| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) STMicroelectronics 2018 |
| * Author: Christophe Kerello <christophe.kerello@st.com> |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/clk.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/errno.h> |
| #include <linux/interrupt.h> |
| #include <linux/iopoll.h> |
| #include <linux/mfd/syscon.h> |
| #include <linux/module.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/of_address.h> |
| #include <linux/pinctrl/consumer.h> |
| #include <linux/platform_device.h> |
| #include <linux/regmap.h> |
| #include <linux/reset.h> |
| |
| /* Bad block marker length */ |
| #define FMC2_BBM_LEN 2 |
| |
| /* ECC step size */ |
| #define FMC2_ECC_STEP_SIZE 512 |
| |
| /* BCHDSRx registers length */ |
| #define FMC2_BCHDSRS_LEN 20 |
| |
| /* HECCR length */ |
| #define FMC2_HECCR_LEN 4 |
| |
| /* Max requests done for a 8k nand page size */ |
| #define FMC2_MAX_SG 16 |
| |
| /* Max chip enable */ |
| #define FMC2_MAX_CE 2 |
| |
| /* Max ECC buffer length */ |
| #define FMC2_MAX_ECC_BUF_LEN (FMC2_BCHDSRS_LEN * FMC2_MAX_SG) |
| |
| #define FMC2_TIMEOUT_MS 5000 |
| |
| /* Timings */ |
| #define FMC2_THIZ 1 |
| #define FMC2_TIO 8000 |
| #define FMC2_TSYNC 3000 |
| #define FMC2_PCR_TIMING_MASK 0xf |
| #define FMC2_PMEM_PATT_TIMING_MASK 0xff |
| |
| /* FMC2 Controller Registers */ |
| #define FMC2_BCR1 0x0 |
| #define FMC2_PCR 0x80 |
| #define FMC2_SR 0x84 |
| #define FMC2_PMEM 0x88 |
| #define FMC2_PATT 0x8c |
| #define FMC2_HECCR 0x94 |
| #define FMC2_ISR 0x184 |
| #define FMC2_ICR 0x188 |
| #define FMC2_CSQCR 0x200 |
| #define FMC2_CSQCFGR1 0x204 |
| #define FMC2_CSQCFGR2 0x208 |
| #define FMC2_CSQCFGR3 0x20c |
| #define FMC2_CSQAR1 0x210 |
| #define FMC2_CSQAR2 0x214 |
| #define FMC2_CSQIER 0x220 |
| #define FMC2_CSQISR 0x224 |
| #define FMC2_CSQICR 0x228 |
| #define FMC2_CSQEMSR 0x230 |
| #define FMC2_BCHIER 0x250 |
| #define FMC2_BCHISR 0x254 |
| #define FMC2_BCHICR 0x258 |
| #define FMC2_BCHPBR1 0x260 |
| #define FMC2_BCHPBR2 0x264 |
| #define FMC2_BCHPBR3 0x268 |
| #define FMC2_BCHPBR4 0x26c |
| #define FMC2_BCHDSR0 0x27c |
| #define FMC2_BCHDSR1 0x280 |
| #define FMC2_BCHDSR2 0x284 |
| #define FMC2_BCHDSR3 0x288 |
| #define FMC2_BCHDSR4 0x28c |
| |
| /* Register: FMC2_BCR1 */ |
| #define FMC2_BCR1_FMC2EN BIT(31) |
| |
| /* Register: FMC2_PCR */ |
| #define FMC2_PCR_PWAITEN BIT(1) |
| #define FMC2_PCR_PBKEN BIT(2) |
| #define FMC2_PCR_PWID GENMASK(5, 4) |
| #define FMC2_PCR_PWID_BUSWIDTH_8 0 |
| #define FMC2_PCR_PWID_BUSWIDTH_16 1 |
| #define FMC2_PCR_ECCEN BIT(6) |
| #define FMC2_PCR_ECCALG BIT(8) |
| #define FMC2_PCR_TCLR GENMASK(12, 9) |
| #define FMC2_PCR_TCLR_DEFAULT 0xf |
| #define FMC2_PCR_TAR GENMASK(16, 13) |
| #define FMC2_PCR_TAR_DEFAULT 0xf |
| #define FMC2_PCR_ECCSS GENMASK(19, 17) |
| #define FMC2_PCR_ECCSS_512 1 |
| #define FMC2_PCR_ECCSS_2048 3 |
| #define FMC2_PCR_BCHECC BIT(24) |
| #define FMC2_PCR_WEN BIT(25) |
| |
| /* Register: FMC2_SR */ |
| #define FMC2_SR_NWRF BIT(6) |
| |
| /* Register: FMC2_PMEM */ |
| #define FMC2_PMEM_MEMSET GENMASK(7, 0) |
| #define FMC2_PMEM_MEMWAIT GENMASK(15, 8) |
| #define FMC2_PMEM_MEMHOLD GENMASK(23, 16) |
| #define FMC2_PMEM_MEMHIZ GENMASK(31, 24) |
| #define FMC2_PMEM_DEFAULT 0x0a0a0a0a |
| |
| /* Register: FMC2_PATT */ |
| #define FMC2_PATT_ATTSET GENMASK(7, 0) |
| #define FMC2_PATT_ATTWAIT GENMASK(15, 8) |
| #define FMC2_PATT_ATTHOLD GENMASK(23, 16) |
| #define FMC2_PATT_ATTHIZ GENMASK(31, 24) |
| #define FMC2_PATT_DEFAULT 0x0a0a0a0a |
| |
| /* Register: FMC2_ISR */ |
| #define FMC2_ISR_IHLF BIT(1) |
| |
| /* Register: FMC2_ICR */ |
| #define FMC2_ICR_CIHLF BIT(1) |
| |
| /* Register: FMC2_CSQCR */ |
| #define FMC2_CSQCR_CSQSTART BIT(0) |
| |
| /* Register: FMC2_CSQCFGR1 */ |
| #define FMC2_CSQCFGR1_CMD2EN BIT(1) |
| #define FMC2_CSQCFGR1_DMADEN BIT(2) |
| #define FMC2_CSQCFGR1_ACYNBR GENMASK(6, 4) |
| #define FMC2_CSQCFGR1_CMD1 GENMASK(15, 8) |
| #define FMC2_CSQCFGR1_CMD2 GENMASK(23, 16) |
| #define FMC2_CSQCFGR1_CMD1T BIT(24) |
| #define FMC2_CSQCFGR1_CMD2T BIT(25) |
| |
| /* Register: FMC2_CSQCFGR2 */ |
| #define FMC2_CSQCFGR2_SQSDTEN BIT(0) |
| #define FMC2_CSQCFGR2_RCMD2EN BIT(1) |
| #define FMC2_CSQCFGR2_DMASEN BIT(2) |
| #define FMC2_CSQCFGR2_RCMD1 GENMASK(15, 8) |
| #define FMC2_CSQCFGR2_RCMD2 GENMASK(23, 16) |
| #define FMC2_CSQCFGR2_RCMD1T BIT(24) |
| #define FMC2_CSQCFGR2_RCMD2T BIT(25) |
| |
| /* Register: FMC2_CSQCFGR3 */ |
| #define FMC2_CSQCFGR3_SNBR GENMASK(13, 8) |
| #define FMC2_CSQCFGR3_AC1T BIT(16) |
| #define FMC2_CSQCFGR3_AC2T BIT(17) |
| #define FMC2_CSQCFGR3_AC3T BIT(18) |
| #define FMC2_CSQCFGR3_AC4T BIT(19) |
| #define FMC2_CSQCFGR3_AC5T BIT(20) |
| #define FMC2_CSQCFGR3_SDT BIT(21) |
| #define FMC2_CSQCFGR3_RAC1T BIT(22) |
| #define FMC2_CSQCFGR3_RAC2T BIT(23) |
| |
| /* Register: FMC2_CSQCAR1 */ |
| #define FMC2_CSQCAR1_ADDC1 GENMASK(7, 0) |
| #define FMC2_CSQCAR1_ADDC2 GENMASK(15, 8) |
| #define FMC2_CSQCAR1_ADDC3 GENMASK(23, 16) |
| #define FMC2_CSQCAR1_ADDC4 GENMASK(31, 24) |
| |
| /* Register: FMC2_CSQCAR2 */ |
| #define FMC2_CSQCAR2_ADDC5 GENMASK(7, 0) |
| #define FMC2_CSQCAR2_NANDCEN GENMASK(11, 10) |
| #define FMC2_CSQCAR2_SAO GENMASK(31, 16) |
| |
| /* Register: FMC2_CSQIER */ |
| #define FMC2_CSQIER_TCIE BIT(0) |
| |
| /* Register: FMC2_CSQICR */ |
| #define FMC2_CSQICR_CLEAR_IRQ GENMASK(4, 0) |
| |
| /* Register: FMC2_CSQEMSR */ |
| #define FMC2_CSQEMSR_SEM GENMASK(15, 0) |
| |
| /* Register: FMC2_BCHIER */ |
| #define FMC2_BCHIER_DERIE BIT(1) |
| #define FMC2_BCHIER_EPBRIE BIT(4) |
| |
| /* Register: FMC2_BCHICR */ |
| #define FMC2_BCHICR_CLEAR_IRQ GENMASK(4, 0) |
| |
| /* Register: FMC2_BCHDSR0 */ |
| #define FMC2_BCHDSR0_DUE BIT(0) |
| #define FMC2_BCHDSR0_DEF BIT(1) |
| #define FMC2_BCHDSR0_DEN GENMASK(7, 4) |
| |
| /* Register: FMC2_BCHDSR1 */ |
| #define FMC2_BCHDSR1_EBP1 GENMASK(12, 0) |
| #define FMC2_BCHDSR1_EBP2 GENMASK(28, 16) |
| |
| /* Register: FMC2_BCHDSR2 */ |
| #define FMC2_BCHDSR2_EBP3 GENMASK(12, 0) |
| #define FMC2_BCHDSR2_EBP4 GENMASK(28, 16) |
| |
| /* Register: FMC2_BCHDSR3 */ |
| #define FMC2_BCHDSR3_EBP5 GENMASK(12, 0) |
| #define FMC2_BCHDSR3_EBP6 GENMASK(28, 16) |
| |
| /* Register: FMC2_BCHDSR4 */ |
| #define FMC2_BCHDSR4_EBP7 GENMASK(12, 0) |
| #define FMC2_BCHDSR4_EBP8 GENMASK(28, 16) |
| |
| enum stm32_fmc2_ecc { |
| FMC2_ECC_HAM = 1, |
| FMC2_ECC_BCH4 = 4, |
| FMC2_ECC_BCH8 = 8 |
| }; |
| |
| enum stm32_fmc2_irq_state { |
| FMC2_IRQ_UNKNOWN = 0, |
| FMC2_IRQ_BCH, |
| FMC2_IRQ_SEQ |
| }; |
| |
| struct stm32_fmc2_timings { |
| u8 tclr; |
| u8 tar; |
| u8 thiz; |
| u8 twait; |
| u8 thold_mem; |
| u8 tset_mem; |
| u8 thold_att; |
| u8 tset_att; |
| }; |
| |
| struct stm32_fmc2_nand { |
| struct nand_chip chip; |
| struct stm32_fmc2_timings timings; |
| int ncs; |
| int cs_used[FMC2_MAX_CE]; |
| }; |
| |
| static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip) |
| { |
| return container_of(chip, struct stm32_fmc2_nand, chip); |
| } |
| |
| struct stm32_fmc2_nfc { |
| struct nand_controller base; |
| struct stm32_fmc2_nand nand; |
| struct device *dev; |
| struct device *cdev; |
| struct regmap *regmap; |
| void __iomem *data_base[FMC2_MAX_CE]; |
| void __iomem *cmd_base[FMC2_MAX_CE]; |
| void __iomem *addr_base[FMC2_MAX_CE]; |
| phys_addr_t io_phys_addr; |
| phys_addr_t data_phys_addr[FMC2_MAX_CE]; |
| struct clk *clk; |
| u8 irq_state; |
| |
| struct dma_chan *dma_tx_ch; |
| struct dma_chan *dma_rx_ch; |
| struct dma_chan *dma_ecc_ch; |
| struct sg_table dma_data_sg; |
| struct sg_table dma_ecc_sg; |
| u8 *ecc_buf; |
| int dma_ecc_len; |
| |
| struct completion complete; |
| struct completion dma_data_complete; |
| struct completion dma_ecc_complete; |
| |
| u8 cs_assigned; |
| int cs_sel; |
| }; |
| |
| static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_controller *base) |
| { |
| return container_of(base, struct stm32_fmc2_nfc, base); |
| } |
| |
| static void stm32_fmc2_nfc_timings_init(struct nand_chip *chip) |
| { |
| struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); |
| struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); |
| struct stm32_fmc2_timings *timings = &nand->timings; |
| u32 pmem, patt; |
| |
| /* Set tclr/tar timings */ |
| regmap_update_bits(nfc->regmap, FMC2_PCR, |
| FMC2_PCR_TCLR | FMC2_PCR_TAR, |
| FIELD_PREP(FMC2_PCR_TCLR, timings->tclr) | |
| FIELD_PREP(FMC2_PCR_TAR, timings->tar)); |
| |
| /* Set tset/twait/thold/thiz timings in common bank */ |
| pmem = FIELD_PREP(FMC2_PMEM_MEMSET, timings->tset_mem); |
| pmem |= FIELD_PREP(FMC2_PMEM_MEMWAIT, timings->twait); |
| pmem |= FIELD_PREP(FMC2_PMEM_MEMHOLD, timings->thold_mem); |
| pmem |= FIELD_PREP(FMC2_PMEM_MEMHIZ, timings->thiz); |
| regmap_write(nfc->regmap, FMC2_PMEM, pmem); |
| |
| /* Set tset/twait/thold/thiz timings in attribut bank */ |
| patt = FIELD_PREP(FMC2_PATT_ATTSET, timings->tset_att); |
| patt |= FIELD_PREP(FMC2_PATT_ATTWAIT, timings->twait); |
| patt |= FIELD_PREP(FMC2_PATT_ATTHOLD, timings->thold_att); |
| patt |= FIELD_PREP(FMC2_PATT_ATTHIZ, timings->thiz); |
| regmap_write(nfc->regmap, FMC2_PATT, patt); |
| } |
| |
| static void stm32_fmc2_nfc_setup(struct nand_chip *chip) |
| { |
| struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); |
| u32 pcr = 0, pcr_mask; |
| |
| /* Configure ECC algorithm (default configuration is Hamming) */ |
| pcr_mask = FMC2_PCR_ECCALG; |
| pcr_mask |= FMC2_PCR_BCHECC; |
| if (chip->ecc.strength == FMC2_ECC_BCH8) { |
| pcr |= FMC2_PCR_ECCALG; |
| pcr |= FMC2_PCR_BCHECC; |
| } else if (chip->ecc.strength == FMC2_ECC_BCH4) { |
| pcr |= FMC2_PCR_ECCALG; |
| } |
| |
| /* Set buswidth */ |
| pcr_mask |= FMC2_PCR_PWID; |
| if (chip->options & NAND_BUSWIDTH_16) |
| pcr |= FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16); |
| |
| /* Set ECC sector size */ |
| pcr_mask |= FMC2_PCR_ECCSS; |
| pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_512); |
| |
| regmap_update_bits(nfc->regmap, FMC2_PCR, pcr_mask, pcr); |
| } |
| |
| static int stm32_fmc2_nfc_select_chip(struct nand_chip *chip, int chipnr) |
| { |
| struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); |
| struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); |
| struct dma_slave_config dma_cfg; |
| int ret; |
| |
| if (nand->cs_used[chipnr] == nfc->cs_sel) |
| return 0; |
| |
| nfc->cs_sel = nand->cs_used[chipnr]; |
| stm32_fmc2_nfc_setup(chip); |
| stm32_fmc2_nfc_timings_init(chip); |
| |
| if (nfc->dma_tx_ch && nfc->dma_rx_ch) { |
| memset(&dma_cfg, 0, sizeof(dma_cfg)); |
| dma_cfg.src_addr = nfc->data_phys_addr[nfc->cs_sel]; |
| dma_cfg.dst_addr = nfc->data_phys_addr[nfc->cs_sel]; |
| dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| dma_cfg.src_maxburst = 32; |
| dma_cfg.dst_maxburst = 32; |
| |
| ret = dmaengine_slave_config(nfc->dma_tx_ch, &dma_cfg); |
| if (ret) { |
| dev_err(nfc->dev, "tx DMA engine slave config failed\n"); |
| return ret; |
| } |
| |
| ret = dmaengine_slave_config(nfc->dma_rx_ch, &dma_cfg); |
| if (ret) { |
| dev_err(nfc->dev, "rx DMA engine slave config failed\n"); |
| return ret; |
| } |
| } |
| |
| if (nfc->dma_ecc_ch) { |
| /* |
| * Hamming: we read HECCR register |
| * BCH4/BCH8: we read BCHDSRSx registers |
| */ |
| memset(&dma_cfg, 0, sizeof(dma_cfg)); |
| dma_cfg.src_addr = nfc->io_phys_addr; |
| dma_cfg.src_addr += chip->ecc.strength == FMC2_ECC_HAM ? |
| FMC2_HECCR : FMC2_BCHDSR0; |
| dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| |
| ret = dmaengine_slave_config(nfc->dma_ecc_ch, &dma_cfg); |
| if (ret) { |
| dev_err(nfc->dev, "ECC DMA engine slave config failed\n"); |
| return ret; |
| } |
| |
| /* Calculate ECC length needed for one sector */ |
| nfc->dma_ecc_len = chip->ecc.strength == FMC2_ECC_HAM ? |
| FMC2_HECCR_LEN : FMC2_BCHDSRS_LEN; |
| } |
| |
| return 0; |
| } |
| |
| static void stm32_fmc2_nfc_set_buswidth_16(struct stm32_fmc2_nfc *nfc, bool set) |
| { |
| u32 pcr; |
| |
| pcr = set ? FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16) : |
| FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_8); |
| |
| regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_PWID, pcr); |
| } |
| |
| static void stm32_fmc2_nfc_set_ecc(struct stm32_fmc2_nfc *nfc, bool enable) |
| { |
| regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_ECCEN, |
| enable ? FMC2_PCR_ECCEN : 0); |
| } |
| |
| static void stm32_fmc2_nfc_enable_seq_irq(struct stm32_fmc2_nfc *nfc) |
| { |
| nfc->irq_state = FMC2_IRQ_SEQ; |
| |
| regmap_update_bits(nfc->regmap, FMC2_CSQIER, |
| FMC2_CSQIER_TCIE, FMC2_CSQIER_TCIE); |
| } |
| |
| static void stm32_fmc2_nfc_disable_seq_irq(struct stm32_fmc2_nfc *nfc) |
| { |
| regmap_update_bits(nfc->regmap, FMC2_CSQIER, FMC2_CSQIER_TCIE, 0); |
| |
| nfc->irq_state = FMC2_IRQ_UNKNOWN; |
| } |
| |
| static void stm32_fmc2_nfc_clear_seq_irq(struct stm32_fmc2_nfc *nfc) |
| { |
| regmap_write(nfc->regmap, FMC2_CSQICR, FMC2_CSQICR_CLEAR_IRQ); |
| } |
| |
| static void stm32_fmc2_nfc_enable_bch_irq(struct stm32_fmc2_nfc *nfc, int mode) |
| { |
| nfc->irq_state = FMC2_IRQ_BCH; |
| |
| if (mode == NAND_ECC_WRITE) |
| regmap_update_bits(nfc->regmap, FMC2_BCHIER, |
| FMC2_BCHIER_EPBRIE, FMC2_BCHIER_EPBRIE); |
| else |
| regmap_update_bits(nfc->regmap, FMC2_BCHIER, |
| FMC2_BCHIER_DERIE, FMC2_BCHIER_DERIE); |
| } |
| |
| static void stm32_fmc2_nfc_disable_bch_irq(struct stm32_fmc2_nfc *nfc) |
| { |
| regmap_update_bits(nfc->regmap, FMC2_BCHIER, |
| FMC2_BCHIER_DERIE | FMC2_BCHIER_EPBRIE, 0); |
| |
| nfc->irq_state = FMC2_IRQ_UNKNOWN; |
| } |
| |
| static void stm32_fmc2_nfc_clear_bch_irq(struct stm32_fmc2_nfc *nfc) |
| { |
| regmap_write(nfc->regmap, FMC2_BCHICR, FMC2_BCHICR_CLEAR_IRQ); |
| } |
| |
| /* |
| * Enable ECC logic and reset syndrome/parity bits previously calculated |
| * Syndrome/parity bits is cleared by setting the ECCEN bit to 0 |
| */ |
| static void stm32_fmc2_nfc_hwctl(struct nand_chip *chip, int mode) |
| { |
| struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); |
| |
| stm32_fmc2_nfc_set_ecc(nfc, false); |
| |
| if (chip->ecc.strength != FMC2_ECC_HAM) { |
| regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN, |
| mode == NAND_ECC_WRITE ? FMC2_PCR_WEN : 0); |
| |
| reinit_completion(&nfc->complete); |
| stm32_fmc2_nfc_clear_bch_irq(nfc); |
| stm32_fmc2_nfc_enable_bch_irq(nfc, mode); |
| } |
| |
| stm32_fmc2_nfc_set_ecc(nfc, true); |
| } |
| |
| /* |
| * ECC Hamming calculation |
| * ECC is 3 bytes for 512 bytes of data (supports error correction up to |
| * max of 1-bit) |
| */ |
| static void stm32_fmc2_nfc_ham_set_ecc(const u32 ecc_sta, u8 *ecc) |
| { |
| ecc[0] = ecc_sta; |
| ecc[1] = ecc_sta >> 8; |
| ecc[2] = ecc_sta >> 16; |
| } |
| |
| static int stm32_fmc2_nfc_ham_calculate(struct nand_chip *chip, const u8 *data, |
| u8 *ecc) |
| { |
| struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); |
| u32 sr, heccr; |
| int ret; |
| |
| ret = regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr, |
| sr & FMC2_SR_NWRF, 1, |
| 1000 * FMC2_TIMEOUT_MS); |
| if (ret) { |
| dev_err(nfc->dev, "ham timeout\n"); |
| return ret; |
| } |
| |
| regmap_read(nfc->regmap, FMC2_HECCR, &heccr); |
| stm32_fmc2_nfc_ham_set_ecc(heccr, ecc); |
| stm32_fmc2_nfc_set_ecc(nfc, false); |
| |
| return 0; |
| } |
| |
| static int stm32_fmc2_nfc_ham_correct(struct nand_chip *chip, u8 *dat, |
| u8 *read_ecc, u8 *calc_ecc) |
| { |
| u8 bit_position = 0, b0, b1, b2; |
| u32 byte_addr = 0, b; |
| u32 i, shifting = 1; |
| |
| /* Indicate which bit and byte is faulty (if any) */ |
| b0 = read_ecc[0] ^ calc_ecc[0]; |
| b1 = read_ecc[1] ^ calc_ecc[1]; |
| b2 = read_ecc[2] ^ calc_ecc[2]; |
| b = b0 | (b1 << 8) | (b2 << 16); |
| |
| /* No errors */ |
| if (likely(!b)) |
| return 0; |
| |
| /* Calculate bit position */ |
| for (i = 0; i < 3; i++) { |
| switch (b % 4) { |
| case 2: |
| bit_position += shifting; |
| case 1: |
| break; |
| default: |
| return -EBADMSG; |
| } |
| shifting <<= 1; |
| b >>= 2; |
| } |
| |
| /* Calculate byte position */ |
| shifting = 1; |
| for (i = 0; i < 9; i++) { |
| switch (b % 4) { |
| case 2: |
| byte_addr += shifting; |
| case 1: |
| break; |
| default: |
| return -EBADMSG; |
| } |
| shifting <<= 1; |
| b >>= 2; |
| } |
| |
| /* Flip the bit */ |
| dat[byte_addr] ^= (1 << bit_position); |
| |
| return 1; |
| } |
| |
| /* |
| * ECC BCH calculation and correction |
| * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to |
| * max of 4-bit/8-bit) |
| */ |
| static int stm32_fmc2_nfc_bch_calculate(struct nand_chip *chip, const u8 *data, |
| u8 *ecc) |
| { |
| struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); |
| u32 bchpbr; |
| |
| /* Wait until the BCH code is ready */ |
| if (!wait_for_completion_timeout(&nfc->complete, |
| msecs_to_jiffies(FMC2_TIMEOUT_MS))) { |
| dev_err(nfc->dev, "bch timeout\n"); |
| stm32_fmc2_nfc_disable_bch_irq(nfc); |
| return -ETIMEDOUT; |
| } |
| |
| /* Read parity bits */ |
| regmap_read(nfc->regmap, FMC2_BCHPBR1, &bchpbr); |
| ecc[0] = bchpbr; |
| ecc[1] = bchpbr >> 8; |
| ecc[2] = bchpbr >> 16; |
| ecc[3] = bchpbr >> 24; |
| |
| regmap_read(nfc->regmap, FMC2_BCHPBR2, &bchpbr); |
| ecc[4] = bchpbr; |
| ecc[5] = bchpbr >> 8; |
| ecc[6] = bchpbr >> 16; |
| |
| if (chip->ecc.strength == FMC2_ECC_BCH8) { |
| ecc[7] = bchpbr >> 24; |
| |
| regmap_read(nfc->regmap, FMC2_BCHPBR3, &bchpbr); |
| ecc[8] = bchpbr; |
| ecc[9] = bchpbr >> 8; |
| ecc[10] = bchpbr >> 16; |
| ecc[11] = bchpbr >> 24; |
| |
| regmap_read(nfc->regmap, FMC2_BCHPBR4, &bchpbr); |
| ecc[12] = bchpbr; |
| } |
| |
| stm32_fmc2_nfc_set_ecc(nfc, false); |
| |
| return 0; |
| } |
| |
| static int stm32_fmc2_nfc_bch_decode(int eccsize, u8 *dat, u32 *ecc_sta) |
| { |
| u32 bchdsr0 = ecc_sta[0]; |
| u32 bchdsr1 = ecc_sta[1]; |
| u32 bchdsr2 = ecc_sta[2]; |
| u32 bchdsr3 = ecc_sta[3]; |
| u32 bchdsr4 = ecc_sta[4]; |
| u16 pos[8]; |
| int i, den; |
| unsigned int nb_errs = 0; |
| |
| /* No errors found */ |
| if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF))) |
| return 0; |
| |
| /* Too many errors detected */ |
| if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE)) |
| return -EBADMSG; |
| |
| pos[0] = FIELD_GET(FMC2_BCHDSR1_EBP1, bchdsr1); |
| pos[1] = FIELD_GET(FMC2_BCHDSR1_EBP2, bchdsr1); |
| pos[2] = FIELD_GET(FMC2_BCHDSR2_EBP3, bchdsr2); |
| pos[3] = FIELD_GET(FMC2_BCHDSR2_EBP4, bchdsr2); |
| pos[4] = FIELD_GET(FMC2_BCHDSR3_EBP5, bchdsr3); |
| pos[5] = FIELD_GET(FMC2_BCHDSR3_EBP6, bchdsr3); |
| pos[6] = FIELD_GET(FMC2_BCHDSR4_EBP7, bchdsr4); |
| pos[7] = FIELD_GET(FMC2_BCHDSR4_EBP8, bchdsr4); |
| |
| den = FIELD_GET(FMC2_BCHDSR0_DEN, bchdsr0); |
| for (i = 0; i < den; i++) { |
| if (pos[i] < eccsize * 8) { |
| change_bit(pos[i], (unsigned long *)dat); |
| nb_errs++; |
| } |
| } |
| |
| return nb_errs; |
| } |
| |
| static int stm32_fmc2_nfc_bch_correct(struct nand_chip *chip, u8 *dat, |
| u8 *read_ecc, u8 *calc_ecc) |
| { |
| struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); |
| u32 ecc_sta[5]; |
| |
| /* Wait until the decoding error is ready */ |
| if (!wait_for_completion_timeout(&nfc->complete, |
| msecs_to_jiffies(FMC2_TIMEOUT_MS))) { |
| dev_err(nfc->dev, "bch timeout\n"); |
| stm32_fmc2_nfc_disable_bch_irq(nfc); |
| return -ETIMEDOUT; |
| } |
| |
| regmap_bulk_read(nfc->regmap, FMC2_BCHDSR0, ecc_sta, 5); |
| |
| stm32_fmc2_nfc_set_ecc(nfc, false); |
| |
| return stm32_fmc2_nfc_bch_decode(chip->ecc.size, dat, ecc_sta); |
| } |
| |
| static int stm32_fmc2_nfc_read_page(struct nand_chip *chip, u8 *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int ret, i, s, stat, eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| int eccsteps = chip->ecc.steps; |
| int eccstrength = chip->ecc.strength; |
| u8 *p = buf; |
| u8 *ecc_calc = chip->ecc.calc_buf; |
| u8 *ecc_code = chip->ecc.code_buf; |
| unsigned int max_bitflips = 0; |
| |
| ret = nand_read_page_op(chip, page, 0, NULL, 0); |
| if (ret) |
| return ret; |
| |
| for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps; |
| s++, i += eccbytes, p += eccsize) { |
| chip->ecc.hwctl(chip, NAND_ECC_READ); |
| |
| /* Read the nand page sector (512 bytes) */ |
| ret = nand_change_read_column_op(chip, s * eccsize, p, |
| eccsize, false); |
| if (ret) |
| return ret; |
| |
| /* Read the corresponding ECC bytes */ |
| ret = nand_change_read_column_op(chip, i, ecc_code, |
| eccbytes, false); |
| if (ret) |
| return ret; |
| |
| /* Correct the data */ |
| stat = chip->ecc.correct(chip, p, ecc_code, ecc_calc); |
| if (stat == -EBADMSG) |
| /* Check for empty pages with bitflips */ |
| stat = nand_check_erased_ecc_chunk(p, eccsize, |
| ecc_code, eccbytes, |
| NULL, 0, |
| eccstrength); |
| |
| if (stat < 0) { |
| mtd->ecc_stats.failed++; |
| } else { |
| mtd->ecc_stats.corrected += stat; |
| max_bitflips = max_t(unsigned int, max_bitflips, stat); |
| } |
| } |
| |
| /* Read oob */ |
| if (oob_required) { |
| ret = nand_change_read_column_op(chip, mtd->writesize, |
| chip->oob_poi, mtd->oobsize, |
| false); |
| if (ret) |
| return ret; |
| } |
| |
| return max_bitflips; |
| } |
| |
| /* Sequencer read/write configuration */ |
| static void stm32_fmc2_nfc_rw_page_init(struct nand_chip *chip, int page, |
| int raw, bool write_data) |
| { |
| struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| u32 ecc_offset = mtd->writesize + FMC2_BBM_LEN; |
| /* |
| * cfg[0] => csqcfgr1, cfg[1] => csqcfgr2, cfg[2] => csqcfgr3 |
| * cfg[3] => csqar1, cfg[4] => csqar2 |
| */ |
| u32 cfg[5]; |
| |
| regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN, |
| write_data ? FMC2_PCR_WEN : 0); |
| |
| /* |
| * - Set Program Page/Page Read command |
| * - Enable DMA request data |
| * - Set timings |
| */ |
| cfg[0] = FMC2_CSQCFGR1_DMADEN | FMC2_CSQCFGR1_CMD1T; |
| if (write_data) |
| cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_SEQIN); |
| else |
| cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_READ0) | |
| FMC2_CSQCFGR1_CMD2EN | |
| FIELD_PREP(FMC2_CSQCFGR1_CMD2, NAND_CMD_READSTART) | |
| FMC2_CSQCFGR1_CMD2T; |
| |
| /* |
| * - Set Random Data Input/Random Data Read command |
| * - Enable the sequencer to access the Spare data area |
| * - Enable DMA request status decoding for read |
| * - Set timings |
| */ |
| if (write_data) |
| cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDIN); |
| else |
| cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDOUT) | |
| FMC2_CSQCFGR2_RCMD2EN | |
| FIELD_PREP(FMC2_CSQCFGR2_RCMD2, NAND_CMD_RNDOUTSTART) | |
| FMC2_CSQCFGR2_RCMD1T | |
| FMC2_CSQCFGR2_RCMD2T; |
| if (!raw) { |
| cfg[1] |= write_data ? 0 : FMC2_CSQCFGR2_DMASEN; |
| cfg[1] |= FMC2_CSQCFGR2_SQSDTEN; |
| } |
| |
| /* |
| * - Set the number of sectors to be written |
| * - Set timings |
| */ |
| cfg[2] = FIELD_PREP(FMC2_CSQCFGR3_SNBR, chip->ecc.steps - 1); |
| if (write_data) { |
| cfg[2] |= FMC2_CSQCFGR3_RAC2T; |
| if (chip->options & NAND_ROW_ADDR_3) |
| cfg[2] |= FMC2_CSQCFGR3_AC5T; |
| else |
| cfg[2] |= FMC2_CSQCFGR3_AC4T; |
| } |
| |
| /* |
| * Set the fourth first address cycles |
| * Byte 1 and byte 2 => column, we start at 0x0 |
| * Byte 3 and byte 4 => page |
| */ |
| cfg[3] = FIELD_PREP(FMC2_CSQCAR1_ADDC3, page); |
| cfg[3] |= FIELD_PREP(FMC2_CSQCAR1_ADDC4, page >> 8); |
| |
| /* |
| * - Set chip enable number |
| * - Set ECC byte offset in the spare area |
| * - Calculate the number of address cycles to be issued |
| * - Set byte 5 of address cycle if needed |
| */ |
| cfg[4] = FIELD_PREP(FMC2_CSQCAR2_NANDCEN, nfc->cs_sel); |
| if (chip->options & NAND_BUSWIDTH_16) |
| cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset >> 1); |
| else |
| cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset); |
| if (chip->options & NAND_ROW_ADDR_3) { |
| cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 5); |
| cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_ADDC5, page >> 16); |
| } else { |
| cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 4); |
| } |
| |
| regmap_bulk_write(nfc->regmap, FMC2_CSQCFGR1, cfg, 5); |
| } |
| |
| static void stm32_fmc2_nfc_dma_callback(void *arg) |
| { |
| complete((struct completion *)arg); |
| } |
| |
| /* Read/write data from/to a page */ |
| static int stm32_fmc2_nfc_xfer(struct nand_chip *chip, const u8 *buf, |
| int raw, bool write_data) |
| { |
| struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); |
| struct dma_async_tx_descriptor *desc_data, *desc_ecc; |
| struct scatterlist *sg; |
| struct dma_chan *dma_ch = nfc->dma_rx_ch; |
| enum dma_data_direction dma_data_dir = DMA_FROM_DEVICE; |
| enum dma_transfer_direction dma_transfer_dir = DMA_DEV_TO_MEM; |
| int eccsteps = chip->ecc.steps; |
| int eccsize = chip->ecc.size; |
| unsigned long timeout = msecs_to_jiffies(FMC2_TIMEOUT_MS); |
| const u8 *p = buf; |
| int s, ret; |
| |
| /* Configure DMA data */ |
| if (write_data) { |
| dma_data_dir = DMA_TO_DEVICE; |
| dma_transfer_dir = DMA_MEM_TO_DEV; |
| dma_ch = nfc->dma_tx_ch; |
| } |
| |
| for_each_sg(nfc->dma_data_sg.sgl, sg, eccsteps, s) { |
| sg_set_buf(sg, p, eccsize); |
| p += eccsize; |
| } |
| |
| ret = dma_map_sg(nfc->dev, nfc->dma_data_sg.sgl, |
| eccsteps, dma_data_dir); |
| if (ret < 0) |
| return ret; |
| |
| desc_data = dmaengine_prep_slave_sg(dma_ch, nfc->dma_data_sg.sgl, |
| eccsteps, dma_transfer_dir, |
| DMA_PREP_INTERRUPT); |
| if (!desc_data) { |
| ret = -ENOMEM; |
| goto err_unmap_data; |
| } |
| |
| reinit_completion(&nfc->dma_data_complete); |
| reinit_completion(&nfc->complete); |
| desc_data->callback = stm32_fmc2_nfc_dma_callback; |
| desc_data->callback_param = &nfc->dma_data_complete; |
| ret = dma_submit_error(dmaengine_submit(desc_data)); |
| if (ret) |
| goto err_unmap_data; |
| |
| dma_async_issue_pending(dma_ch); |
| |
| if (!write_data && !raw) { |
| /* Configure DMA ECC status */ |
| p = nfc->ecc_buf; |
| for_each_sg(nfc->dma_ecc_sg.sgl, sg, eccsteps, s) { |
| sg_set_buf(sg, p, nfc->dma_ecc_len); |
| p += nfc->dma_ecc_len; |
| } |
| |
| ret = dma_map_sg(nfc->dev, nfc->dma_ecc_sg.sgl, |
| eccsteps, dma_data_dir); |
| if (ret < 0) |
| goto err_unmap_data; |
| |
| desc_ecc = dmaengine_prep_slave_sg(nfc->dma_ecc_ch, |
| nfc->dma_ecc_sg.sgl, |
| eccsteps, dma_transfer_dir, |
| DMA_PREP_INTERRUPT); |
| if (!desc_ecc) { |
| ret = -ENOMEM; |
| goto err_unmap_ecc; |
| } |
| |
| reinit_completion(&nfc->dma_ecc_complete); |
| desc_ecc->callback = stm32_fmc2_nfc_dma_callback; |
| desc_ecc->callback_param = &nfc->dma_ecc_complete; |
| ret = dma_submit_error(dmaengine_submit(desc_ecc)); |
| if (ret) |
| goto err_unmap_ecc; |
| |
| dma_async_issue_pending(nfc->dma_ecc_ch); |
| } |
| |
| stm32_fmc2_nfc_clear_seq_irq(nfc); |
| stm32_fmc2_nfc_enable_seq_irq(nfc); |
| |
| /* Start the transfer */ |
| regmap_update_bits(nfc->regmap, FMC2_CSQCR, |
| FMC2_CSQCR_CSQSTART, FMC2_CSQCR_CSQSTART); |
| |
| /* Wait end of sequencer transfer */ |
| if (!wait_for_completion_timeout(&nfc->complete, timeout)) { |
| dev_err(nfc->dev, "seq timeout\n"); |
| stm32_fmc2_nfc_disable_seq_irq(nfc); |
| dmaengine_terminate_all(dma_ch); |
| if (!write_data && !raw) |
| dmaengine_terminate_all(nfc->dma_ecc_ch); |
| ret = -ETIMEDOUT; |
| goto err_unmap_ecc; |
| } |
| |
| /* Wait DMA data transfer completion */ |
| if (!wait_for_completion_timeout(&nfc->dma_data_complete, timeout)) { |
| dev_err(nfc->dev, "data DMA timeout\n"); |
| dmaengine_terminate_all(dma_ch); |
| ret = -ETIMEDOUT; |
| } |
| |
| /* Wait DMA ECC transfer completion */ |
| if (!write_data && !raw) { |
| if (!wait_for_completion_timeout(&nfc->dma_ecc_complete, |
| timeout)) { |
| dev_err(nfc->dev, "ECC DMA timeout\n"); |
| dmaengine_terminate_all(nfc->dma_ecc_ch); |
| ret = -ETIMEDOUT; |
| } |
| } |
| |
| err_unmap_ecc: |
| if (!write_data && !raw) |
| dma_unmap_sg(nfc->dev, nfc->dma_ecc_sg.sgl, |
| eccsteps, dma_data_dir); |
| |
| err_unmap_data: |
| dma_unmap_sg(nfc->dev, nfc->dma_data_sg.sgl, eccsteps, dma_data_dir); |
| |
| return ret; |
| } |
| |
| static int stm32_fmc2_nfc_seq_write(struct nand_chip *chip, const u8 *buf, |
| int oob_required, int page, int raw) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int ret; |
| |
| /* Configure the sequencer */ |
| stm32_fmc2_nfc_rw_page_init(chip, page, raw, true); |
| |
| /* Write the page */ |
| ret = stm32_fmc2_nfc_xfer(chip, buf, raw, true); |
| if (ret) |
| return ret; |
| |
| /* Write oob */ |
| if (oob_required) { |
| ret = nand_change_write_column_op(chip, mtd->writesize, |
| chip->oob_poi, mtd->oobsize, |
| false); |
| if (ret) |
| return ret; |
| } |
| |
| return nand_prog_page_end_op(chip); |
| } |
| |
| static int stm32_fmc2_nfc_seq_write_page(struct nand_chip *chip, const u8 *buf, |
| int oob_required, int page) |
| { |
| int ret; |
| |
| ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs); |
| if (ret) |
| return ret; |
| |
| return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, false); |
| } |
| |
| static int stm32_fmc2_nfc_seq_write_page_raw(struct nand_chip *chip, |
| const u8 *buf, int oob_required, |
| int page) |
| { |
| int ret; |
| |
| ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs); |
| if (ret) |
| return ret; |
| |
| return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, true); |
| } |
| |
| /* Get a status indicating which sectors have errors */ |
| static u16 stm32_fmc2_nfc_get_mapping_status(struct stm32_fmc2_nfc *nfc) |
| { |
| u32 csqemsr; |
| |
| regmap_read(nfc->regmap, FMC2_CSQEMSR, &csqemsr); |
| |
| return FIELD_GET(FMC2_CSQEMSR_SEM, csqemsr); |
| } |
| |
| static int stm32_fmc2_nfc_seq_correct(struct nand_chip *chip, u8 *dat, |
| u8 *read_ecc, u8 *calc_ecc) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); |
| int eccbytes = chip->ecc.bytes; |
| int eccsteps = chip->ecc.steps; |
| int eccstrength = chip->ecc.strength; |
| int i, s, eccsize = chip->ecc.size; |
| u32 *ecc_sta = (u32 *)nfc->ecc_buf; |
| u16 sta_map = stm32_fmc2_nfc_get_mapping_status(nfc); |
| unsigned int max_bitflips = 0; |
| |
| for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, dat += eccsize) { |
| int stat = 0; |
| |
| if (eccstrength == FMC2_ECC_HAM) { |
| /* Ecc_sta = FMC2_HECCR */ |
| if (sta_map & BIT(s)) { |
| stm32_fmc2_nfc_ham_set_ecc(*ecc_sta, |
| &calc_ecc[i]); |
| stat = stm32_fmc2_nfc_ham_correct(chip, dat, |
| &read_ecc[i], |
| &calc_ecc[i]); |
| } |
| ecc_sta++; |
| } else { |
| /* |
| * Ecc_sta[0] = FMC2_BCHDSR0 |
| * Ecc_sta[1] = FMC2_BCHDSR1 |
| * Ecc_sta[2] = FMC2_BCHDSR2 |
| * Ecc_sta[3] = FMC2_BCHDSR3 |
| * Ecc_sta[4] = FMC2_BCHDSR4 |
| */ |
| if (sta_map & BIT(s)) |
| stat = stm32_fmc2_nfc_bch_decode(eccsize, dat, |
| ecc_sta); |
| ecc_sta += 5; |
| } |
| |
| if (stat == -EBADMSG) |
| /* Check for empty pages with bitflips */ |
| stat = nand_check_erased_ecc_chunk(dat, eccsize, |
| &read_ecc[i], |
| eccbytes, |
| NULL, 0, |
| eccstrength); |
| |
| if (stat < 0) { |
| mtd->ecc_stats.failed++; |
| } else { |
| mtd->ecc_stats.corrected += stat; |
| max_bitflips = max_t(unsigned int, max_bitflips, stat); |
| } |
| } |
| |
| return max_bitflips; |
| } |
| |
| static int stm32_fmc2_nfc_seq_read_page(struct nand_chip *chip, u8 *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); |
| u8 *ecc_calc = chip->ecc.calc_buf; |
| u8 *ecc_code = chip->ecc.code_buf; |
| u16 sta_map; |
| int ret; |
| |
| ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs); |
| if (ret) |
| return ret; |
| |
| /* Configure the sequencer */ |
| stm32_fmc2_nfc_rw_page_init(chip, page, 0, false); |
| |
| /* Read the page */ |
| ret = stm32_fmc2_nfc_xfer(chip, buf, 0, false); |
| if (ret) |
| return ret; |
| |
| sta_map = stm32_fmc2_nfc_get_mapping_status(nfc); |
| |
| /* Check if errors happen */ |
| if (likely(!sta_map)) { |
| if (oob_required) |
| return nand_change_read_column_op(chip, mtd->writesize, |
| chip->oob_poi, |
| mtd->oobsize, false); |
| |
| return 0; |
| } |
| |
| /* Read oob */ |
| ret = nand_change_read_column_op(chip, mtd->writesize, |
| chip->oob_poi, mtd->oobsize, false); |
| if (ret) |
| return ret; |
| |
| ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, |
| chip->ecc.total); |
| if (ret) |
| return ret; |
| |
| /* Correct data */ |
| return chip->ecc.correct(chip, buf, ecc_code, ecc_calc); |
| } |
| |
| static int stm32_fmc2_nfc_seq_read_page_raw(struct nand_chip *chip, u8 *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int ret; |
| |
| ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs); |
| if (ret) |
| return ret; |
| |
| /* Configure the sequencer */ |
| stm32_fmc2_nfc_rw_page_init(chip, page, 1, false); |
| |
| /* Read the page */ |
| ret = stm32_fmc2_nfc_xfer(chip, buf, 1, false); |
| if (ret) |
| return ret; |
| |
| /* Read oob */ |
| if (oob_required) |
| return nand_change_read_column_op(chip, mtd->writesize, |
| chip->oob_poi, mtd->oobsize, |
| false); |
| |
| return 0; |
| } |
| |
| static irqreturn_t stm32_fmc2_nfc_irq(int irq, void *dev_id) |
| { |
| struct stm32_fmc2_nfc *nfc = (struct stm32_fmc2_nfc *)dev_id; |
| |
| if (nfc->irq_state == FMC2_IRQ_SEQ) |
| /* Sequencer is used */ |
| stm32_fmc2_nfc_disable_seq_irq(nfc); |
| else if (nfc->irq_state == FMC2_IRQ_BCH) |
| /* BCH is used */ |
| stm32_fmc2_nfc_disable_bch_irq(nfc); |
| |
| complete(&nfc->complete); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void stm32_fmc2_nfc_read_data(struct nand_chip *chip, void *buf, |
| unsigned int len, bool force_8bit) |
| { |
| struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); |
| void __iomem *io_addr_r = nfc->data_base[nfc->cs_sel]; |
| |
| if (force_8bit && chip->options & NAND_BUSWIDTH_16) |
| /* Reconfigure bus width to 8-bit */ |
| stm32_fmc2_nfc_set_buswidth_16(nfc, false); |
| |
| if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) { |
| if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) { |
| *(u8 *)buf = readb_relaxed(io_addr_r); |
| buf += sizeof(u8); |
| len -= sizeof(u8); |
| } |
| |
| if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) && |
| len >= sizeof(u16)) { |
| *(u16 *)buf = readw_relaxed(io_addr_r); |
| buf += sizeof(u16); |
| len -= sizeof(u16); |
| } |
| } |
| |
| /* Buf is aligned */ |
| while (len >= sizeof(u32)) { |
| *(u32 *)buf = readl_relaxed(io_addr_r); |
| buf += sizeof(u32); |
| len -= sizeof(u32); |
| } |
| |
| /* Read remaining bytes */ |
| if (len >= sizeof(u16)) { |
| *(u16 *)buf = readw_relaxed(io_addr_r); |
| buf += sizeof(u16); |
| len -= sizeof(u16); |
| } |
| |
| if (len) |
| *(u8 *)buf = readb_relaxed(io_addr_r); |
| |
| if (force_8bit && chip->options & NAND_BUSWIDTH_16) |
| /* Reconfigure bus width to 16-bit */ |
| stm32_fmc2_nfc_set_buswidth_16(nfc, true); |
| } |
| |
| static void stm32_fmc2_nfc_write_data(struct nand_chip *chip, const void *buf, |
| unsigned int len, bool force_8bit) |
| { |
| struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); |
| void __iomem *io_addr_w = nfc->data_base[nfc->cs_sel]; |
| |
| if (force_8bit && chip->options & NAND_BUSWIDTH_16) |
| /* Reconfigure bus width to 8-bit */ |
| stm32_fmc2_nfc_set_buswidth_16(nfc, false); |
| |
| if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) { |
| if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) { |
| writeb_relaxed(*(u8 *)buf, io_addr_w); |
| buf += sizeof(u8); |
| len -= sizeof(u8); |
| } |
| |
| if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) && |
| len >= sizeof(u16)) { |
| writew_relaxed(*(u16 *)buf, io_addr_w); |
| buf += sizeof(u16); |
| len -= sizeof(u16); |
| } |
| } |
| |
| /* Buf is aligned */ |
| while (len >= sizeof(u32)) { |
| writel_relaxed(*(u32 *)buf, io_addr_w); |
| buf += sizeof(u32); |
| len -= sizeof(u32); |
| } |
| |
| /* Write remaining bytes */ |
| if (len >= sizeof(u16)) { |
| writew_relaxed(*(u16 *)buf, io_addr_w); |
| buf += sizeof(u16); |
| len -= sizeof(u16); |
| } |
| |
| if (len) |
| writeb_relaxed(*(u8 *)buf, io_addr_w); |
| |
| if (force_8bit && chip->options & NAND_BUSWIDTH_16) |
| /* Reconfigure bus width to 16-bit */ |
| stm32_fmc2_nfc_set_buswidth_16(nfc, true); |
| } |
| |
| static int stm32_fmc2_nfc_waitrdy(struct nand_chip *chip, |
| unsigned long timeout_ms) |
| { |
| struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); |
| const struct nand_sdr_timings *timings; |
| u32 isr, sr; |
| |
| /* Check if there is no pending requests to the NAND flash */ |
| if (regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr, |
| sr & FMC2_SR_NWRF, 1, |
| 1000 * FMC2_TIMEOUT_MS)) |
| dev_warn(nfc->dev, "Waitrdy timeout\n"); |
| |
| /* Wait tWB before R/B# signal is low */ |
| timings = nand_get_sdr_timings(nand_get_interface_config(chip)); |
| ndelay(PSEC_TO_NSEC(timings->tWB_max)); |
| |
| /* R/B# signal is low, clear high level flag */ |
| regmap_write(nfc->regmap, FMC2_ICR, FMC2_ICR_CIHLF); |
| |
| /* Wait R/B# signal is high */ |
| return regmap_read_poll_timeout(nfc->regmap, FMC2_ISR, isr, |
| isr & FMC2_ISR_IHLF, 5, |
| 1000 * FMC2_TIMEOUT_MS); |
| } |
| |
| static int stm32_fmc2_nfc_exec_op(struct nand_chip *chip, |
| const struct nand_operation *op, |
| bool check_only) |
| { |
| struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); |
| const struct nand_op_instr *instr = NULL; |
| unsigned int op_id, i, timeout; |
| int ret; |
| |
| if (check_only) |
| return 0; |
| |
| ret = stm32_fmc2_nfc_select_chip(chip, op->cs); |
| if (ret) |
| return ret; |
| |
| for (op_id = 0; op_id < op->ninstrs; op_id++) { |
| instr = &op->instrs[op_id]; |
| |
| switch (instr->type) { |
| case NAND_OP_CMD_INSTR: |
| writeb_relaxed(instr->ctx.cmd.opcode, |
| nfc->cmd_base[nfc->cs_sel]); |
| break; |
| |
| case NAND_OP_ADDR_INSTR: |
| for (i = 0; i < instr->ctx.addr.naddrs; i++) |
| writeb_relaxed(instr->ctx.addr.addrs[i], |
| nfc->addr_base[nfc->cs_sel]); |
| break; |
| |
| case NAND_OP_DATA_IN_INSTR: |
| stm32_fmc2_nfc_read_data(chip, instr->ctx.data.buf.in, |
| instr->ctx.data.len, |
| instr->ctx.data.force_8bit); |
| break; |
| |
| case NAND_OP_DATA_OUT_INSTR: |
| stm32_fmc2_nfc_write_data(chip, instr->ctx.data.buf.out, |
| instr->ctx.data.len, |
| instr->ctx.data.force_8bit); |
| break; |
| |
| case NAND_OP_WAITRDY_INSTR: |
| timeout = instr->ctx.waitrdy.timeout_ms; |
| ret = stm32_fmc2_nfc_waitrdy(chip, timeout); |
| break; |
| } |
| } |
| |
| return ret; |
| } |
| |
| static void stm32_fmc2_nfc_init(struct stm32_fmc2_nfc *nfc) |
| { |
| u32 pcr; |
| |
| regmap_read(nfc->regmap, FMC2_PCR, &pcr); |
| |
| /* Set CS used to undefined */ |
| nfc->cs_sel = -1; |
| |
| /* Enable wait feature and nand flash memory bank */ |
| pcr |= FMC2_PCR_PWAITEN; |
| pcr |= FMC2_PCR_PBKEN; |
| |
| /* Set buswidth to 8 bits mode for identification */ |
| pcr &= ~FMC2_PCR_PWID; |
| |
| /* ECC logic is disabled */ |
| pcr &= ~FMC2_PCR_ECCEN; |
| |
| /* Default mode */ |
| pcr &= ~FMC2_PCR_ECCALG; |
| pcr &= ~FMC2_PCR_BCHECC; |
| pcr &= ~FMC2_PCR_WEN; |
| |
| /* Set default ECC sector size */ |
| pcr &= ~FMC2_PCR_ECCSS; |
| pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_2048); |
| |
| /* Set default tclr/tar timings */ |
| pcr &= ~FMC2_PCR_TCLR; |
| pcr |= FIELD_PREP(FMC2_PCR_TCLR, FMC2_PCR_TCLR_DEFAULT); |
| pcr &= ~FMC2_PCR_TAR; |
| pcr |= FIELD_PREP(FMC2_PCR_TAR, FMC2_PCR_TAR_DEFAULT); |
| |
| /* Enable FMC2 controller */ |
| if (nfc->dev == nfc->cdev) |
| regmap_update_bits(nfc->regmap, FMC2_BCR1, |
| FMC2_BCR1_FMC2EN, FMC2_BCR1_FMC2EN); |
| |
| regmap_write(nfc->regmap, FMC2_PCR, pcr); |
| regmap_write(nfc->regmap, FMC2_PMEM, FMC2_PMEM_DEFAULT); |
| regmap_write(nfc->regmap, FMC2_PATT, FMC2_PATT_DEFAULT); |
| } |
| |
| static void stm32_fmc2_nfc_calc_timings(struct nand_chip *chip, |
| const struct nand_sdr_timings *sdrt) |
| { |
| struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); |
| struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); |
| struct stm32_fmc2_timings *tims = &nand->timings; |
| unsigned long hclk = clk_get_rate(nfc->clk); |
| unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000); |
| unsigned long timing, tar, tclr, thiz, twait; |
| unsigned long tset_mem, tset_att, thold_mem, thold_att; |
| |
| tar = max_t(unsigned long, hclkp, sdrt->tAR_min); |
| timing = DIV_ROUND_UP(tar, hclkp) - 1; |
| tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK); |
| |
| tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min); |
| timing = DIV_ROUND_UP(tclr, hclkp) - 1; |
| tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK); |
| |
| tims->thiz = FMC2_THIZ; |
| thiz = (tims->thiz + 1) * hclkp; |
| |
| /* |
| * tWAIT > tRP |
| * tWAIT > tWP |
| * tWAIT > tREA + tIO |
| */ |
| twait = max_t(unsigned long, hclkp, sdrt->tRP_min); |
| twait = max_t(unsigned long, twait, sdrt->tWP_min); |
| twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO); |
| timing = DIV_ROUND_UP(twait, hclkp); |
| tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); |
| |
| /* |
| * tSETUP_MEM > tCS - tWAIT |
| * tSETUP_MEM > tALS - tWAIT |
| * tSETUP_MEM > tDS - (tWAIT - tHIZ) |
| */ |
| tset_mem = hclkp; |
| if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait)) |
| tset_mem = sdrt->tCS_min - twait; |
| if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait)) |
| tset_mem = sdrt->tALS_min - twait; |
| if (twait > thiz && (sdrt->tDS_min > twait - thiz) && |
| (tset_mem < sdrt->tDS_min - (twait - thiz))) |
| tset_mem = sdrt->tDS_min - (twait - thiz); |
| timing = DIV_ROUND_UP(tset_mem, hclkp); |
| tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); |
| |
| /* |
| * tHOLD_MEM > tCH |
| * tHOLD_MEM > tREH - tSETUP_MEM |
| * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT) |
| */ |
| thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min); |
| if (sdrt->tREH_min > tset_mem && |
| (thold_mem < sdrt->tREH_min - tset_mem)) |
| thold_mem = sdrt->tREH_min - tset_mem; |
| if ((sdrt->tRC_min > tset_mem + twait) && |
| (thold_mem < sdrt->tRC_min - (tset_mem + twait))) |
| thold_mem = sdrt->tRC_min - (tset_mem + twait); |
| if ((sdrt->tWC_min > tset_mem + twait) && |
| (thold_mem < sdrt->tWC_min - (tset_mem + twait))) |
| thold_mem = sdrt->tWC_min - (tset_mem + twait); |
| timing = DIV_ROUND_UP(thold_mem, hclkp); |
| tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); |
| |
| /* |
| * tSETUP_ATT > tCS - tWAIT |
| * tSETUP_ATT > tCLS - tWAIT |
| * tSETUP_ATT > tALS - tWAIT |
| * tSETUP_ATT > tRHW - tHOLD_MEM |
| * tSETUP_ATT > tDS - (tWAIT - tHIZ) |
| */ |
| tset_att = hclkp; |
| if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait)) |
| tset_att = sdrt->tCS_min - twait; |
| if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait)) |
| tset_att = sdrt->tCLS_min - twait; |
| if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait)) |
| tset_att = sdrt->tALS_min - twait; |
| if (sdrt->tRHW_min > thold_mem && |
| (tset_att < sdrt->tRHW_min - thold_mem)) |
| tset_att = sdrt->tRHW_min - thold_mem; |
| if (twait > thiz && (sdrt->tDS_min > twait - thiz) && |
| (tset_att < sdrt->tDS_min - (twait - thiz))) |
| tset_att = sdrt->tDS_min - (twait - thiz); |
| timing = DIV_ROUND_UP(tset_att, hclkp); |
| tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); |
| |
| /* |
| * tHOLD_ATT > tALH |
| * tHOLD_ATT > tCH |
| * tHOLD_ATT > tCLH |
| * tHOLD_ATT > tCOH |
| * tHOLD_ATT > tDH |
| * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM |
| * tHOLD_ATT > tADL - tSETUP_MEM |
| * tHOLD_ATT > tWH - tSETUP_MEM |
| * tHOLD_ATT > tWHR - tSETUP_MEM |
| * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT) |
| * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT) |
| */ |
| thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min); |
| thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min); |
| thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min); |
| thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min); |
| thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min); |
| if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) && |
| (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem)) |
| thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem; |
| if (sdrt->tADL_min > tset_mem && |
| (thold_att < sdrt->tADL_min - tset_mem)) |
| thold_att = sdrt->tADL_min - tset_mem; |
| if (sdrt->tWH_min > tset_mem && |
| (thold_att < sdrt->tWH_min - tset_mem)) |
| thold_att = sdrt->tWH_min - tset_mem; |
| if (sdrt->tWHR_min > tset_mem && |
| (thold_att < sdrt->tWHR_min - tset_mem)) |
| thold_att = sdrt->tWHR_min - tset_mem; |
| if ((sdrt->tRC_min > tset_att + twait) && |
| (thold_att < sdrt->tRC_min - (tset_att + twait))) |
| thold_att = sdrt->tRC_min - (tset_att + twait); |
| if ((sdrt->tWC_min > tset_att + twait) && |
| (thold_att < sdrt->tWC_min - (tset_att + twait))) |
| thold_att = sdrt->tWC_min - (tset_att + twait); |
| timing = DIV_ROUND_UP(thold_att, hclkp); |
| tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); |
| } |
| |
| static int stm32_fmc2_nfc_setup_interface(struct nand_chip *chip, int chipnr, |
| const struct nand_interface_config *conf) |
| { |
| const struct nand_sdr_timings *sdrt; |
| |
| sdrt = nand_get_sdr_timings(conf); |
| if (IS_ERR(sdrt)) |
| return PTR_ERR(sdrt); |
| |
| if (chipnr == NAND_DATA_IFACE_CHECK_ONLY) |
| return 0; |
| |
| stm32_fmc2_nfc_calc_timings(chip, sdrt); |
| stm32_fmc2_nfc_timings_init(chip); |
| |
| return 0; |
| } |
| |
| static int stm32_fmc2_nfc_dma_setup(struct stm32_fmc2_nfc *nfc) |
| { |
| int ret = 0; |
| |
| nfc->dma_tx_ch = dma_request_chan(nfc->dev, "tx"); |
| if (IS_ERR(nfc->dma_tx_ch)) { |
| ret = PTR_ERR(nfc->dma_tx_ch); |
| if (ret != -ENODEV && ret != -EPROBE_DEFER) |
| dev_err(nfc->dev, |
| "failed to request tx DMA channel: %d\n", ret); |
| nfc->dma_tx_ch = NULL; |
| goto err_dma; |
| } |
| |
| nfc->dma_rx_ch = dma_request_chan(nfc->dev, "rx"); |
| if (IS_ERR(nfc->dma_rx_ch)) { |
| ret = PTR_ERR(nfc->dma_rx_ch); |
| if (ret != -ENODEV && ret != -EPROBE_DEFER) |
| dev_err(nfc->dev, |
| "failed to request rx DMA channel: %d\n", ret); |
| nfc->dma_rx_ch = NULL; |
| goto err_dma; |
| } |
| |
| nfc->dma_ecc_ch = dma_request_chan(nfc->dev, "ecc"); |
| if (IS_ERR(nfc->dma_ecc_ch)) { |
| ret = PTR_ERR(nfc->dma_ecc_ch); |
| if (ret != -ENODEV && ret != -EPROBE_DEFER) |
| dev_err(nfc->dev, |
| "failed to request ecc DMA channel: %d\n", ret); |
| nfc->dma_ecc_ch = NULL; |
| goto err_dma; |
| } |
| |
| ret = sg_alloc_table(&nfc->dma_ecc_sg, FMC2_MAX_SG, GFP_KERNEL); |
| if (ret) |
| return ret; |
| |
| /* Allocate a buffer to store ECC status registers */ |
| nfc->ecc_buf = devm_kzalloc(nfc->dev, FMC2_MAX_ECC_BUF_LEN, GFP_KERNEL); |
| if (!nfc->ecc_buf) |
| return -ENOMEM; |
| |
| ret = sg_alloc_table(&nfc->dma_data_sg, FMC2_MAX_SG, GFP_KERNEL); |
| if (ret) |
| return ret; |
| |
| init_completion(&nfc->dma_data_complete); |
| init_completion(&nfc->dma_ecc_complete); |
| |
| return 0; |
| |
| err_dma: |
| if (ret == -ENODEV) { |
| dev_warn(nfc->dev, |
| "DMAs not defined in the DT, polling mode is used\n"); |
| ret = 0; |
| } |
| |
| return ret; |
| } |
| |
| static void stm32_fmc2_nfc_nand_callbacks_setup(struct nand_chip *chip) |
| { |
| struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); |
| |
| /* |
| * Specific callbacks to read/write a page depending on |
| * the mode (polling/sequencer) and the algo used (Hamming, BCH). |
| */ |
| if (nfc->dma_tx_ch && nfc->dma_rx_ch && nfc->dma_ecc_ch) { |
| /* DMA => use sequencer mode callbacks */ |
| chip->ecc.correct = stm32_fmc2_nfc_seq_correct; |
| chip->ecc.write_page = stm32_fmc2_nfc_seq_write_page; |
| chip->ecc.read_page = stm32_fmc2_nfc_seq_read_page; |
| chip->ecc.write_page_raw = stm32_fmc2_nfc_seq_write_page_raw; |
| chip->ecc.read_page_raw = stm32_fmc2_nfc_seq_read_page_raw; |
| } else { |
| /* No DMA => use polling mode callbacks */ |
| chip->ecc.hwctl = stm32_fmc2_nfc_hwctl; |
| if (chip->ecc.strength == FMC2_ECC_HAM) { |
| /* Hamming is used */ |
| chip->ecc.calculate = stm32_fmc2_nfc_ham_calculate; |
| chip->ecc.correct = stm32_fmc2_nfc_ham_correct; |
| chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK; |
| } else { |
| /* BCH is used */ |
| chip->ecc.calculate = stm32_fmc2_nfc_bch_calculate; |
| chip->ecc.correct = stm32_fmc2_nfc_bch_correct; |
| chip->ecc.read_page = stm32_fmc2_nfc_read_page; |
| } |
| } |
| |
| /* Specific configurations depending on the algo used */ |
| if (chip->ecc.strength == FMC2_ECC_HAM) |
| chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3; |
| else if (chip->ecc.strength == FMC2_ECC_BCH8) |
| chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13; |
| else |
| chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7; |
| } |
| |
| static int stm32_fmc2_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| |
| if (section) |
| return -ERANGE; |
| |
| oobregion->length = ecc->total; |
| oobregion->offset = FMC2_BBM_LEN; |
| |
| return 0; |
| } |
| |
| static int stm32_fmc2_nfc_ooblayout_free(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| |
| if (section) |
| return -ERANGE; |
| |
| oobregion->length = mtd->oobsize - ecc->total - FMC2_BBM_LEN; |
| oobregion->offset = ecc->total + FMC2_BBM_LEN; |
| |
| return 0; |
| } |
| |
| static const struct mtd_ooblayout_ops stm32_fmc2_nfc_ooblayout_ops = { |
| .ecc = stm32_fmc2_nfc_ooblayout_ecc, |
| .free = stm32_fmc2_nfc_ooblayout_free, |
| }; |
| |
| static int stm32_fmc2_nfc_calc_ecc_bytes(int step_size, int strength) |
| { |
| /* Hamming */ |
| if (strength == FMC2_ECC_HAM) |
| return 4; |
| |
| /* BCH8 */ |
| if (strength == FMC2_ECC_BCH8) |
| return 14; |
| |
| /* BCH4 */ |
| return 8; |
| } |
| |
| NAND_ECC_CAPS_SINGLE(stm32_fmc2_nfc_ecc_caps, stm32_fmc2_nfc_calc_ecc_bytes, |
| FMC2_ECC_STEP_SIZE, |
| FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8); |
| |
| static int stm32_fmc2_nfc_attach_chip(struct nand_chip *chip) |
| { |
| struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int ret; |
| |
| /* |
| * Only NAND_ECC_ENGINE_TYPE_ON_HOST mode is actually supported |
| * Hamming => ecc.strength = 1 |
| * BCH4 => ecc.strength = 4 |
| * BCH8 => ecc.strength = 8 |
| * ECC sector size = 512 |
| */ |
| if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) { |
| dev_err(nfc->dev, |
| "nand_ecc_engine_type is not well defined in the DT\n"); |
| return -EINVAL; |
| } |
| |
| /* Default ECC settings in case they are not set in the device tree */ |
| if (!chip->ecc.size) |
| chip->ecc.size = FMC2_ECC_STEP_SIZE; |
| |
| if (!chip->ecc.strength) |
| chip->ecc.strength = FMC2_ECC_BCH8; |
| |
| ret = nand_ecc_choose_conf(chip, &stm32_fmc2_nfc_ecc_caps, |
| mtd->oobsize - FMC2_BBM_LEN); |
| if (ret) { |
| dev_err(nfc->dev, "no valid ECC settings set\n"); |
| return ret; |
| } |
| |
| if (mtd->writesize / chip->ecc.size > FMC2_MAX_SG) { |
| dev_err(nfc->dev, "nand page size is not supported\n"); |
| return -EINVAL; |
| } |
| |
| if (chip->bbt_options & NAND_BBT_USE_FLASH) |
| chip->bbt_options |= NAND_BBT_NO_OOB; |
| |
| stm32_fmc2_nfc_nand_callbacks_setup(chip); |
| |
| mtd_set_ooblayout(mtd, &stm32_fmc2_nfc_ooblayout_ops); |
| |
| stm32_fmc2_nfc_setup(chip); |
| |
| return 0; |
| } |
| |
| static const struct nand_controller_ops stm32_fmc2_nfc_controller_ops = { |
| .attach_chip = stm32_fmc2_nfc_attach_chip, |
| .exec_op = stm32_fmc2_nfc_exec_op, |
| .setup_interface = stm32_fmc2_nfc_setup_interface, |
| }; |
| |
| static int stm32_fmc2_nfc_parse_child(struct stm32_fmc2_nfc *nfc, |
| struct device_node *dn) |
| { |
| struct stm32_fmc2_nand *nand = &nfc->nand; |
| u32 cs; |
| int ret, i; |
| |
| if (!of_get_property(dn, "reg", &nand->ncs)) |
| return -EINVAL; |
| |
| nand->ncs /= sizeof(u32); |
| if (!nand->ncs) { |
| dev_err(nfc->dev, "invalid reg property size\n"); |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < nand->ncs; i++) { |
| ret = of_property_read_u32_index(dn, "reg", i, &cs); |
| if (ret) { |
| dev_err(nfc->dev, "could not retrieve reg property: %d\n", |
| ret); |
| return ret; |
| } |
| |
| if (cs >= FMC2_MAX_CE) { |
| dev_err(nfc->dev, "invalid reg value: %d\n", cs); |
| return -EINVAL; |
| } |
| |
| if (nfc->cs_assigned & BIT(cs)) { |
| dev_err(nfc->dev, "cs already assigned: %d\n", cs); |
| return -EINVAL; |
| } |
| |
| nfc->cs_assigned |= BIT(cs); |
| nand->cs_used[i] = cs; |
| } |
| |
| nand_set_flash_node(&nand->chip, dn); |
| |
| return 0; |
| } |
| |
| static int stm32_fmc2_nfc_parse_dt(struct stm32_fmc2_nfc *nfc) |
| { |
| struct device_node *dn = nfc->dev->of_node; |
| struct device_node *child; |
| int nchips = of_get_child_count(dn); |
| int ret = 0; |
| |
| if (!nchips) { |
| dev_err(nfc->dev, "NAND chip not defined\n"); |
| return -EINVAL; |
| } |
| |
| if (nchips > 1) { |
| dev_err(nfc->dev, "too many NAND chips defined\n"); |
| return -EINVAL; |
| } |
| |
| for_each_child_of_node(dn, child) { |
| ret = stm32_fmc2_nfc_parse_child(nfc, child); |
| if (ret < 0) { |
| of_node_put(child); |
| return ret; |
| } |
| } |
| |
| return ret; |
| } |
| |
| static int stm32_fmc2_nfc_set_cdev(struct stm32_fmc2_nfc *nfc) |
| { |
| struct device *dev = nfc->dev; |
| bool ebi_found = false; |
| |
| if (dev->parent && of_device_is_compatible(dev->parent->of_node, |
| "st,stm32mp1-fmc2-ebi")) |
| ebi_found = true; |
| |
| if (of_device_is_compatible(dev->of_node, "st,stm32mp1-fmc2-nfc")) { |
| if (ebi_found) { |
| nfc->cdev = dev->parent; |
| |
| return 0; |
| } |
| |
| return -EINVAL; |
| } |
| |
| if (ebi_found) |
| return -EINVAL; |
| |
| nfc->cdev = dev; |
| |
| return 0; |
| } |
| |
| static int stm32_fmc2_nfc_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct reset_control *rstc; |
| struct stm32_fmc2_nfc *nfc; |
| struct stm32_fmc2_nand *nand; |
| struct resource *res; |
| struct mtd_info *mtd; |
| struct nand_chip *chip; |
| struct resource cres; |
| int chip_cs, mem_region, ret, irq; |
| int start_region = 0; |
| |
| nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); |
| if (!nfc) |
| return -ENOMEM; |
| |
| nfc->dev = dev; |
| nand_controller_init(&nfc->base); |
| nfc->base.ops = &stm32_fmc2_nfc_controller_ops; |
| |
| ret = stm32_fmc2_nfc_set_cdev(nfc); |
| if (ret) |
| return ret; |
| |
| ret = stm32_fmc2_nfc_parse_dt(nfc); |
| if (ret) |
| return ret; |
| |
| ret = of_address_to_resource(nfc->cdev->of_node, 0, &cres); |
| if (ret) |
| return ret; |
| |
| nfc->io_phys_addr = cres.start; |
| |
| nfc->regmap = device_node_to_regmap(nfc->cdev->of_node); |
| if (IS_ERR(nfc->regmap)) |
| return PTR_ERR(nfc->regmap); |
| |
| if (nfc->dev == nfc->cdev) |
| start_region = 1; |
| |
| for (chip_cs = 0, mem_region = start_region; chip_cs < FMC2_MAX_CE; |
| chip_cs++, mem_region += 3) { |
| if (!(nfc->cs_assigned & BIT(chip_cs))) |
| continue; |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, mem_region); |
| nfc->data_base[chip_cs] = devm_ioremap_resource(dev, res); |
| if (IS_ERR(nfc->data_base[chip_cs])) |
| return PTR_ERR(nfc->data_base[chip_cs]); |
| |
| nfc->data_phys_addr[chip_cs] = res->start; |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, |
| mem_region + 1); |
| nfc->cmd_base[chip_cs] = devm_ioremap_resource(dev, res); |
| if (IS_ERR(nfc->cmd_base[chip_cs])) |
| return PTR_ERR(nfc->cmd_base[chip_cs]); |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, |
| mem_region + 2); |
| nfc->addr_base[chip_cs] = devm_ioremap_resource(dev, res); |
| if (IS_ERR(nfc->addr_base[chip_cs])) |
| return PTR_ERR(nfc->addr_base[chip_cs]); |
| } |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) |
| return irq; |
| |
| ret = devm_request_irq(dev, irq, stm32_fmc2_nfc_irq, 0, |
| dev_name(dev), nfc); |
| if (ret) { |
| dev_err(dev, "failed to request irq\n"); |
| return ret; |
| } |
| |
| init_completion(&nfc->complete); |
| |
| nfc->clk = devm_clk_get(nfc->cdev, NULL); |
| if (IS_ERR(nfc->clk)) |
| return PTR_ERR(nfc->clk); |
| |
| ret = clk_prepare_enable(nfc->clk); |
| if (ret) { |
| dev_err(dev, "can not enable the clock\n"); |
| return ret; |
| } |
| |
| rstc = devm_reset_control_get(dev, NULL); |
| if (IS_ERR(rstc)) { |
| ret = PTR_ERR(rstc); |
| if (ret == -EPROBE_DEFER) |
| goto err_clk_disable; |
| } else { |
| reset_control_assert(rstc); |
| reset_control_deassert(rstc); |
| } |
| |
| ret = stm32_fmc2_nfc_dma_setup(nfc); |
| if (ret) |
| goto err_release_dma; |
| |
| stm32_fmc2_nfc_init(nfc); |
| |
| nand = &nfc->nand; |
| chip = &nand->chip; |
| mtd = nand_to_mtd(chip); |
| mtd->dev.parent = dev; |
| |
| chip->controller = &nfc->base; |
| chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE | |
| NAND_USES_DMA; |
| |
| /* Scan to find existence of the device */ |
| ret = nand_scan(chip, nand->ncs); |
| if (ret) |
| goto err_release_dma; |
| |
| ret = mtd_device_register(mtd, NULL, 0); |
| if (ret) |
| goto err_nand_cleanup; |
| |
| platform_set_drvdata(pdev, nfc); |
| |
| return 0; |
| |
| err_nand_cleanup: |
| nand_cleanup(chip); |
| |
| err_release_dma: |
| if (nfc->dma_ecc_ch) |
| dma_release_channel(nfc->dma_ecc_ch); |
| if (nfc->dma_tx_ch) |
| dma_release_channel(nfc->dma_tx_ch); |
| if (nfc->dma_rx_ch) |
| dma_release_channel(nfc->dma_rx_ch); |
| |
| sg_free_table(&nfc->dma_data_sg); |
| sg_free_table(&nfc->dma_ecc_sg); |
| |
| err_clk_disable: |
| clk_disable_unprepare(nfc->clk); |
| |
| return ret; |
| } |
| |
| static int stm32_fmc2_nfc_remove(struct platform_device *pdev) |
| { |
| struct stm32_fmc2_nfc *nfc = platform_get_drvdata(pdev); |
| struct stm32_fmc2_nand *nand = &nfc->nand; |
| struct nand_chip *chip = &nand->chip; |
| int ret; |
| |
| ret = mtd_device_unregister(nand_to_mtd(chip)); |
| WARN_ON(ret); |
| nand_cleanup(chip); |
| |
| if (nfc->dma_ecc_ch) |
| dma_release_channel(nfc->dma_ecc_ch); |
| if (nfc->dma_tx_ch) |
| dma_release_channel(nfc->dma_tx_ch); |
| if (nfc->dma_rx_ch) |
| dma_release_channel(nfc->dma_rx_ch); |
| |
| sg_free_table(&nfc->dma_data_sg); |
| sg_free_table(&nfc->dma_ecc_sg); |
| |
| clk_disable_unprepare(nfc->clk); |
| |
| return 0; |
| } |
| |
| static int __maybe_unused stm32_fmc2_nfc_suspend(struct device *dev) |
| { |
| struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev); |
| |
| clk_disable_unprepare(nfc->clk); |
| |
| pinctrl_pm_select_sleep_state(dev); |
| |
| return 0; |
| } |
| |
| static int __maybe_unused stm32_fmc2_nfc_resume(struct device *dev) |
| { |
| struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev); |
| struct stm32_fmc2_nand *nand = &nfc->nand; |
| int chip_cs, ret; |
| |
| pinctrl_pm_select_default_state(dev); |
| |
| ret = clk_prepare_enable(nfc->clk); |
| if (ret) { |
| dev_err(dev, "can not enable the clock\n"); |
| return ret; |
| } |
| |
| stm32_fmc2_nfc_init(nfc); |
| |
| for (chip_cs = 0; chip_cs < FMC2_MAX_CE; chip_cs++) { |
| if (!(nfc->cs_assigned & BIT(chip_cs))) |
| continue; |
| |
| nand_reset(&nand->chip, chip_cs); |
| } |
| |
| return 0; |
| } |
| |
| static SIMPLE_DEV_PM_OPS(stm32_fmc2_nfc_pm_ops, stm32_fmc2_nfc_suspend, |
| stm32_fmc2_nfc_resume); |
| |
| static const struct of_device_id stm32_fmc2_nfc_match[] = { |
| {.compatible = "st,stm32mp15-fmc2"}, |
| {.compatible = "st,stm32mp1-fmc2-nfc"}, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, stm32_fmc2_nfc_match); |
| |
| static struct platform_driver stm32_fmc2_nfc_driver = { |
| .probe = stm32_fmc2_nfc_probe, |
| .remove = stm32_fmc2_nfc_remove, |
| .driver = { |
| .name = "stm32_fmc2_nfc", |
| .of_match_table = stm32_fmc2_nfc_match, |
| .pm = &stm32_fmc2_nfc_pm_ops, |
| }, |
| }; |
| module_platform_driver(stm32_fmc2_nfc_driver); |
| |
| MODULE_ALIAS("platform:stm32_fmc2_nfc"); |
| MODULE_AUTHOR("Christophe Kerello <christophe.kerello@st.com>"); |
| MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 NFC driver"); |
| MODULE_LICENSE("GPL v2"); |