReserved[6] = 0x%x\n", pptable->BoardReserved[6]);
dev_info(smu->adev->dev, "BoardReserved[7] = 0x%x\n", pptable->BoardReserved[7]);
dev_info(smu->adev->dev, "BoardReserved[8] = 0x%x\n", pptable->BoardReserved[8]);
dev_info(smu->adev->dev, "BoardReserved[9] = 0x%x\n", pptable->BoardReserved[9]);
dev_info(smu->adev->dev, "BoardReserved[10] = 0x%x\n", pptable->BoardReserved[10]);
dev_info(smu->adev->dev, "MmHubPadding[0] = 0x%x\n", pptable->MmHubPadding[0]);
dev_info(smu->adev->dev, "MmHubPadding[1] = 0x%x\n", pptable->MmHubPadding[1]);
dev_info(smu->adev->dev, "MmHubPadding[2] = 0x%x\n", pptable->MmHubPadding[2]);
dev_info(smu->adev->dev, "MmHubPadding[3] = 0x%x\n", pptable->MmHubPadding[3]);
dev_info(smu->adev->dev, "MmHubPadding[4] = 0x%x\n", pptable->MmHubPadding[4]);
dev_info(smu->adev->dev, "MmHubPadding[5] = 0x%x\n", pptable->MmHubPadding[5]);
dev_info(smu->adev->dev, "MmHubPadding[6] = 0x%x\n", pptable->MmHubPadding[6]);
dev_info(smu->adev->dev, "MmHubPadding[7] = 0x%x\n", pptable->MmHubPadding[7]);
}
static void sienna_cichlid_fill_i2c_req(SwI2cRequest_t *req, bool write,
uint8_t address, uint32_t numbytes,
uint8_t *data)
{
int i;
req->I2CcontrollerPort = 0;
req->I2CSpeed = 2;
req->SlaveAddress = address;
req->NumCmds = numbytes;
for (i = 0; i < numbytes; i++) {
SwI2cCmd_t *cmd = &req->SwI2cCmds[i];
/* First 2 bytes are always write for lower 2b EEPROM address */
if (i < 2)
cmd->CmdConfig = CMDCONFIG_READWRITE_MASK;
else
cmd->CmdConfig = write ? CMDCONFIG_READWRITE_MASK : 0;
/* Add RESTART for read after address filled */
cmd->CmdConfig |= (i == 2 && !write) ? CMDCONFIG_RESTART_MASK : 0;
/* Add STOP in the end */
cmd->CmdConfig |= (i == (numbytes - 1)) ? CMDCONFIG_STOP_MASK : 0;
/* Fill with data regardless if read or write to simplify code */
cmd->ReadWriteData = data[i];
}
}
static int sienna_cichlid_i2c_read_data(struct i2c_adapter *control,
uint8_t address,
uint8_t *data,
uint32_t numbytes)
{
uint32_t i, ret = 0;
SwI2cRequest_t req;
struct amdgpu_device *adev = to_amdgpu_device(control);
struct smu_table_context *smu_table = &adev->smu.smu_table;
struct smu_table *table = &smu_table->driver_table;
if (numbytes > MAX_SW_I2C_COMMANDS) {
dev_err(adev->dev, "numbytes requested %d is over max allowed %d\n",
numbytes, MAX_SW_I2C_COMMANDS);
return -EINVAL;
}
memset(&req, 0, sizeof(req));
sienna_cichlid_fill_i2c_req(&req, false, address, numbytes, data);
mutex_lock(&adev->smu.mutex);
/* Now read data starting with that address */
ret = smu_cmn_update_table(&adev->smu, SMU_TABLE_I2C_COMMANDS, 0, &req,
true);
mutex_unlock(&adev->smu.mutex);
if (!ret) {
SwI2cRequest_t *res = (SwI2cRequest_t *)table->cpu_addr;
/* Assume SMU fills res.SwI2cCmds[i].Data with read bytes */
for (i = 0; i < numbytes; i++)
data[i] = res->SwI2cCmds[i].ReadWriteData;
dev_dbg(adev->dev, "sienna_cichlid_i2c_read_data, address = %x, bytes = %d, data :",
(uint16_t)address, numbytes);
print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_NONE,
8, 1, data, numbytes, false);
} else
dev_err(adev->dev, "sienna_cichlid_i2c_read_data - error occurred :%x", ret);
return ret;
}
static int sienna_cichlid_i2c_write_data(struct i2c_adapter *control,
uint8_t address,
uint8_t *data,
uint32_t numbytes)
{
uint32_t ret;
SwI2cRequest_t req;
struct amdgpu_device *adev = to_amdgpu_device(control);
if (numbytes > MAX_SW_I2C_COMMANDS) {
dev_err(adev->dev, "numbytes requested %d is over max allowed %d\n",
numbytes, MAX_SW_I2C_COMMANDS);
return -EINVAL;
}
memset(&req, 0, sizeof(req));
sienna_cichlid_fill_i2c_req(&req, true, address, numbytes, data);
mutex_lock(&adev->smu.mutex);
ret = smu_cmn_update_table(&adev->smu, SMU_TABLE_I2C_COMMANDS, 0, &req, true);
mutex_unlock(&adev->smu.mutex);
if (!ret) {
dev_dbg(adev->dev, "sienna_cichlid_i2c_write(), address = %x, bytes = %d , data: ",
(uint16_t)address, numbytes);
print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_NONE,
8, 1, data, numbytes, false);
/*
* According to EEPROM spec there is a MAX of 10 ms required for
* EEPROM to flush internal RX buffer after STOP was issued at the
* end of write transaction. During this time the EEPROM will not be
* responsive to any more commands - so wait a bit more.
*/
msleep(10);
} else
dev_err(adev->dev, "sienna_cichlid_i2c_write- error occurred :%x", ret);
return ret;
}
static int sienna_cichlid_i2c_xfer(struct i2c_adapter *i2c_adap,
struct i2c_msg *msgs, int num)
{
uint32_t i, j, ret, data_size, data_chunk_size, next_eeprom_addr = 0;
uint8_t *data_ptr, data_chunk[MAX_SW_I2C_COMMANDS] = { 0 };
for (i = 0; i < num; i++) {
/*
* SMU interface allows at most MAX_SW_I2C_COMMANDS bytes of data at
* once and hence the data needs to be spliced into chunks and sent each
* chunk separately
*/
data_size = msgs[i].len - 2;
data_chunk_size = MAX_SW_I2C_COMMANDS - 2;
next_eeprom_addr = (msgs[i].buf[0] << 8 & 0xff00) | (msgs[i].buf[1] & 0xff);
data_ptr = msgs[i].buf + 2;
for (j = 0; j < data_size / data_chunk_size; j++) {
/* Insert the EEPROM dest addess, bits 0-15 */
data_chunk[0] = ((next_eeprom_addr >> 8) & 0xff);
data_chunk[1] = (next_eeprom_addr & 0xff);
if (msgs[i].flags & I2C_M_RD) {
ret = sienna_cichlid_i2c_read_data(i2c_adap,
(uint8_t)msgs[i].addr,
data_chunk, MAX_SW_I2C_COMMANDS);
memcpy(data_ptr, data_chunk + 2, data_chunk_size);
} else {
memcpy(data_chunk + 2, data_ptr, data_chunk_size);
ret = sienna_cichlid_i2c_write_data(i2c_adap,
(uint8_t)msgs[i].addr,
data_chunk, MAX_SW_I2C_COMMANDS);
}
if (ret) {
num = -EIO;
goto fail;
}
next_eeprom_addr += data_chunk_size;
data_ptr += data_chunk_size;
}
if (data_size % data_chunk_size) {
data_chunk[0] = ((next_eeprom_addr >> 8) & 0xff);
data_chunk[1] = (next_eeprom_addr & 0xff);
if (msgs[i].flags & I2C_M_RD) {
ret = sienna_cichlid_i2c_read_data(i2c_adap,
(uint8_t)msgs[i].addr,
data_chunk, (data_size % data_chunk_size) + 2);
memcpy(data_ptr, data_chunk + 2, data_size % data_chunk_size);
} else {
memcpy(data_chunk + 2, data_ptr, data_size % data_chunk_size);
ret = sienna_cichlid_i2c_write_data(i2c_adap,
(uint8_t)msgs[i].addr,
data_chunk, (data_size % data_chunk_size) + 2);
}
if (ret) {
num = -EIO;
goto fail;
}
}
}
fail:
return num;
}
static u32 sienna_cichlid_i2c_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static const struct i2c_algorithm sienna_cichlid_i2c_algo = {
.master_xfer = sienna_cichlid_i2c_xfer,
.functionality = sienna_cichlid_i2c_func,
};
static int sienna_cichlid_i2c_control_init(struct smu_context *smu, struct i2c_adapter *control)
{
struct amdgpu_device *adev = to_amdgpu_device(control);
int res;
control->owner = THIS_MODULE;
control->class = I2C_CLASS_SPD;
control->dev.parent = &adev->pdev->dev;
control->algo = &sienna_cichlid_i2c_algo;
snprintf(control->name, sizeof(control->name), "AMDGPU SMU");
res = i2c_add_adapter(control);
if (res)
DRM_ERROR("Failed to register hw i2c, err: %d\n", res);
return res;
}
static void sienna_cichlid_i2c_control_fini(struct smu_context *smu, struct i2c_adapter *control)
{
i2c_del_adapter(control);
}
static ssize_t sienna_cichlid_get_gpu_metrics(struct smu_context *smu,
void **table)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct gpu_metrics_v1_0 *gpu_metrics =
(struct gpu_metrics_v1_0 *)smu_table->gpu_metrics_table;
SmuMetrics_t metrics;
int ret = 0;
ret = smu_cmn_get_metrics_table(smu,
&metrics,
true);
if (ret)
return ret;
smu_v11_0_init_gpu_metrics_v1_0(gpu_metrics);
gpu_metrics->temperature_edge = metrics.TemperatureEdge;
gpu_metrics->temperature_hotspot = metrics.TemperatureHotspot;
gpu_metrics->temperature_mem = metrics.TemperatureMem;
gpu_metrics->temperature_vrgfx = metrics.TemperatureVrGfx;
gpu_metrics->temperature_vrsoc = metrics.TemperatureVrSoc;
gpu_metrics->temperature_vrmem = metrics.TemperatureVrMem0;
gpu_metrics->average_gfx_activity = metrics.AverageGfxActivity;
gpu_metrics->average_umc_activity = metrics.AverageUclkActivity;
gpu_metrics->average_mm_activity = metrics.VcnActivityPercentage;
gpu_metrics->average_socket_power = metrics.AverageSocketPower;
gpu_metrics->energy_accumulator = metrics.EnergyAccumulator;
if (metrics.AverageGfxActivity <= SMU_11_0_7_GFX_BUSY_THRESHOLD)
gpu_metrics->average_gfxclk_frequency = metrics.AverageGfxclkFrequencyPostDs;
else
gpu_metrics->average_gfxclk_frequency = metrics.AverageGfxclkFrequencyPreDs;
gpu_metrics->average_uclk_frequency = metrics.AverageUclkFrequencyPostDs;
gpu_metrics->average_vclk0_frequency = metrics.AverageVclk0Frequency;
gpu_metrics->average_dclk0_frequency = metrics.AverageDclk0Frequency;
gpu_metrics->average_vclk1_frequency = metrics.AverageVclk1Frequency;
gpu_metrics->average_dclk1_frequency = metrics.AverageDclk1Frequency;
gpu_metrics->current_gfxclk = metrics.CurrClock[PPCLK_GFXCLK];
gpu_metrics->current_socclk = metrics.CurrClock[PPCLK_SOCCLK];
gpu_metrics->current_uclk = metrics.CurrClock[PPCLK_UCLK];
gpu_metrics->current_vclk0 = metrics.CurrClock[PPCLK_VCLK_0];
gpu_metrics->current_dclk0 = metrics.CurrClock[PPCLK_DCLK_0];
gpu_metrics->current_vclk1 = metrics.CurrClock[PPCLK_VCLK_1];
gpu_metrics->current_dclk1 = metrics.CurrClock[PPCLK_DCLK_1];
gpu_metrics->throttle_status = metrics.ThrottlerStatus;
gpu_metrics->current_fan_speed = metrics.CurrFanSpeed;
gpu_metrics->pcie_link_width =
smu_v11_0_get_current_pcie_link_width(smu);
gpu_metrics->pcie_link_speed =
smu_v11_0_get_current_pcie_link_speed(smu);
*table = (void *)gpu_metrics;
return sizeof(struct gpu_metrics_v1_0);
}
static int sienna_cichlid_enable_mgpu_fan_boost(struct smu_context *smu)
{
return smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetMGpuFanBoostLimitRpm,
0,
NULL);
}
static const struct pptable_funcs sienna_cichlid_ppt_funcs = {
.get_allowed_feature_mask = sienna_cichlid_get_allowed_feature_mask,
.set_default_dpm_table = sienna_cichlid_set_default_dpm_table,
.dpm_set_vcn_enable = sienna_cichlid_dpm_set_vcn_enable,
.dpm_set_jpeg_enable = sienna_cichlid_dpm_set_jpeg_enable,
.i2c_init = sienna_cichlid_i2c_control_init,
.i2c_fini = sienna_cichlid_i2c_control_fini,
.print_clk_levels = sienna_cichlid_print_clk_levels,
.force_clk_levels = sienna_cichlid_force_clk_levels,
.populate_umd_state_clk = sienna_cichlid_populate_umd_state_clk,
.pre_display_config_changed = sienna_cichlid_pre_display_config_changed,
.display_config_changed = sienna_cichlid_display_config_changed,
.notify_smc_display_config = sienna_cichlid_notify_smc_display_config,
.is_dpm_running = sienna_cichlid_is_dpm_running,
.get_fan_speed_rpm = sienna_cichlid_get_fan_speed_rpm,
.get_power_profile_mode = sienna_cichlid_get_power_profile_mode,
.set_power_profile_mode = sienna_cichlid_set_power_profile_mode,
.set_watermarks_table = sienna_cichlid_set_watermarks_table,
.read_sensor = sienna_cichlid_read_sensor,
.get_uclk_dpm_states = sienna_cichlid_get_uclk_dpm_states,
.set_performance_level = smu_v11_0_set_performance_level,
.get_thermal_temperature_range = sienna_cichlid_get_thermal_temperature_range,
.display_disable_memory_clock_switch = sienna_cichlid_display_disable_memory_clock_switch,
.get_power_limit = sienna_cichlid_get_power_limit,
.update_pcie_parameters = sienna_cichlid_update_pcie_parameters,
.dump_pptable = sienna_cichlid_dump_pptable,
.init_microcode = smu_v11_0_init_microcode,
.load_microcode = smu_v11_0_load_microcode,
.init_smc_tables = sienna_cichlid_init_smc_tables,
.fini_smc_tables = smu_v11_0_fini_smc_tables,
.init_power = smu_v11_0_init_power,
.fini_power = smu_v11_0_fini_power,
.check_fw_status = smu_v11_0_check_fw_status,
.setup_pptable = sienna_cichlid_setup_pptable,
.get_vbios_bootup_values = smu_v11_0_get_vbios_bootup_values,
.check_fw_version = smu_v11_0_check_fw_version,
.write_pptable = smu_cmn_write_pptable,
.set_driver_table_location = smu_v11_0_set_driver_table_location,
.set_tool_table_location = smu_v11_0_set_tool_table_location,
.notify_memory_pool_location = smu_v11_0_notify_memory_pool_location,
.system_features_control = smu_v11_0_system_features_control,
.send_smc_msg_with_param = smu_cmn_send_smc_msg_with_param,
.send_smc_msg = smu_cmn_send_smc_msg,
.init_display_count = NULL,
.set_allowed_mask = smu_v11_0_set_allowed_mask,
.get_enabled_mask = smu_cmn_get_enabled_mask,
.feature_is_enabled = smu_cmn_feature_is_enabled,
.disable_all_features_with_exception = smu_cmn_disable_all_features_with_exception,
.notify_display_change = NULL,
.set_power_limit = smu_v11_0_set_power_limit,
.init_max_sustainable_clocks = smu_v11_0_init_max_sustainable_clocks,
.enable_thermal_alert = smu_v11_0_enable_thermal_alert,
.disable_thermal_alert = smu_v11_0_disable_thermal_alert,
.set_min_dcef_deep_sleep = NULL,
.display_clock_voltage_request = smu_v11_0_display_clock_voltage_request,
.get_fan_control_mode = smu_v11_0_get_fan_control_mode,
.set_fan_control_mode = smu_v11_0_set_fan_control_mode,
.set_fan_speed_rpm = smu_v11_0_set_fan_speed_rpm,
.set_xgmi_pstate = smu_v11_0_set_xgmi_pstate,
.gfx_off_control = smu_v11_0_gfx_off_control,
.register_irq_handler = smu_v11_0_register_irq_handler,
.set_azalia_d3_pme = smu_v11_0_set_azalia_d3_pme,
.get_max_sustainable_clocks_by_dc = smu_v11_0_get_max_sustainable_clocks_by_dc,
.baco_is_support= sienna_cichlid_is_baco_supported,
.baco_get_state = smu_v11_0_baco_get_state,
.baco_set_state = smu_v11_0_baco_set_state,
.baco_enter = smu_v11_0_baco_enter,
.baco_exit = smu_v11_0_baco_exit,
.mode1_reset_is_support = sienna_cichlid_is_mode1_reset_supported,
.mode1_reset = smu_v11_0_mode1_reset,
.get_dpm_ultimate_freq = sienna_cichlid_get_dpm_ultimate_freq,
.set_soft_freq_limited_range = smu_v11_0_set_soft_freq_limited_range,
.run_btc = sienna_cichlid_run_btc,
.get_pp_feature_mask = smu_cmn_get_pp_feature_mask,
.set_pp_feature_mask = smu_cmn_set_pp_feature_mask,
.get_gpu_metrics = sienna_cichlid_get_gpu_metrics,
.enable_mgpu_fan_boost = sienna_cichlid_enable_mgpu_fan_boost,
.gfx_ulv_control = smu_v11_0_gfx_ulv_control,
.deep_sleep_control = smu_v11_0_deep_sleep_control,
.get_fan_parameters = sienna_cichlid_get_fan_parameters,
.interrupt_work = smu_v11_0_interrupt_work,
};
void sienna_cichlid_set_ppt_funcs(struct smu_context *smu)
{
smu->ppt_funcs = &sienna_cichlid_ppt_funcs;
smu->message_map = sienna_cichlid_message_map;
smu->clock_map = sienna_cichlid_clk_map;
smu->feature_map = sienna_cichlid_feature_mask_map;
smu->table_map = sienna_cichlid_table_map;
smu->pwr_src_map = sienna_cichlid_pwr_src_map;
smu->workload_map = sienna_cichlid_workload_map;
}