| /* | 
 |  * 8253/8254 interval timer emulation | 
 |  * | 
 |  * Copyright (c) 2003-2004 Fabrice Bellard | 
 |  * Copyright (c) 2006 Intel Corporation | 
 |  * Copyright (c) 2007 Keir Fraser, XenSource Inc | 
 |  * Copyright (c) 2008 Intel Corporation | 
 |  * Copyright 2009 Red Hat, Inc. and/or its affiliates. | 
 |  * | 
 |  * Permission is hereby granted, free of charge, to any person obtaining a copy | 
 |  * of this software and associated documentation files (the "Software"), to deal | 
 |  * in the Software without restriction, including without limitation the rights | 
 |  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | 
 |  * copies of the Software, and to permit persons to whom the Software is | 
 |  * furnished to do so, subject to the following conditions: | 
 |  * | 
 |  * The above copyright notice and this permission notice shall be included in | 
 |  * all copies or substantial portions of the Software. | 
 |  * | 
 |  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
 |  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
 |  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | 
 |  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
 |  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
 |  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | 
 |  * THE SOFTWARE. | 
 |  * | 
 |  * Authors: | 
 |  *   Sheng Yang <sheng.yang@intel.com> | 
 |  *   Based on QEMU and Xen. | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) "pit: " fmt | 
 |  | 
 | #include <linux/kvm_host.h> | 
 | #include <linux/slab.h> | 
 |  | 
 | #include "irq.h" | 
 | #include "i8254.h" | 
 | #include "x86.h" | 
 |  | 
 | #ifndef CONFIG_X86_64 | 
 | #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) | 
 | #else | 
 | #define mod_64(x, y) ((x) % (y)) | 
 | #endif | 
 |  | 
 | #define RW_STATE_LSB 1 | 
 | #define RW_STATE_MSB 2 | 
 | #define RW_STATE_WORD0 3 | 
 | #define RW_STATE_WORD1 4 | 
 |  | 
 | /* Compute with 96 bit intermediate result: (a*b)/c */ | 
 | static u64 muldiv64(u64 a, u32 b, u32 c) | 
 | { | 
 | 	union { | 
 | 		u64 ll; | 
 | 		struct { | 
 | 			u32 low, high; | 
 | 		} l; | 
 | 	} u, res; | 
 | 	u64 rl, rh; | 
 |  | 
 | 	u.ll = a; | 
 | 	rl = (u64)u.l.low * (u64)b; | 
 | 	rh = (u64)u.l.high * (u64)b; | 
 | 	rh += (rl >> 32); | 
 | 	res.l.high = div64_u64(rh, c); | 
 | 	res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c); | 
 | 	return res.ll; | 
 | } | 
 |  | 
 | static void pit_set_gate(struct kvm *kvm, int channel, u32 val) | 
 | { | 
 | 	struct kvm_kpit_channel_state *c = | 
 | 		&kvm->arch.vpit->pit_state.channels[channel]; | 
 |  | 
 | 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); | 
 |  | 
 | 	switch (c->mode) { | 
 | 	default: | 
 | 	case 0: | 
 | 	case 4: | 
 | 		/* XXX: just disable/enable counting */ | 
 | 		break; | 
 | 	case 1: | 
 | 	case 2: | 
 | 	case 3: | 
 | 	case 5: | 
 | 		/* Restart counting on rising edge. */ | 
 | 		if (c->gate < val) | 
 | 			c->count_load_time = ktime_get(); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	c->gate = val; | 
 | } | 
 |  | 
 | static int pit_get_gate(struct kvm *kvm, int channel) | 
 | { | 
 | 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); | 
 |  | 
 | 	return kvm->arch.vpit->pit_state.channels[channel].gate; | 
 | } | 
 |  | 
 | static s64 __kpit_elapsed(struct kvm *kvm) | 
 | { | 
 | 	s64 elapsed; | 
 | 	ktime_t remaining; | 
 | 	struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state; | 
 |  | 
 | 	if (!ps->period) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * The Counter does not stop when it reaches zero. In | 
 | 	 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to | 
 | 	 * the highest count, either FFFF hex for binary counting | 
 | 	 * or 9999 for BCD counting, and continues counting. | 
 | 	 * Modes 2 and 3 are periodic; the Counter reloads | 
 | 	 * itself with the initial count and continues counting | 
 | 	 * from there. | 
 | 	 */ | 
 | 	remaining = hrtimer_get_remaining(&ps->timer); | 
 | 	elapsed = ps->period - ktime_to_ns(remaining); | 
 |  | 
 | 	return elapsed; | 
 | } | 
 |  | 
 | static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c, | 
 | 			int channel) | 
 | { | 
 | 	if (channel == 0) | 
 | 		return __kpit_elapsed(kvm); | 
 |  | 
 | 	return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time)); | 
 | } | 
 |  | 
 | static int pit_get_count(struct kvm *kvm, int channel) | 
 | { | 
 | 	struct kvm_kpit_channel_state *c = | 
 | 		&kvm->arch.vpit->pit_state.channels[channel]; | 
 | 	s64 d, t; | 
 | 	int counter; | 
 |  | 
 | 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); | 
 |  | 
 | 	t = kpit_elapsed(kvm, c, channel); | 
 | 	d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC); | 
 |  | 
 | 	switch (c->mode) { | 
 | 	case 0: | 
 | 	case 1: | 
 | 	case 4: | 
 | 	case 5: | 
 | 		counter = (c->count - d) & 0xffff; | 
 | 		break; | 
 | 	case 3: | 
 | 		/* XXX: may be incorrect for odd counts */ | 
 | 		counter = c->count - (mod_64((2 * d), c->count)); | 
 | 		break; | 
 | 	default: | 
 | 		counter = c->count - mod_64(d, c->count); | 
 | 		break; | 
 | 	} | 
 | 	return counter; | 
 | } | 
 |  | 
 | static int pit_get_out(struct kvm *kvm, int channel) | 
 | { | 
 | 	struct kvm_kpit_channel_state *c = | 
 | 		&kvm->arch.vpit->pit_state.channels[channel]; | 
 | 	s64 d, t; | 
 | 	int out; | 
 |  | 
 | 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); | 
 |  | 
 | 	t = kpit_elapsed(kvm, c, channel); | 
 | 	d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC); | 
 |  | 
 | 	switch (c->mode) { | 
 | 	default: | 
 | 	case 0: | 
 | 		out = (d >= c->count); | 
 | 		break; | 
 | 	case 1: | 
 | 		out = (d < c->count); | 
 | 		break; | 
 | 	case 2: | 
 | 		out = ((mod_64(d, c->count) == 0) && (d != 0)); | 
 | 		break; | 
 | 	case 3: | 
 | 		out = (mod_64(d, c->count) < ((c->count + 1) >> 1)); | 
 | 		break; | 
 | 	case 4: | 
 | 	case 5: | 
 | 		out = (d == c->count); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return out; | 
 | } | 
 |  | 
 | static void pit_latch_count(struct kvm *kvm, int channel) | 
 | { | 
 | 	struct kvm_kpit_channel_state *c = | 
 | 		&kvm->arch.vpit->pit_state.channels[channel]; | 
 |  | 
 | 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); | 
 |  | 
 | 	if (!c->count_latched) { | 
 | 		c->latched_count = pit_get_count(kvm, channel); | 
 | 		c->count_latched = c->rw_mode; | 
 | 	} | 
 | } | 
 |  | 
 | static void pit_latch_status(struct kvm *kvm, int channel) | 
 | { | 
 | 	struct kvm_kpit_channel_state *c = | 
 | 		&kvm->arch.vpit->pit_state.channels[channel]; | 
 |  | 
 | 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); | 
 |  | 
 | 	if (!c->status_latched) { | 
 | 		/* TODO: Return NULL COUNT (bit 6). */ | 
 | 		c->status = ((pit_get_out(kvm, channel) << 7) | | 
 | 				(c->rw_mode << 4) | | 
 | 				(c->mode << 1) | | 
 | 				c->bcd); | 
 | 		c->status_latched = 1; | 
 | 	} | 
 | } | 
 |  | 
 | static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian) | 
 | { | 
 | 	struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state, | 
 | 						 irq_ack_notifier); | 
 | 	int value; | 
 |  | 
 | 	spin_lock(&ps->inject_lock); | 
 | 	value = atomic_dec_return(&ps->pending); | 
 | 	if (value < 0) | 
 | 		/* spurious acks can be generated if, for example, the | 
 | 		 * PIC is being reset.  Handle it gracefully here | 
 | 		 */ | 
 | 		atomic_inc(&ps->pending); | 
 | 	else if (value > 0) | 
 | 		/* in this case, we had multiple outstanding pit interrupts | 
 | 		 * that we needed to inject.  Reinject | 
 | 		 */ | 
 | 		queue_kthread_work(&ps->pit->worker, &ps->pit->expired); | 
 | 	ps->irq_ack = 1; | 
 | 	spin_unlock(&ps->inject_lock); | 
 | } | 
 |  | 
 | void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_pit *pit = vcpu->kvm->arch.vpit; | 
 | 	struct hrtimer *timer; | 
 |  | 
 | 	if (!kvm_vcpu_is_bsp(vcpu) || !pit) | 
 | 		return; | 
 |  | 
 | 	timer = &pit->pit_state.timer; | 
 | 	mutex_lock(&pit->pit_state.lock); | 
 | 	if (hrtimer_cancel(timer)) | 
 | 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS); | 
 | 	mutex_unlock(&pit->pit_state.lock); | 
 | } | 
 |  | 
 | static void destroy_pit_timer(struct kvm_pit *pit) | 
 | { | 
 | 	hrtimer_cancel(&pit->pit_state.timer); | 
 | 	flush_kthread_work(&pit->expired); | 
 | } | 
 |  | 
 | static void pit_do_work(struct kthread_work *work) | 
 | { | 
 | 	struct kvm_pit *pit = container_of(work, struct kvm_pit, expired); | 
 | 	struct kvm *kvm = pit->kvm; | 
 | 	struct kvm_vcpu *vcpu; | 
 | 	int i; | 
 | 	struct kvm_kpit_state *ps = &pit->pit_state; | 
 | 	int inject = 0; | 
 |  | 
 | 	/* Try to inject pending interrupts when | 
 | 	 * last one has been acked. | 
 | 	 */ | 
 | 	spin_lock(&ps->inject_lock); | 
 | 	if (ps->irq_ack) { | 
 | 		ps->irq_ack = 0; | 
 | 		inject = 1; | 
 | 	} | 
 | 	spin_unlock(&ps->inject_lock); | 
 | 	if (inject) { | 
 | 		kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1, false); | 
 | 		kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0, false); | 
 |  | 
 | 		/* | 
 | 		 * Provides NMI watchdog support via Virtual Wire mode. | 
 | 		 * The route is: PIT -> PIC -> LVT0 in NMI mode. | 
 | 		 * | 
 | 		 * Note: Our Virtual Wire implementation is simplified, only | 
 | 		 * propagating PIT interrupts to all VCPUs when they have set | 
 | 		 * LVT0 to NMI delivery. Other PIC interrupts are just sent to | 
 | 		 * VCPU0, and only if its LVT0 is in EXTINT mode. | 
 | 		 */ | 
 | 		if (kvm->arch.vapics_in_nmi_mode > 0) | 
 | 			kvm_for_each_vcpu(i, vcpu, kvm) | 
 | 				kvm_apic_nmi_wd_deliver(vcpu); | 
 | 	} | 
 | } | 
 |  | 
 | static enum hrtimer_restart pit_timer_fn(struct hrtimer *data) | 
 | { | 
 | 	struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer); | 
 | 	struct kvm_pit *pt = ps->kvm->arch.vpit; | 
 |  | 
 | 	if (ps->reinject || !atomic_read(&ps->pending)) { | 
 | 		atomic_inc(&ps->pending); | 
 | 		queue_kthread_work(&pt->worker, &pt->expired); | 
 | 	} | 
 |  | 
 | 	if (ps->is_periodic) { | 
 | 		hrtimer_add_expires_ns(&ps->timer, ps->period); | 
 | 		return HRTIMER_RESTART; | 
 | 	} else | 
 | 		return HRTIMER_NORESTART; | 
 | } | 
 |  | 
 | static void create_pit_timer(struct kvm *kvm, u32 val, int is_period) | 
 | { | 
 | 	struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state; | 
 | 	s64 interval; | 
 |  | 
 | 	if (!irqchip_in_kernel(kvm) || ps->flags & KVM_PIT_FLAGS_HPET_LEGACY) | 
 | 		return; | 
 |  | 
 | 	interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ); | 
 |  | 
 | 	pr_debug("create pit timer, interval is %llu nsec\n", interval); | 
 |  | 
 | 	/* TODO The new value only affected after the retriggered */ | 
 | 	hrtimer_cancel(&ps->timer); | 
 | 	flush_kthread_work(&ps->pit->expired); | 
 | 	ps->period = interval; | 
 | 	ps->is_periodic = is_period; | 
 |  | 
 | 	ps->timer.function = pit_timer_fn; | 
 | 	ps->kvm = ps->pit->kvm; | 
 |  | 
 | 	atomic_set(&ps->pending, 0); | 
 | 	ps->irq_ack = 1; | 
 |  | 
 | 	/* | 
 | 	 * Do not allow the guest to program periodic timers with small | 
 | 	 * interval, since the hrtimers are not throttled by the host | 
 | 	 * scheduler. | 
 | 	 */ | 
 | 	if (ps->is_periodic) { | 
 | 		s64 min_period = min_timer_period_us * 1000LL; | 
 |  | 
 | 		if (ps->period < min_period) { | 
 | 			pr_info_ratelimited( | 
 | 			    "kvm: requested %lld ns " | 
 | 			    "i8254 timer period limited to %lld ns\n", | 
 | 			    ps->period, min_period); | 
 | 			ps->period = min_period; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval), | 
 | 		      HRTIMER_MODE_ABS); | 
 | } | 
 |  | 
 | static void pit_load_count(struct kvm *kvm, int channel, u32 val) | 
 | { | 
 | 	struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state; | 
 |  | 
 | 	WARN_ON(!mutex_is_locked(&ps->lock)); | 
 |  | 
 | 	pr_debug("load_count val is %d, channel is %d\n", val, channel); | 
 |  | 
 | 	/* | 
 | 	 * The largest possible initial count is 0; this is equivalent | 
 | 	 * to 216 for binary counting and 104 for BCD counting. | 
 | 	 */ | 
 | 	if (val == 0) | 
 | 		val = 0x10000; | 
 |  | 
 | 	ps->channels[channel].count = val; | 
 |  | 
 | 	if (channel != 0) { | 
 | 		ps->channels[channel].count_load_time = ktime_get(); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Two types of timer | 
 | 	 * mode 1 is one shot, mode 2 is period, otherwise del timer */ | 
 | 	switch (ps->channels[0].mode) { | 
 | 	case 0: | 
 | 	case 1: | 
 |         /* FIXME: enhance mode 4 precision */ | 
 | 	case 4: | 
 | 		create_pit_timer(kvm, val, 0); | 
 | 		break; | 
 | 	case 2: | 
 | 	case 3: | 
 | 		create_pit_timer(kvm, val, 1); | 
 | 		break; | 
 | 	default: | 
 | 		destroy_pit_timer(kvm->arch.vpit); | 
 | 	} | 
 | } | 
 |  | 
 | void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start) | 
 | { | 
 | 	u8 saved_mode; | 
 | 	if (hpet_legacy_start) { | 
 | 		/* save existing mode for later reenablement */ | 
 | 		saved_mode = kvm->arch.vpit->pit_state.channels[0].mode; | 
 | 		kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */ | 
 | 		pit_load_count(kvm, channel, val); | 
 | 		kvm->arch.vpit->pit_state.channels[0].mode = saved_mode; | 
 | 	} else { | 
 | 		pit_load_count(kvm, channel, val); | 
 | 	} | 
 | } | 
 |  | 
 | static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev) | 
 | { | 
 | 	return container_of(dev, struct kvm_pit, dev); | 
 | } | 
 |  | 
 | static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev) | 
 | { | 
 | 	return container_of(dev, struct kvm_pit, speaker_dev); | 
 | } | 
 |  | 
 | static inline int pit_in_range(gpa_t addr) | 
 | { | 
 | 	return ((addr >= KVM_PIT_BASE_ADDRESS) && | 
 | 		(addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH)); | 
 | } | 
 |  | 
 | static int pit_ioport_write(struct kvm_io_device *this, | 
 | 			    gpa_t addr, int len, const void *data) | 
 | { | 
 | 	struct kvm_pit *pit = dev_to_pit(this); | 
 | 	struct kvm_kpit_state *pit_state = &pit->pit_state; | 
 | 	struct kvm *kvm = pit->kvm; | 
 | 	int channel, access; | 
 | 	struct kvm_kpit_channel_state *s; | 
 | 	u32 val = *(u32 *) data; | 
 | 	if (!pit_in_range(addr)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	val  &= 0xff; | 
 | 	addr &= KVM_PIT_CHANNEL_MASK; | 
 |  | 
 | 	mutex_lock(&pit_state->lock); | 
 |  | 
 | 	if (val != 0) | 
 | 		pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n", | 
 | 			 (unsigned int)addr, len, val); | 
 |  | 
 | 	if (addr == 3) { | 
 | 		channel = val >> 6; | 
 | 		if (channel == 3) { | 
 | 			/* Read-Back Command. */ | 
 | 			for (channel = 0; channel < 3; channel++) { | 
 | 				s = &pit_state->channels[channel]; | 
 | 				if (val & (2 << channel)) { | 
 | 					if (!(val & 0x20)) | 
 | 						pit_latch_count(kvm, channel); | 
 | 					if (!(val & 0x10)) | 
 | 						pit_latch_status(kvm, channel); | 
 | 				} | 
 | 			} | 
 | 		} else { | 
 | 			/* Select Counter <channel>. */ | 
 | 			s = &pit_state->channels[channel]; | 
 | 			access = (val >> 4) & KVM_PIT_CHANNEL_MASK; | 
 | 			if (access == 0) { | 
 | 				pit_latch_count(kvm, channel); | 
 | 			} else { | 
 | 				s->rw_mode = access; | 
 | 				s->read_state = access; | 
 | 				s->write_state = access; | 
 | 				s->mode = (val >> 1) & 7; | 
 | 				if (s->mode > 5) | 
 | 					s->mode -= 4; | 
 | 				s->bcd = val & 1; | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		/* Write Count. */ | 
 | 		s = &pit_state->channels[addr]; | 
 | 		switch (s->write_state) { | 
 | 		default: | 
 | 		case RW_STATE_LSB: | 
 | 			pit_load_count(kvm, addr, val); | 
 | 			break; | 
 | 		case RW_STATE_MSB: | 
 | 			pit_load_count(kvm, addr, val << 8); | 
 | 			break; | 
 | 		case RW_STATE_WORD0: | 
 | 			s->write_latch = val; | 
 | 			s->write_state = RW_STATE_WORD1; | 
 | 			break; | 
 | 		case RW_STATE_WORD1: | 
 | 			pit_load_count(kvm, addr, s->write_latch | (val << 8)); | 
 | 			s->write_state = RW_STATE_WORD0; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&pit_state->lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pit_ioport_read(struct kvm_io_device *this, | 
 | 			   gpa_t addr, int len, void *data) | 
 | { | 
 | 	struct kvm_pit *pit = dev_to_pit(this); | 
 | 	struct kvm_kpit_state *pit_state = &pit->pit_state; | 
 | 	struct kvm *kvm = pit->kvm; | 
 | 	int ret, count; | 
 | 	struct kvm_kpit_channel_state *s; | 
 | 	if (!pit_in_range(addr)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	addr &= KVM_PIT_CHANNEL_MASK; | 
 | 	if (addr == 3) | 
 | 		return 0; | 
 |  | 
 | 	s = &pit_state->channels[addr]; | 
 |  | 
 | 	mutex_lock(&pit_state->lock); | 
 |  | 
 | 	if (s->status_latched) { | 
 | 		s->status_latched = 0; | 
 | 		ret = s->status; | 
 | 	} else if (s->count_latched) { | 
 | 		switch (s->count_latched) { | 
 | 		default: | 
 | 		case RW_STATE_LSB: | 
 | 			ret = s->latched_count & 0xff; | 
 | 			s->count_latched = 0; | 
 | 			break; | 
 | 		case RW_STATE_MSB: | 
 | 			ret = s->latched_count >> 8; | 
 | 			s->count_latched = 0; | 
 | 			break; | 
 | 		case RW_STATE_WORD0: | 
 | 			ret = s->latched_count & 0xff; | 
 | 			s->count_latched = RW_STATE_MSB; | 
 | 			break; | 
 | 		} | 
 | 	} else { | 
 | 		switch (s->read_state) { | 
 | 		default: | 
 | 		case RW_STATE_LSB: | 
 | 			count = pit_get_count(kvm, addr); | 
 | 			ret = count & 0xff; | 
 | 			break; | 
 | 		case RW_STATE_MSB: | 
 | 			count = pit_get_count(kvm, addr); | 
 | 			ret = (count >> 8) & 0xff; | 
 | 			break; | 
 | 		case RW_STATE_WORD0: | 
 | 			count = pit_get_count(kvm, addr); | 
 | 			ret = count & 0xff; | 
 | 			s->read_state = RW_STATE_WORD1; | 
 | 			break; | 
 | 		case RW_STATE_WORD1: | 
 | 			count = pit_get_count(kvm, addr); | 
 | 			ret = (count >> 8) & 0xff; | 
 | 			s->read_state = RW_STATE_WORD0; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (len > sizeof(ret)) | 
 | 		len = sizeof(ret); | 
 | 	memcpy(data, (char *)&ret, len); | 
 |  | 
 | 	mutex_unlock(&pit_state->lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int speaker_ioport_write(struct kvm_io_device *this, | 
 | 				gpa_t addr, int len, const void *data) | 
 | { | 
 | 	struct kvm_pit *pit = speaker_to_pit(this); | 
 | 	struct kvm_kpit_state *pit_state = &pit->pit_state; | 
 | 	struct kvm *kvm = pit->kvm; | 
 | 	u32 val = *(u32 *) data; | 
 | 	if (addr != KVM_SPEAKER_BASE_ADDRESS) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	mutex_lock(&pit_state->lock); | 
 | 	pit_state->speaker_data_on = (val >> 1) & 1; | 
 | 	pit_set_gate(kvm, 2, val & 1); | 
 | 	mutex_unlock(&pit_state->lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int speaker_ioport_read(struct kvm_io_device *this, | 
 | 			       gpa_t addr, int len, void *data) | 
 | { | 
 | 	struct kvm_pit *pit = speaker_to_pit(this); | 
 | 	struct kvm_kpit_state *pit_state = &pit->pit_state; | 
 | 	struct kvm *kvm = pit->kvm; | 
 | 	unsigned int refresh_clock; | 
 | 	int ret; | 
 | 	if (addr != KVM_SPEAKER_BASE_ADDRESS) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	/* Refresh clock toggles at about 15us. We approximate as 2^14ns. */ | 
 | 	refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1; | 
 |  | 
 | 	mutex_lock(&pit_state->lock); | 
 | 	ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) | | 
 | 		(pit_get_out(kvm, 2) << 5) | (refresh_clock << 4)); | 
 | 	if (len > sizeof(ret)) | 
 | 		len = sizeof(ret); | 
 | 	memcpy(data, (char *)&ret, len); | 
 | 	mutex_unlock(&pit_state->lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void kvm_pit_reset(struct kvm_pit *pit) | 
 | { | 
 | 	int i; | 
 | 	struct kvm_kpit_channel_state *c; | 
 |  | 
 | 	mutex_lock(&pit->pit_state.lock); | 
 | 	pit->pit_state.flags = 0; | 
 | 	for (i = 0; i < 3; i++) { | 
 | 		c = &pit->pit_state.channels[i]; | 
 | 		c->mode = 0xff; | 
 | 		c->gate = (i != 2); | 
 | 		pit_load_count(pit->kvm, i, 0); | 
 | 	} | 
 | 	mutex_unlock(&pit->pit_state.lock); | 
 |  | 
 | 	atomic_set(&pit->pit_state.pending, 0); | 
 | 	pit->pit_state.irq_ack = 1; | 
 | } | 
 |  | 
 | static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask) | 
 | { | 
 | 	struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier); | 
 |  | 
 | 	if (!mask) { | 
 | 		atomic_set(&pit->pit_state.pending, 0); | 
 | 		pit->pit_state.irq_ack = 1; | 
 | 	} | 
 | } | 
 |  | 
 | static const struct kvm_io_device_ops pit_dev_ops = { | 
 | 	.read     = pit_ioport_read, | 
 | 	.write    = pit_ioport_write, | 
 | }; | 
 |  | 
 | static const struct kvm_io_device_ops speaker_dev_ops = { | 
 | 	.read     = speaker_ioport_read, | 
 | 	.write    = speaker_ioport_write, | 
 | }; | 
 |  | 
 | /* Caller must hold slots_lock */ | 
 | struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags) | 
 | { | 
 | 	struct kvm_pit *pit; | 
 | 	struct kvm_kpit_state *pit_state; | 
 | 	struct pid *pid; | 
 | 	pid_t pid_nr; | 
 | 	int ret; | 
 |  | 
 | 	pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL); | 
 | 	if (!pit) | 
 | 		return NULL; | 
 |  | 
 | 	pit->irq_source_id = kvm_request_irq_source_id(kvm); | 
 | 	if (pit->irq_source_id < 0) { | 
 | 		kfree(pit); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	mutex_init(&pit->pit_state.lock); | 
 | 	mutex_lock(&pit->pit_state.lock); | 
 | 	spin_lock_init(&pit->pit_state.inject_lock); | 
 |  | 
 | 	pid = get_pid(task_tgid(current)); | 
 | 	pid_nr = pid_vnr(pid); | 
 | 	put_pid(pid); | 
 |  | 
 | 	init_kthread_worker(&pit->worker); | 
 | 	pit->worker_task = kthread_run(kthread_worker_fn, &pit->worker, | 
 | 				       "kvm-pit/%d", pid_nr); | 
 | 	if (IS_ERR(pit->worker_task)) { | 
 | 		mutex_unlock(&pit->pit_state.lock); | 
 | 		kvm_free_irq_source_id(kvm, pit->irq_source_id); | 
 | 		kfree(pit); | 
 | 		return NULL; | 
 | 	} | 
 | 	init_kthread_work(&pit->expired, pit_do_work); | 
 |  | 
 | 	kvm->arch.vpit = pit; | 
 | 	pit->kvm = kvm; | 
 |  | 
 | 	pit_state = &pit->pit_state; | 
 | 	pit_state->pit = pit; | 
 | 	hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); | 
 | 	pit_state->irq_ack_notifier.gsi = 0; | 
 | 	pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq; | 
 | 	kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier); | 
 | 	pit_state->reinject = true; | 
 | 	mutex_unlock(&pit->pit_state.lock); | 
 |  | 
 | 	kvm_pit_reset(pit); | 
 |  | 
 | 	pit->mask_notifier.func = pit_mask_notifer; | 
 | 	kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier); | 
 |  | 
 | 	kvm_iodevice_init(&pit->dev, &pit_dev_ops); | 
 | 	ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS, | 
 | 				      KVM_PIT_MEM_LENGTH, &pit->dev); | 
 | 	if (ret < 0) | 
 | 		goto fail; | 
 |  | 
 | 	if (flags & KVM_PIT_SPEAKER_DUMMY) { | 
 | 		kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops); | 
 | 		ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, | 
 | 					      KVM_SPEAKER_BASE_ADDRESS, 4, | 
 | 					      &pit->speaker_dev); | 
 | 		if (ret < 0) | 
 | 			goto fail_unregister; | 
 | 	} | 
 |  | 
 | 	return pit; | 
 |  | 
 | fail_unregister: | 
 | 	kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev); | 
 |  | 
 | fail: | 
 | 	kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier); | 
 | 	kvm_unregister_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier); | 
 | 	kvm_free_irq_source_id(kvm, pit->irq_source_id); | 
 | 	kthread_stop(pit->worker_task); | 
 | 	kfree(pit); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | void kvm_free_pit(struct kvm *kvm) | 
 | { | 
 | 	struct hrtimer *timer; | 
 |  | 
 | 	if (kvm->arch.vpit) { | 
 | 		kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &kvm->arch.vpit->dev); | 
 | 		kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, | 
 | 					      &kvm->arch.vpit->speaker_dev); | 
 | 		kvm_unregister_irq_mask_notifier(kvm, 0, | 
 | 					       &kvm->arch.vpit->mask_notifier); | 
 | 		kvm_unregister_irq_ack_notifier(kvm, | 
 | 				&kvm->arch.vpit->pit_state.irq_ack_notifier); | 
 | 		mutex_lock(&kvm->arch.vpit->pit_state.lock); | 
 | 		timer = &kvm->arch.vpit->pit_state.timer; | 
 | 		hrtimer_cancel(timer); | 
 | 		flush_kthread_work(&kvm->arch.vpit->expired); | 
 | 		kthread_stop(kvm->arch.vpit->worker_task); | 
 | 		kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id); | 
 | 		mutex_unlock(&kvm->arch.vpit->pit_state.lock); | 
 | 		kfree(kvm->arch.vpit); | 
 | 	} | 
 | } |