| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * VFIO PCI config space virtualization |
| * |
| * Copyright (C) 2012 Red Hat, Inc. All rights reserved. |
| * Author: Alex Williamson <alex.williamson@redhat.com> |
| * |
| * Derived from original vfio: |
| * Copyright 2010 Cisco Systems, Inc. All rights reserved. |
| * Author: Tom Lyon, pugs@cisco.com |
| */ |
| |
| /* |
| * This code handles reading and writing of PCI configuration registers. |
| * This is hairy because we want to allow a lot of flexibility to the |
| * user driver, but cannot trust it with all of the config fields. |
| * Tables determine which fields can be read and written, as well as |
| * which fields are 'virtualized' - special actions and translations to |
| * make it appear to the user that he has control, when in fact things |
| * must be negotiated with the underlying OS. |
| */ |
| |
| #include <linux/fs.h> |
| #include <linux/pci.h> |
| #include <linux/uaccess.h> |
| #include <linux/vfio.h> |
| #include <linux/slab.h> |
| |
| #include "vfio_pci_priv.h" |
| |
| /* Fake capability ID for standard config space */ |
| #define PCI_CAP_ID_BASIC 0 |
| |
| #define is_bar(offset) \ |
| ((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \ |
| (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4)) |
| |
| /* |
| * Lengths of PCI Config Capabilities |
| * 0: Removed from the user visible capability list |
| * FF: Variable length |
| */ |
| static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = { |
| [PCI_CAP_ID_BASIC] = PCI_STD_HEADER_SIZEOF, /* pci config header */ |
| [PCI_CAP_ID_PM] = PCI_PM_SIZEOF, |
| [PCI_CAP_ID_AGP] = PCI_AGP_SIZEOF, |
| [PCI_CAP_ID_VPD] = PCI_CAP_VPD_SIZEOF, |
| [PCI_CAP_ID_SLOTID] = 0, /* bridge - don't care */ |
| [PCI_CAP_ID_MSI] = 0xFF, /* 10, 14, 20, or 24 */ |
| [PCI_CAP_ID_CHSWP] = 0, /* cpci - not yet */ |
| [PCI_CAP_ID_PCIX] = 0xFF, /* 8 or 24 */ |
| [PCI_CAP_ID_HT] = 0xFF, /* hypertransport */ |
| [PCI_CAP_ID_VNDR] = 0xFF, /* variable */ |
| [PCI_CAP_ID_DBG] = 0, /* debug - don't care */ |
| [PCI_CAP_ID_CCRC] = 0, /* cpci - not yet */ |
| [PCI_CAP_ID_SHPC] = 0, /* hotswap - not yet */ |
| [PCI_CAP_ID_SSVID] = 0, /* bridge - don't care */ |
| [PCI_CAP_ID_AGP3] = 0, /* AGP8x - not yet */ |
| [PCI_CAP_ID_SECDEV] = 0, /* secure device not yet */ |
| [PCI_CAP_ID_EXP] = 0xFF, /* 20 or 44 */ |
| [PCI_CAP_ID_MSIX] = PCI_CAP_MSIX_SIZEOF, |
| [PCI_CAP_ID_SATA] = 0xFF, |
| [PCI_CAP_ID_AF] = PCI_CAP_AF_SIZEOF, |
| }; |
| |
| /* |
| * Lengths of PCIe/PCI-X Extended Config Capabilities |
| * 0: Removed or masked from the user visible capability list |
| * FF: Variable length |
| */ |
| static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = { |
| [PCI_EXT_CAP_ID_ERR] = PCI_ERR_ROOT_COMMAND, |
| [PCI_EXT_CAP_ID_VC] = 0xFF, |
| [PCI_EXT_CAP_ID_DSN] = PCI_EXT_CAP_DSN_SIZEOF, |
| [PCI_EXT_CAP_ID_PWR] = PCI_EXT_CAP_PWR_SIZEOF, |
| [PCI_EXT_CAP_ID_RCLD] = 0, /* root only - don't care */ |
| [PCI_EXT_CAP_ID_RCILC] = 0, /* root only - don't care */ |
| [PCI_EXT_CAP_ID_RCEC] = 0, /* root only - don't care */ |
| [PCI_EXT_CAP_ID_MFVC] = 0xFF, |
| [PCI_EXT_CAP_ID_VC9] = 0xFF, /* same as CAP_ID_VC */ |
| [PCI_EXT_CAP_ID_RCRB] = 0, /* root only - don't care */ |
| [PCI_EXT_CAP_ID_VNDR] = 0xFF, |
| [PCI_EXT_CAP_ID_CAC] = 0, /* obsolete */ |
| [PCI_EXT_CAP_ID_ACS] = 0xFF, |
| [PCI_EXT_CAP_ID_ARI] = PCI_EXT_CAP_ARI_SIZEOF, |
| [PCI_EXT_CAP_ID_ATS] = PCI_EXT_CAP_ATS_SIZEOF, |
| [PCI_EXT_CAP_ID_SRIOV] = PCI_EXT_CAP_SRIOV_SIZEOF, |
| [PCI_EXT_CAP_ID_MRIOV] = 0, /* not yet */ |
| [PCI_EXT_CAP_ID_MCAST] = PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF, |
| [PCI_EXT_CAP_ID_PRI] = PCI_EXT_CAP_PRI_SIZEOF, |
| [PCI_EXT_CAP_ID_AMD_XXX] = 0, /* not yet */ |
| [PCI_EXT_CAP_ID_REBAR] = 0xFF, |
| [PCI_EXT_CAP_ID_DPA] = 0xFF, |
| [PCI_EXT_CAP_ID_TPH] = 0xFF, |
| [PCI_EXT_CAP_ID_LTR] = PCI_EXT_CAP_LTR_SIZEOF, |
| [PCI_EXT_CAP_ID_SECPCI] = 0, /* not yet */ |
| [PCI_EXT_CAP_ID_PMUX] = 0, /* not yet */ |
| [PCI_EXT_CAP_ID_PASID] = 0, /* not yet */ |
| [PCI_EXT_CAP_ID_DVSEC] = 0xFF, |
| }; |
| |
| /* |
| * Read/Write Permission Bits - one bit for each bit in capability |
| * Any field can be read if it exists, but what is read depends on |
| * whether the field is 'virtualized', or just pass through to the |
| * hardware. Any virtualized field is also virtualized for writes. |
| * Writes are only permitted if they have a 1 bit here. |
| */ |
| struct perm_bits { |
| u8 *virt; /* read/write virtual data, not hw */ |
| u8 *write; /* writeable bits */ |
| int (*readfn)(struct vfio_pci_core_device *vdev, int pos, int count, |
| struct perm_bits *perm, int offset, __le32 *val); |
| int (*writefn)(struct vfio_pci_core_device *vdev, int pos, int count, |
| struct perm_bits *perm, int offset, __le32 val); |
| }; |
| |
| #define NO_VIRT 0 |
| #define ALL_VIRT 0xFFFFFFFFU |
| #define NO_WRITE 0 |
| #define ALL_WRITE 0xFFFFFFFFU |
| |
| static int vfio_user_config_read(struct pci_dev *pdev, int offset, |
| __le32 *val, int count) |
| { |
| int ret = -EINVAL; |
| u32 tmp_val = 0; |
| |
| switch (count) { |
| case 1: |
| { |
| u8 tmp; |
| ret = pci_user_read_config_byte(pdev, offset, &tmp); |
| tmp_val = tmp; |
| break; |
| } |
| case 2: |
| { |
| u16 tmp; |
| ret = pci_user_read_config_word(pdev, offset, &tmp); |
| tmp_val = tmp; |
| break; |
| } |
| case 4: |
| ret = pci_user_read_config_dword(pdev, offset, &tmp_val); |
| break; |
| } |
| |
| *val = cpu_to_le32(tmp_val); |
| |
| return ret; |
| } |
| |
| static int vfio_user_config_write(struct pci_dev *pdev, int offset, |
| __le32 val, int count) |
| { |
| int ret = -EINVAL; |
| u32 tmp_val = le32_to_cpu(val); |
| |
| switch (count) { |
| case 1: |
| ret = pci_user_write_config_byte(pdev, offset, tmp_val); |
| break; |
| case 2: |
| ret = pci_user_write_config_word(pdev, offset, tmp_val); |
| break; |
| case 4: |
| ret = pci_user_write_config_dword(pdev, offset, tmp_val); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int vfio_default_config_read(struct vfio_pci_core_device *vdev, int pos, |
| int count, struct perm_bits *perm, |
| int offset, __le32 *val) |
| { |
| __le32 virt = 0; |
| |
| memcpy(val, vdev->vconfig + pos, count); |
| |
| memcpy(&virt, perm->virt + offset, count); |
| |
| /* Any non-virtualized bits? */ |
| if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) { |
| struct pci_dev *pdev = vdev->pdev; |
| __le32 phys_val = 0; |
| int ret; |
| |
| ret = vfio_user_config_read(pdev, pos, &phys_val, count); |
| if (ret) |
| return ret; |
| |
| *val = (phys_val & ~virt) | (*val & virt); |
| } |
| |
| return count; |
| } |
| |
| static int vfio_default_config_write(struct vfio_pci_core_device *vdev, int pos, |
| int count, struct perm_bits *perm, |
| int offset, __le32 val) |
| { |
| __le32 virt = 0, write = 0; |
| |
| memcpy(&write, perm->write + offset, count); |
| |
| if (!write) |
| return count; /* drop, no writable bits */ |
| |
| memcpy(&virt, perm->virt + offset, count); |
| |
| /* Virtualized and writable bits go to vconfig */ |
| if (write & virt) { |
| __le32 virt_val = 0; |
| |
| memcpy(&virt_val, vdev->vconfig + pos, count); |
| |
| virt_val &= ~(write & virt); |
| virt_val |= (val & (write & virt)); |
| |
| memcpy(vdev->vconfig + pos, &virt_val, count); |
| } |
| |
| /* Non-virtualized and writable bits go to hardware */ |
| if (write & ~virt) { |
| struct pci_dev *pdev = vdev->pdev; |
| __le32 phys_val = 0; |
| int ret; |
| |
| ret = vfio_user_config_read(pdev, pos, &phys_val, count); |
| if (ret) |
| return ret; |
| |
| phys_val &= ~(write & ~virt); |
| phys_val |= (val & (write & ~virt)); |
| |
| ret = vfio_user_config_write(pdev, pos, phys_val, count); |
| if (ret) |
| return ret; |
| } |
| |
| return count; |
| } |
| |
| /* Allow direct read from hardware, except for capability next pointer */ |
| static int vfio_direct_config_read(struct vfio_pci_core_device *vdev, int pos, |
| int count, struct perm_bits *perm, |
| int offset, __le32 *val) |
| { |
| int ret; |
| |
| ret = vfio_user_config_read(vdev->pdev, pos, val, count); |
| if (ret) |
| return ret; |
| |
| if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */ |
| if (offset < 4) |
| memcpy(val, vdev->vconfig + pos, count); |
| } else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */ |
| if (offset == PCI_CAP_LIST_ID && count > 1) |
| memcpy(val, vdev->vconfig + pos, |
| min(PCI_CAP_FLAGS, count)); |
| else if (offset == PCI_CAP_LIST_NEXT) |
| memcpy(val, vdev->vconfig + pos, 1); |
| } |
| |
| return count; |
| } |
| |
| /* Raw access skips any kind of virtualization */ |
| static int vfio_raw_config_write(struct vfio_pci_core_device *vdev, int pos, |
| int count, struct perm_bits *perm, |
| int offset, __le32 val) |
| { |
| int ret; |
| |
| ret = vfio_user_config_write(vdev->pdev, pos, val, count); |
| if (ret) |
| return ret; |
| |
| return count; |
| } |
| |
| static int vfio_raw_config_read(struct vfio_pci_core_device *vdev, int pos, |
| int count, struct perm_bits *perm, |
| int offset, __le32 *val) |
| { |
| int ret; |
| |
| ret = vfio_user_config_read(vdev->pdev, pos, val, count); |
| if (ret) |
| return ret; |
| |
| return count; |
| } |
| |
| /* Virt access uses only virtualization */ |
| static int vfio_virt_config_write(struct vfio_pci_core_device *vdev, int pos, |
| int count, struct perm_bits *perm, |
| int offset, __le32 val) |
| { |
| memcpy(vdev->vconfig + pos, &val, count); |
| return count; |
| } |
| |
| static int vfio_virt_config_read(struct vfio_pci_core_device *vdev, int pos, |
| int count, struct perm_bits *perm, |
| int offset, __le32 *val) |
| { |
| memcpy(val, vdev->vconfig + pos, count); |
| return count; |
| } |
| |
| /* Default capability regions to read-only, no-virtualization */ |
| static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = { |
| [0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read } |
| }; |
| static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = { |
| [0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read } |
| }; |
| /* |
| * Default unassigned regions to raw read-write access. Some devices |
| * require this to function as they hide registers between the gaps in |
| * config space (be2net). Like MMIO and I/O port registers, we have |
| * to trust the hardware isolation. |
| */ |
| static struct perm_bits unassigned_perms = { |
| .readfn = vfio_raw_config_read, |
| .writefn = vfio_raw_config_write |
| }; |
| |
| static struct perm_bits virt_perms = { |
| .readfn = vfio_virt_config_read, |
| .writefn = vfio_virt_config_write |
| }; |
| |
| static void free_perm_bits(struct perm_bits *perm) |
| { |
| kfree(perm->virt); |
| kfree(perm->write); |
| perm->virt = NULL; |
| perm->write = NULL; |
| } |
| |
| static int alloc_perm_bits(struct perm_bits *perm, int size) |
| { |
| /* |
| * Round up all permission bits to the next dword, this lets us |
| * ignore whether a read/write exceeds the defined capability |
| * structure. We can do this because: |
| * - Standard config space is already dword aligned |
| * - Capabilities are all dword aligned (bits 0:1 of next reserved) |
| * - Express capabilities defined as dword aligned |
| */ |
| size = round_up(size, 4); |
| |
| /* |
| * Zero state is |
| * - All Readable, None Writeable, None Virtualized |
| */ |
| perm->virt = kzalloc(size, GFP_KERNEL); |
| perm->write = kzalloc(size, GFP_KERNEL); |
| if (!perm->virt || !perm->write) { |
| free_perm_bits(perm); |
| return -ENOMEM; |
| } |
| |
| perm->readfn = vfio_default_config_read; |
| perm->writefn = vfio_default_config_write; |
| |
| return 0; |
| } |
| |
| /* |
| * Helper functions for filling in permission tables |
| */ |
| static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write) |
| { |
| p->virt[off] = virt; |
| p->write[off] = write; |
| } |
| |
| /* Handle endian-ness - pci and tables are little-endian */ |
| static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write) |
| { |
| *(__le16 *)(&p->virt[off]) = cpu_to_le16(virt); |
| *(__le16 *)(&p->write[off]) = cpu_to_le16(write); |
| } |
| |
| /* Handle endian-ness - pci and tables are little-endian */ |
| static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write) |
| { |
| *(__le32 *)(&p->virt[off]) = cpu_to_le32(virt); |
| *(__le32 *)(&p->write[off]) = cpu_to_le32(write); |
| } |
| |
| /* Caller should hold memory_lock semaphore */ |
| bool __vfio_pci_memory_enabled(struct vfio_pci_core_device *vdev) |
| { |
| struct pci_dev *pdev = vdev->pdev; |
| u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]); |
| |
| /* |
| * Memory region cannot be accessed if device power state is D3. |
| * |
| * SR-IOV VF memory enable is handled by the MSE bit in the |
| * PF SR-IOV capability, there's therefore no need to trigger |
| * faults based on the virtual value. |
| */ |
| return pdev->current_state < PCI_D3hot && |
| (pdev->no_command_memory || (cmd & PCI_COMMAND_MEMORY)); |
| } |
| |
| /* |
| * Restore the *real* BARs after we detect a FLR or backdoor reset. |
| * (backdoor = some device specific technique that we didn't catch) |
| */ |
| static void vfio_bar_restore(struct vfio_pci_core_device *vdev) |
| { |
| struct pci_dev *pdev = vdev->pdev; |
| u32 *rbar = vdev->rbar; |
| u16 cmd; |
| int i; |
| |
| if (pdev->is_virtfn) |
| return; |
| |
| pci_info(pdev, "%s: reset recovery - restoring BARs\n", __func__); |
| |
| for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++) |
| pci_user_write_config_dword(pdev, i, *rbar); |
| |
| pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar); |
| |
| if (vdev->nointx) { |
| pci_user_read_config_word(pdev, PCI_COMMAND, &cmd); |
| cmd |= PCI_COMMAND_INTX_DISABLE; |
| pci_user_write_config_word(pdev, PCI_COMMAND, cmd); |
| } |
| } |
| |
| static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar) |
| { |
| unsigned long flags = pci_resource_flags(pdev, bar); |
| u32 val; |
| |
| if (flags & IORESOURCE_IO) |
| return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO); |
| |
| val = PCI_BASE_ADDRESS_SPACE_MEMORY; |
| |
| if (flags & IORESOURCE_PREFETCH) |
| val |= PCI_BASE_ADDRESS_MEM_PREFETCH; |
| |
| if (flags & IORESOURCE_MEM_64) |
| val |= PCI_BASE_ADDRESS_MEM_TYPE_64; |
| |
| return cpu_to_le32(val); |
| } |
| |
| /* |
| * Pretend we're hardware and tweak the values of the *virtual* PCI BARs |
| * to reflect the hardware capabilities. This implements BAR sizing. |
| */ |
| static void vfio_bar_fixup(struct vfio_pci_core_device *vdev) |
| { |
| struct pci_dev *pdev = vdev->pdev; |
| int i; |
| __le32 *vbar; |
| u64 mask; |
| |
| if (!vdev->bardirty) |
| return; |
| |
| vbar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0]; |
| |
| for (i = 0; i < PCI_STD_NUM_BARS; i++, vbar++) { |
| int bar = i + PCI_STD_RESOURCES; |
| |
| if (!pci_resource_start(pdev, bar)) { |
| *vbar = 0; /* Unmapped by host = unimplemented to user */ |
| continue; |
| } |
| |
| mask = ~(pci_resource_len(pdev, bar) - 1); |
| |
| *vbar &= cpu_to_le32((u32)mask); |
| *vbar |= vfio_generate_bar_flags(pdev, bar); |
| |
| if (*vbar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) { |
| vbar++; |
| *vbar &= cpu_to_le32((u32)(mask >> 32)); |
| i++; |
| } |
| } |
| |
| vbar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS]; |
| |
| /* |
| * NB. REGION_INFO will have reported zero size if we weren't able |
| * to read the ROM, but we still return the actual BAR size here if |
| * it exists (or the shadow ROM space). |
| */ |
| if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) { |
| mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1); |
| mask |= PCI_ROM_ADDRESS_ENABLE; |
| *vbar &= cpu_to_le32((u32)mask); |
| } else if (pdev->resource[PCI_ROM_RESOURCE].flags & |
| IORESOURCE_ROM_SHADOW) { |
| mask = ~(0x20000 - 1); |
| mask |= PCI_ROM_ADDRESS_ENABLE; |
| *vbar &= cpu_to_le32((u32)mask); |
| } else |
| *vbar = 0; |
| |
| vdev->bardirty = false; |
| } |
| |
| static int vfio_basic_config_read(struct vfio_pci_core_device *vdev, int pos, |
| int count, struct perm_bits *perm, |
| int offset, __le32 *val) |
| { |
| if (is_bar(offset)) /* pos == offset for basic config */ |
| vfio_bar_fixup(vdev); |
| |
| count = vfio_default_config_read(vdev, pos, count, perm, offset, val); |
| |
| /* Mask in virtual memory enable */ |
| if (offset == PCI_COMMAND && vdev->pdev->no_command_memory) { |
| u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]); |
| u32 tmp_val = le32_to_cpu(*val); |
| |
| tmp_val |= cmd & PCI_COMMAND_MEMORY; |
| *val = cpu_to_le32(tmp_val); |
| } |
| |
| return count; |
| } |
| |
| /* Test whether BARs match the value we think they should contain */ |
| static bool vfio_need_bar_restore(struct vfio_pci_core_device *vdev) |
| { |
| int i = 0, pos = PCI_BASE_ADDRESS_0, ret; |
| u32 bar; |
| |
| for (; pos <= PCI_BASE_ADDRESS_5; i++, pos += 4) { |
| if (vdev->rbar[i]) { |
| ret = pci_user_read_config_dword(vdev->pdev, pos, &bar); |
| if (ret || vdev->rbar[i] != bar) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static int vfio_basic_config_write(struct vfio_pci_core_device *vdev, int pos, |
| int count, struct perm_bits *perm, |
| int offset, __le32 val) |
| { |
| struct pci_dev *pdev = vdev->pdev; |
| __le16 *virt_cmd; |
| u16 new_cmd = 0; |
| int ret; |
| |
| virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND]; |
| |
| if (offset == PCI_COMMAND) { |
| bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io; |
| u16 phys_cmd; |
| |
| ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd); |
| if (ret) |
| return ret; |
| |
| new_cmd = le32_to_cpu(val); |
| |
| phys_io = !!(phys_cmd & PCI_COMMAND_IO); |
| virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO); |
| new_io = !!(new_cmd & PCI_COMMAND_IO); |
| |
| phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY); |
| virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY); |
| new_mem = !!(new_cmd & PCI_COMMAND_MEMORY); |
| |
| if (!new_mem) |
| vfio_pci_zap_and_down_write_memory_lock(vdev); |
| else |
| down_write(&vdev->memory_lock); |
| |
| /* |
| * If the user is writing mem/io enable (new_mem/io) and we |
| * think it's already enabled (virt_mem/io), but the hardware |
| * shows it disabled (phys_mem/io, then the device has |
| * undergone some kind of backdoor reset and needs to be |
| * restored before we allow it to enable the bars. |
| * SR-IOV devices will trigger this - for mem enable let's |
| * catch this now and for io enable it will be caught later |
| */ |
| if ((new_mem && virt_mem && !phys_mem && |
| !pdev->no_command_memory) || |
| (new_io && virt_io && !phys_io) || |
| vfio_need_bar_restore(vdev)) |
| vfio_bar_restore(vdev); |
| } |
| |
| count = vfio_default_config_write(vdev, pos, count, perm, offset, val); |
| if (count < 0) { |
| if (offset == PCI_COMMAND) |
| up_write(&vdev->memory_lock); |
| return count; |
| } |
| |
| /* |
| * Save current memory/io enable bits in vconfig to allow for |
| * the test above next time. |
| */ |
| if (offset == PCI_COMMAND) { |
| u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO; |
| |
| *virt_cmd &= cpu_to_le16(~mask); |
| *virt_cmd |= cpu_to_le16(new_cmd & mask); |
| |
| up_write(&vdev->memory_lock); |
| } |
| |
| /* Emulate INTx disable */ |
| if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) { |
| bool virt_intx_disable; |
| |
| virt_intx_disable = !!(le16_to_cpu(*virt_cmd) & |
| PCI_COMMAND_INTX_DISABLE); |
| |
| if (virt_intx_disable && !vdev->virq_disabled) { |
| vdev->virq_disabled = true; |
| vfio_pci_intx_mask(vdev); |
| } else if (!virt_intx_disable && vdev->virq_disabled) { |
| vdev->virq_disabled = false; |
| vfio_pci_intx_unmask(vdev); |
| } |
| } |
| |
| if (is_bar(offset)) |
| vdev->bardirty = true; |
| |
| return count; |
| } |
| |
| /* Permissions for the Basic PCI Header */ |
| static int __init init_pci_cap_basic_perm(struct perm_bits *perm) |
| { |
| if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF)) |
| return -ENOMEM; |
| |
| perm->readfn = vfio_basic_config_read; |
| perm->writefn = vfio_basic_config_write; |
| |
| /* Virtualized for SR-IOV functions, which just have FFFF */ |
| p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE); |
| p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE); |
| |
| /* |
| * Virtualize INTx disable, we use it internally for interrupt |
| * control and can emulate it for non-PCI 2.3 devices. |
| */ |
| p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE); |
| |
| /* Virtualize capability list, we might want to skip/disable */ |
| p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE); |
| |
| /* No harm to write */ |
| p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE); |
| p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE); |
| p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE); |
| |
| /* Virtualize all bars, can't touch the real ones */ |
| p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE); |
| p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE); |
| p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE); |
| p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE); |
| p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE); |
| p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE); |
| p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE); |
| |
| /* Allow us to adjust capability chain */ |
| p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE); |
| |
| /* Sometimes used by sw, just virtualize */ |
| p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE); |
| |
| /* Virtualize interrupt pin to allow hiding INTx */ |
| p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE); |
| |
| return 0; |
| } |
| |
| /* |
| * It takes all the required locks to protect the access of power related |
| * variables and then invokes vfio_pci_set_power_state(). |
| */ |
| static void vfio_lock_and_set_power_state(struct vfio_pci_core_device *vdev, |
| pci_power_t state) |
| { |
| if (state >= PCI_D3hot) |
| vfio_pci_zap_and_down_write_memory_lock(vdev); |
| else |
| down_write(&vdev->memory_lock); |
| |
| vfio_pci_set_power_state(vdev, state); |
| up_write(&vdev->memory_lock); |
| } |
| |
| static int vfio_pm_config_write(struct vfio_pci_core_device *vdev, int pos, |
| int count, struct perm_bits *perm, |
| int offset, __le32 val) |
| { |
| count = vfio_default_config_write(vdev, pos, count, perm, offset, val); |
| if (count < 0) |
| return count; |
| |
| if (offset == PCI_PM_CTRL) { |
| pci_power_t state; |
| |
| switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) { |
| case 0: |
| state = PCI_D0; |
| break; |
| case 1: |
| state = PCI_D1; |
| break; |
| case 2: |
| state = PCI_D2; |
| break; |
| case 3: |
| state = PCI_D3hot; |
| break; |
| } |
| |
| vfio_lock_and_set_power_state(vdev, state); |
| } |
| |
| return count; |
| } |
| |
| /* Permissions for the Power Management capability */ |
| static int __init init_pci_cap_pm_perm(struct perm_bits *perm) |
| { |
| if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM])) |
| return -ENOMEM; |
| |
| perm->writefn = vfio_pm_config_write; |
| |
| /* |
| * We always virtualize the next field so we can remove |
| * capabilities from the chain if we want to. |
| */ |
| p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE); |
| |
| /* |
| * The guests can't process PME events. If any PME event will be |
| * generated, then it will be mostly handled in the host and the |
| * host will clear the PME_STATUS. So virtualize PME_Support bits. |
| * The vconfig bits will be cleared during device capability |
| * initialization. |
| */ |
| p_setw(perm, PCI_PM_PMC, PCI_PM_CAP_PME_MASK, NO_WRITE); |
| |
| /* |
| * Power management is defined *per function*, so we can let |
| * the user change power state, but we trap and initiate the |
| * change ourselves, so the state bits are read-only. |
| * |
| * The guest can't process PME from D3cold so virtualize PME_Status |
| * and PME_En bits. The vconfig bits will be cleared during device |
| * capability initialization. |
| */ |
| p_setd(perm, PCI_PM_CTRL, |
| PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS, |
| ~(PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS | |
| PCI_PM_CTRL_STATE_MASK)); |
| |
| return 0; |
| } |
| |
| static int vfio_vpd_config_write(struct vfio_pci_core_device *vdev, int pos, |
| int count, struct perm_bits *perm, |
| int offset, __le32 val) |
| { |
| struct pci_dev *pdev = vdev->pdev; |
| __le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR); |
| __le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA); |
| u16 addr; |
| u32 data; |
| |
| /* |
| * Write through to emulation. If the write includes the upper byte |
| * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we |
| * have work to do. |
| */ |
| count = vfio_default_config_write(vdev, pos, count, perm, offset, val); |
| if (count < 0 || offset > PCI_VPD_ADDR + 1 || |
| offset + count <= PCI_VPD_ADDR + 1) |
| return count; |
| |
| addr = le16_to_cpu(*paddr); |
| |
| if (addr & PCI_VPD_ADDR_F) { |
| data = le32_to_cpu(*pdata); |
| if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4) |
| return count; |
| } else { |
| data = 0; |
| if (pci_read_vpd(pdev, addr, 4, &data) < 0) |
| return count; |
| *pdata = cpu_to_le32(data); |
| } |
| |
| /* |
| * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to |
| * signal completion. If an error occurs above, we assume that not |
| * toggling this bit will induce a driver timeout. |
| */ |
| addr ^= PCI_VPD_ADDR_F; |
| *paddr = cpu_to_le16(addr); |
| |
| return count; |
| } |
| |
| /* Permissions for Vital Product Data capability */ |
| static int __init init_pci_cap_vpd_perm(struct perm_bits *perm) |
| { |
| if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD])) |
| return -ENOMEM; |
| |
| perm->writefn = vfio_vpd_config_write; |
| |
| /* |
| * We always virtualize the next field so we can remove |
| * capabilities from the chain if we want to. |
| */ |
| p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE); |
| |
| /* |
| * Both the address and data registers are virtualized to |
| * enable access through the pci_vpd_read/write functions |
| */ |
| p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE); |
| p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE); |
| |
| return 0; |
| } |
| |
| /* Permissions for PCI-X capability */ |
| static int __init init_pci_cap_pcix_perm(struct perm_bits *perm) |
| { |
| /* Alloc 24, but only 8 are used in v0 */ |
| if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2)) |
| return -ENOMEM; |
| |
| p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE); |
| |
| p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE); |
| p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE); |
| return 0; |
| } |
| |
| static int vfio_exp_config_write(struct vfio_pci_core_device *vdev, int pos, |
| int count, struct perm_bits *perm, |
| int offset, __le32 val) |
| { |
| __le16 *ctrl = (__le16 *)(vdev->vconfig + pos - |
| offset + PCI_EXP_DEVCTL); |
| int readrq = le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ; |
| |
| count = vfio_default_config_write(vdev, pos, count, perm, offset, val); |
| if (count < 0) |
| return count; |
| |
| /* |
| * The FLR bit is virtualized, if set and the device supports PCIe |
| * FLR, issue a reset_function. Regardless, clear the bit, the spec |
| * requires it to be always read as zero. NB, reset_function might |
| * not use a PCIe FLR, we don't have that level of granularity. |
| */ |
| if (*ctrl & cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR)) { |
| u32 cap; |
| int ret; |
| |
| *ctrl &= ~cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR); |
| |
| ret = pci_user_read_config_dword(vdev->pdev, |
| pos - offset + PCI_EXP_DEVCAP, |
| &cap); |
| |
| if (!ret && (cap & PCI_EXP_DEVCAP_FLR)) { |
| vfio_pci_zap_and_down_write_memory_lock(vdev); |
| pci_try_reset_function(vdev->pdev); |
| up_write(&vdev->memory_lock); |
| } |
| } |
| |
| /* |
| * MPS is virtualized to the user, writes do not change the physical |
| * register since determining a proper MPS value requires a system wide |
| * device view. The MRRS is largely independent of MPS, but since the |
| * user does not have that system-wide view, they might set a safe, but |
| * inefficiently low value. Here we allow writes through to hardware, |
| * but we set the floor to the physical device MPS setting, so that |
| * we can at least use full TLPs, as defined by the MPS value. |
| * |
| * NB, if any devices actually depend on an artificially low MRRS |
| * setting, this will need to be revisited, perhaps with a quirk |
| * though pcie_set_readrq(). |
| */ |
| if (readrq != (le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ)) { |
| readrq = 128 << |
| ((le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ) >> 12); |
| readrq = max(readrq, pcie_get_mps(vdev->pdev)); |
| |
| pcie_set_readrq(vdev->pdev, readrq); |
| } |
| |
| return count; |
| } |
| |
| /* Permissions for PCI Express capability */ |
| static int __init init_pci_cap_exp_perm(struct perm_bits *perm) |
| { |
| /* Alloc largest of possible sizes */ |
| if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2)) |
| return -ENOMEM; |
| |
| perm->writefn = vfio_exp_config_write; |
| |
| p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE); |
| |
| /* |
| * Allow writes to device control fields, except devctl_phantom, |
| * which could confuse IOMMU, MPS, which can break communication |
| * with other physical devices, and the ARI bit in devctl2, which |
| * is set at probe time. FLR and MRRS get virtualized via our |
| * writefn. |
| */ |
| p_setw(perm, PCI_EXP_DEVCTL, |
| PCI_EXP_DEVCTL_BCR_FLR | PCI_EXP_DEVCTL_PAYLOAD | |
| PCI_EXP_DEVCTL_READRQ, ~PCI_EXP_DEVCTL_PHANTOM); |
| p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI); |
| return 0; |
| } |
| |
| static int vfio_af_config_write(struct vfio_pci_core_device *vdev, int pos, |
| int count, struct perm_bits *perm, |
| int offset, __le32 val) |
| { |
| u8 *ctrl = vdev->vconfig + pos - offset + PCI_AF_CTRL; |
| |
| count = vfio_default_config_write(vdev, pos, count, perm, offset, val); |
| if (count < 0) |
| return count; |
| |
| /* |
| * The FLR bit is virtualized, if set and the device supports AF |
| * FLR, issue a reset_function. Regardless, clear the bit, the spec |
| * requires it to be always read as zero. NB, reset_function might |
| * not use an AF FLR, we don't have that level of granularity. |
| */ |
| if (*ctrl & PCI_AF_CTRL_FLR) { |
| u8 cap; |
| int ret; |
| |
| *ctrl &= ~PCI_AF_CTRL_FLR; |
| |
| ret = pci_user_read_config_byte(vdev->pdev, |
| pos - offset + PCI_AF_CAP, |
| &cap); |
| |
| if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP)) { |
| vfio_pci_zap_and_down_write_memory_lock(vdev); |
| pci_try_reset_function(vdev->pdev); |
| up_write(&vdev->memory_lock); |
| } |
| } |
| |
| return count; |
| } |
| |
| /* Permissions for Advanced Function capability */ |
| static int __init init_pci_cap_af_perm(struct perm_bits *perm) |
| { |
| if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF])) |
| return -ENOMEM; |
| |
| perm->writefn = vfio_af_config_write; |
| |
| p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE); |
| p_setb(perm, PCI_AF_CTRL, PCI_AF_CTRL_FLR, PCI_AF_CTRL_FLR); |
| return 0; |
| } |
| |
| /* Permissions for Advanced Error Reporting extended capability */ |
| static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm) |
| { |
| u32 mask; |
| |
| if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR])) |
| return -ENOMEM; |
| |
| /* |
| * Virtualize the first dword of all express capabilities |
| * because it includes the next pointer. This lets us later |
| * remove capabilities from the chain if we need to. |
| */ |
| p_setd(perm, 0, ALL_VIRT, NO_WRITE); |
| |
| /* Writable bits mask */ |
| mask = PCI_ERR_UNC_UND | /* Undefined */ |
| PCI_ERR_UNC_DLP | /* Data Link Protocol */ |
| PCI_ERR_UNC_SURPDN | /* Surprise Down */ |
| PCI_ERR_UNC_POISON_TLP | /* Poisoned TLP */ |
| PCI_ERR_UNC_FCP | /* Flow Control Protocol */ |
| PCI_ERR_UNC_COMP_TIME | /* Completion Timeout */ |
| PCI_ERR_UNC_COMP_ABORT | /* Completer Abort */ |
| PCI_ERR_UNC_UNX_COMP | /* Unexpected Completion */ |
| PCI_ERR_UNC_RX_OVER | /* Receiver Overflow */ |
| PCI_ERR_UNC_MALF_TLP | /* Malformed TLP */ |
| PCI_ERR_UNC_ECRC | /* ECRC Error Status */ |
| PCI_ERR_UNC_UNSUP | /* Unsupported Request */ |
| PCI_ERR_UNC_ACSV | /* ACS Violation */ |
| PCI_ERR_UNC_INTN | /* internal error */ |
| PCI_ERR_UNC_MCBTLP | /* MC blocked TLP */ |
| PCI_ERR_UNC_ATOMEG | /* Atomic egress blocked */ |
| PCI_ERR_UNC_TLPPRE; /* TLP prefix blocked */ |
| p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask); |
| p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask); |
| p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask); |
| |
| mask = PCI_ERR_COR_RCVR | /* Receiver Error Status */ |
| PCI_ERR_COR_BAD_TLP | /* Bad TLP Status */ |
| PCI_ERR_COR_BAD_DLLP | /* Bad DLLP Status */ |
| PCI_ERR_COR_REP_ROLL | /* REPLAY_NUM Rollover */ |
| PCI_ERR_COR_REP_TIMER | /* Replay Timer Timeout */ |
| PCI_ERR_COR_ADV_NFAT | /* Advisory Non-Fatal */ |
| PCI_ERR_COR_INTERNAL | /* Corrected Internal */ |
| PCI_ERR_COR_LOG_OVER; /* Header Log Overflow */ |
| p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask); |
| p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask); |
| |
| mask = PCI_ERR_CAP_ECRC_GENE | /* ECRC Generation Enable */ |
| PCI_ERR_CAP_ECRC_CHKE; /* ECRC Check Enable */ |
| p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask); |
| return 0; |
| } |
| |
| /* Permissions for Power Budgeting extended capability */ |
| static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm) |
| { |
| if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR])) |
| return -ENOMEM; |
| |
| p_setd(perm, 0, ALL_VIRT, NO_WRITE); |
| |
| /* Writing the data selector is OK, the info is still read-only */ |
| p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE); |
| return 0; |
| } |
| |
| /* |
| * Initialize the shared permission tables |
| */ |
| void vfio_pci_uninit_perm_bits(void) |
| { |
| free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]); |
| |
| free_perm_bits(&cap_perms[PCI_CAP_ID_PM]); |
| free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]); |
| free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]); |
| free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]); |
| free_perm_bits(&cap_perms[PCI_CAP_ID_AF]); |
| |
| free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]); |
| free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]); |
| } |
| |
| int __init vfio_pci_init_perm_bits(void) |
| { |
| int ret; |
| |
| /* Basic config space */ |
| ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]); |
| |
| /* Capabilities */ |
| ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]); |
| ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]); |
| ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]); |
| cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write; |
| ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]); |
| ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]); |
| |
| /* Extended capabilities */ |
| ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]); |
| ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]); |
| ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write; |
| ecap_perms[PCI_EXT_CAP_ID_DVSEC].writefn = vfio_raw_config_write; |
| |
| if (ret) |
| vfio_pci_uninit_perm_bits(); |
| |
| return ret; |
| } |
| |
| static int vfio_find_cap_start(struct vfio_pci_core_device *vdev, int pos) |
| { |
| u8 cap; |
| int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE : |
| PCI_STD_HEADER_SIZEOF; |
| cap = vdev->pci_config_map[pos]; |
| |
| if (cap == PCI_CAP_ID_BASIC) |
| return 0; |
| |
| /* XXX Can we have to abutting capabilities of the same type? */ |
| while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap) |
| pos--; |
| |
| return pos; |
| } |
| |
| static int vfio_msi_config_read(struct vfio_pci_core_device *vdev, int pos, |
| int count, struct perm_bits *perm, |
| int offset, __le32 *val) |
| { |
| /* Update max available queue size from msi_qmax */ |
| if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) { |
| __le16 *flags; |
| int start; |
| |
| start = vfio_find_cap_start(vdev, pos); |
| |
| flags = (__le16 *)&vdev->vconfig[start]; |
| |
| *flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK); |
| *flags |= cpu_to_le16(vdev->msi_qmax << 1); |
| } |
| |
| return vfio_default_config_read(vdev, pos, count, perm, offset, val); |
| } |
| |
| static int vfio_msi_config_write(struct vfio_pci_core_device *vdev, int pos, |
| int count, struct perm_bits *perm, |
| int offset, __le32 val) |
| { |
| count = vfio_default_config_write(vdev, pos, count, perm, offset, val); |
| if (count < 0) |
| return count; |
| |
| /* Fixup and write configured queue size and enable to hardware */ |
| if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) { |
| __le16 *pflags; |
| u16 flags; |
| int start, ret; |
| |
| start = vfio_find_cap_start(vdev, pos); |
| |
| pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS]; |
| |
| flags = le16_to_cpu(*pflags); |
| |
| /* MSI is enabled via ioctl */ |
| if (vdev->irq_type != VFIO_PCI_MSI_IRQ_INDEX) |
| flags &= ~PCI_MSI_FLAGS_ENABLE; |
| |
| /* Check queue size */ |
| if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) { |
| flags &= ~PCI_MSI_FLAGS_QSIZE; |
| flags |= vdev->msi_qmax << 4; |
| } |
| |
| /* Write back to virt and to hardware */ |
| *pflags = cpu_to_le16(flags); |
| ret = pci_user_write_config_word(vdev->pdev, |
| start + PCI_MSI_FLAGS, |
| flags); |
| if (ret) |
| return ret; |
| } |
| |
| return count; |
| } |
| |
| /* |
| * MSI determination is per-device, so this routine gets used beyond |
| * initialization time. Don't add __init |
| */ |
| static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags) |
| { |
| if (alloc_perm_bits(perm, len)) |
| return -ENOMEM; |
| |
| perm->readfn = vfio_msi_config_read; |
| perm->writefn = vfio_msi_config_write; |
| |
| p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE); |
| |
| /* |
| * The upper byte of the control register is reserved, |
| * just setup the lower byte. |
| */ |
| p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE); |
| p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE); |
| if (flags & PCI_MSI_FLAGS_64BIT) { |
| p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE); |
| p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE); |
| if (flags & PCI_MSI_FLAGS_MASKBIT) { |
| p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE); |
| p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE); |
| } |
| } else { |
| p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE); |
| if (flags & PCI_MSI_FLAGS_MASKBIT) { |
| p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE); |
| p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE); |
| } |
| } |
| return 0; |
| } |
| |
| /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */ |
| static int vfio_msi_cap_len(struct vfio_pci_core_device *vdev, u8 pos) |
| { |
| struct pci_dev *pdev = vdev->pdev; |
| int len, ret; |
| u16 flags; |
| |
| ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags); |
| if (ret) |
| return pcibios_err_to_errno(ret); |
| |
| len = 10; /* Minimum size */ |
| if (flags & PCI_MSI_FLAGS_64BIT) |
| len += 4; |
| if (flags & PCI_MSI_FLAGS_MASKBIT) |
| len += 10; |
| |
| if (vdev->msi_perm) |
| return len; |
| |
| vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL_ACCOUNT); |
| if (!vdev->msi_perm) |
| return -ENOMEM; |
| |
| ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags); |
| if (ret) { |
| kfree(vdev->msi_perm); |
| return ret; |
| } |
| |
| return len; |
| } |
| |
| /* Determine extended capability length for VC (2 & 9) and MFVC */ |
| static int vfio_vc_cap_len(struct vfio_pci_core_device *vdev, u16 pos) |
| { |
| struct pci_dev *pdev = vdev->pdev; |
| u32 tmp; |
| int ret, evcc, phases, vc_arb; |
| int len = PCI_CAP_VC_BASE_SIZEOF; |
| |
| ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp); |
| if (ret) |
| return pcibios_err_to_errno(ret); |
| |
| evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */ |
| ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp); |
| if (ret) |
| return pcibios_err_to_errno(ret); |
| |
| if (tmp & PCI_VC_CAP2_128_PHASE) |
| phases = 128; |
| else if (tmp & PCI_VC_CAP2_64_PHASE) |
| phases = 64; |
| else if (tmp & PCI_VC_CAP2_32_PHASE) |
| phases = 32; |
| else |
| phases = 0; |
| |
| vc_arb = phases * 4; |
| |
| /* |
| * Port arbitration tables are root & switch only; |
| * function arbitration tables are function 0 only. |
| * In either case, we'll never let user write them so |
| * we don't care how big they are |
| */ |
| len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF; |
| if (vc_arb) { |
| len = round_up(len, 16); |
| len += vc_arb / 8; |
| } |
| return len; |
| } |
| |
| static int vfio_cap_len(struct vfio_pci_core_device *vdev, u8 cap, u8 pos) |
| { |
| struct pci_dev *pdev = vdev->pdev; |
| u32 dword; |
| u16 word; |
| u8 byte; |
| int ret; |
| |
| switch (cap) { |
| case PCI_CAP_ID_MSI: |
| return vfio_msi_cap_len(vdev, pos); |
| case PCI_CAP_ID_PCIX: |
| ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word); |
| if (ret) |
| return pcibios_err_to_errno(ret); |
| |
| if (PCI_X_CMD_VERSION(word)) { |
| if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) { |
| /* Test for extended capabilities */ |
| pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, |
| &dword); |
| vdev->extended_caps = (dword != 0); |
| } |
| return PCI_CAP_PCIX_SIZEOF_V2; |
| } else |
| return PCI_CAP_PCIX_SIZEOF_V0; |
| case PCI_CAP_ID_VNDR: |
| /* length follows next field */ |
| ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte); |
| if (ret) |
| return pcibios_err_to_errno(ret); |
| |
| return byte; |
| case PCI_CAP_ID_EXP: |
| if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) { |
| /* Test for extended capabilities */ |
| pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword); |
| vdev->extended_caps = (dword != 0); |
| } |
| |
| /* length based on version and type */ |
| if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1) { |
| if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END) |
| return 0xc; /* "All Devices" only, no link */ |
| return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1; |
| } else { |
| if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END) |
| return 0x2c; /* No link */ |
| return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2; |
| } |
| case PCI_CAP_ID_HT: |
| ret = pci_read_config_byte(pdev, pos + 3, &byte); |
| if (ret) |
| return pcibios_err_to_errno(ret); |
| |
| return (byte & HT_3BIT_CAP_MASK) ? |
| HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG; |
| case PCI_CAP_ID_SATA: |
| ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte); |
| if (ret) |
| return pcibios_err_to_errno(ret); |
| |
| byte &= PCI_SATA_REGS_MASK; |
| if (byte == PCI_SATA_REGS_INLINE) |
| return PCI_SATA_SIZEOF_LONG; |
| else |
| return PCI_SATA_SIZEOF_SHORT; |
| default: |
| pci_warn(pdev, "%s: unknown length for PCI cap %#x@%#x\n", |
| __func__, cap, pos); |
| } |
| |
| return 0; |
| } |
| |
| static int vfio_ext_cap_len(struct vfio_pci_core_device *vdev, u16 ecap, u16 epos) |
| { |
| struct pci_dev *pdev = vdev->pdev; |
| u8 byte; |
| u32 dword; |
| int ret; |
| |
| switch (ecap) { |
| case PCI_EXT_CAP_ID_VNDR: |
| ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword); |
| if (ret) |
| return pcibios_err_to_errno(ret); |
| |
| return dword >> PCI_VSEC_HDR_LEN_SHIFT; |
| case PCI_EXT_CAP_ID_VC: |
| case PCI_EXT_CAP_ID_VC9: |
| case PCI_EXT_CAP_ID_MFVC: |
| return vfio_vc_cap_len(vdev, epos); |
| case PCI_EXT_CAP_ID_ACS: |
| ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte); |
| if (ret) |
| return pcibios_err_to_errno(ret); |
| |
| if (byte & PCI_ACS_EC) { |
| int bits; |
| |
| ret = pci_read_config_byte(pdev, |
| epos + PCI_ACS_EGRESS_BITS, |
| &byte); |
| if (ret) |
| return pcibios_err_to_errno(ret); |
| |
| bits = byte ? round_up(byte, 32) : 256; |
| return 8 + (bits / 8); |
| } |
| return 8; |
| |
| case PCI_EXT_CAP_ID_REBAR: |
| ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte); |
| if (ret) |
| return pcibios_err_to_errno(ret); |
| |
| byte &= PCI_REBAR_CTRL_NBAR_MASK; |
| byte >>= PCI_REBAR_CTRL_NBAR_SHIFT; |
| |
| return 4 + (byte * 8); |
| case PCI_EXT_CAP_ID_DPA: |
| ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte); |
| if (ret) |
| return pcibios_err_to_errno(ret); |
| |
| byte &= PCI_DPA_CAP_SUBSTATE_MASK; |
| return PCI_DPA_BASE_SIZEOF + byte + 1; |
| case PCI_EXT_CAP_ID_TPH: |
| ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword); |
| if (ret) |
| return pcibios_err_to_errno(ret); |
| |
| if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) { |
| int sts; |
| |
| sts = dword & PCI_TPH_CAP_ST_MASK; |
| sts >>= PCI_TPH_CAP_ST_SHIFT; |
| return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2; |
| } |
| return PCI_TPH_BASE_SIZEOF; |
| case PCI_EXT_CAP_ID_DVSEC: |
| ret = pci_read_config_dword(pdev, epos + PCI_DVSEC_HEADER1, &dword); |
| if (ret) |
| return pcibios_err_to_errno(ret); |
| return PCI_DVSEC_HEADER1_LEN(dword); |
| default: |
| pci_warn(pdev, "%s: unknown length for PCI ecap %#x@%#x\n", |
| __func__, ecap, epos); |
| } |
| |
| return 0; |
| } |
| |
| static void vfio_update_pm_vconfig_bytes(struct vfio_pci_core_device *vdev, |
| int offset) |
| { |
| __le16 *pmc = (__le16 *)&vdev->vconfig[offset + PCI_PM_PMC]; |
| __le16 *ctrl = (__le16 *)&vdev->vconfig[offset + PCI_PM_CTRL]; |
| |
| /* Clear vconfig PME_Support, PME_Status, and PME_En bits */ |
| *pmc &= ~cpu_to_le16(PCI_PM_CAP_PME_MASK); |
| *ctrl &= ~cpu_to_le16(PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS); |
| } |
| |
| static int vfio_fill_vconfig_bytes(struct vfio_pci_core_device *vdev, |
| int offset, int size) |
| { |
| struct pci_dev *pdev = vdev->pdev; |
| int ret = 0; |
| |
| /* |
| * We try to read physical config space in the largest chunks |
| * we can, assuming that all of the fields support dword access. |
| * pci_save_state() makes this same assumption and seems to do ok. |
| */ |
| while (size) { |
| int filled; |
| |
| if (size >= 4 && !(offset % 4)) { |
| __le32 *dwordp = (__le32 *)&vdev->vconfig[offset]; |
| u32 dword; |
| |
| ret = pci_read_config_dword(pdev, offset, &dword); |
| if (ret) |
| return ret; |
| *dwordp = cpu_to_le32(dword); |
| filled = 4; |
| } else if (size >= 2 && !(offset % 2)) { |
| __le16 *wordp = (__le16 *)&vdev->vconfig[offset]; |
| u16 word; |
| |
| ret = pci_read_config_word(pdev, offset, &word); |
| if (ret) |
| return ret; |
| *wordp = cpu_to_le16(word); |
| filled = 2; |
| } else { |
| u8 *byte = &vdev->vconfig[offset]; |
| ret = pci_read_config_byte(pdev, offset, byte); |
| if (ret) |
| return ret; |
| filled = 1; |
| } |
| |
| offset += filled; |
| size -= filled; |
| } |
| |
| return ret; |
| } |
| |
| static int vfio_cap_init(struct vfio_pci_core_device *vdev) |
| { |
| struct pci_dev *pdev = vdev->pdev; |
| u8 *map = vdev->pci_config_map; |
| u16 status; |
| u8 pos, *prev, cap; |
| int loops, ret, caps = 0; |
| |
| /* Any capabilities? */ |
| ret = pci_read_config_word(pdev, PCI_STATUS, &status); |
| if (ret) |
| return ret; |
| |
| if (!(status & PCI_STATUS_CAP_LIST)) |
| return 0; /* Done */ |
| |
| ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos); |
| if (ret) |
| return ret; |
| |
| /* Mark the previous position in case we want to skip a capability */ |
| prev = &vdev->vconfig[PCI_CAPABILITY_LIST]; |
| |
| /* We can bound our loop, capabilities are dword aligned */ |
| loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF; |
| while (pos && loops--) { |
| u8 next; |
| int i, len = 0; |
| |
| ret = pci_read_config_byte(pdev, pos, &cap); |
| if (ret) |
| return ret; |
| |
| ret = pci_read_config_byte(pdev, |
| pos + PCI_CAP_LIST_NEXT, &next); |
| if (ret) |
| return ret; |
| |
| /* |
| * ID 0 is a NULL capability, conflicting with our fake |
| * PCI_CAP_ID_BASIC. As it has no content, consider it |
| * hidden for now. |
| */ |
| if (cap && cap <= PCI_CAP_ID_MAX) { |
| len = pci_cap_length[cap]; |
| if (len == 0xFF) { /* Variable length */ |
| len = vfio_cap_len(vdev, cap, pos); |
| if (len < 0) |
| return len; |
| } |
| } |
| |
| if (!len) { |
| pci_info(pdev, "%s: hiding cap %#x@%#x\n", __func__, |
| cap, pos); |
| *prev = next; |
| pos = next; |
| continue; |
| } |
| |
| /* Sanity check, do we overlap other capabilities? */ |
| for (i = 0; i < len; i++) { |
| if (likely(map[pos + i] == PCI_CAP_ID_INVALID)) |
| continue; |
| |
| pci_warn(pdev, "%s: PCI config conflict @%#x, was cap %#x now cap %#x\n", |
| __func__, pos + i, map[pos + i], cap); |
| } |
| |
| BUILD_BUG_ON(PCI_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT); |
| |
| memset(map + pos, cap, len); |
| ret = vfio_fill_vconfig_bytes(vdev, pos, len); |
| if (ret) |
| return ret; |
| |
| if (cap == PCI_CAP_ID_PM) |
| vfio_update_pm_vconfig_bytes(vdev, pos); |
| |
| prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT]; |
| pos = next; |
| caps++; |
| } |
| |
| /* If we didn't fill any capabilities, clear the status flag */ |
| if (!caps) { |
| __le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS]; |
| *vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST); |
| } |
| |
| return 0; |
| } |
| |
| static int vfio_ecap_init(struct vfio_pci_core_device *vdev) |
| { |
| struct pci_dev *pdev = vdev->pdev; |
| u8 *map = vdev->pci_config_map; |
| u16 epos; |
| __le32 *prev = NULL; |
| int loops, ret, ecaps = 0; |
| |
| if (!vdev->extended_caps) |
| return 0; |
| |
| epos = PCI_CFG_SPACE_SIZE; |
| |
| loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF; |
| |
| while (loops-- && epos >= PCI_CFG_SPACE_SIZE) { |
| u32 header; |
| u16 ecap; |
| int i, len = 0; |
| bool hidden = false; |
| |
| ret = pci_read_config_dword(pdev, epos, &header); |
| if (ret) |
| return ret; |
| |
| ecap = PCI_EXT_CAP_ID(header); |
| |
| if (ecap <= PCI_EXT_CAP_ID_MAX) { |
| len = pci_ext_cap_length[ecap]; |
| if (len == 0xFF) { |
| len = vfio_ext_cap_len(vdev, ecap, epos); |
| if (len < 0) |
| return len; |
| } |
| } |
| |
| if (!len) { |
| pci_info(pdev, "%s: hiding ecap %#x@%#x\n", |
| __func__, ecap, epos); |
| |
| /* If not the first in the chain, we can skip over it */ |
| if (prev) { |
| u32 val = epos = PCI_EXT_CAP_NEXT(header); |
| *prev &= cpu_to_le32(~(0xffcU << 20)); |
| *prev |= cpu_to_le32(val << 20); |
| continue; |
| } |
| |
| /* |
| * Otherwise, fill in a placeholder, the direct |
| * readfn will virtualize this automatically |
| */ |
| len = PCI_CAP_SIZEOF; |
| hidden = true; |
| } |
| |
| for (i = 0; i < len; i++) { |
| if (likely(map[epos + i] == PCI_CAP_ID_INVALID)) |
| continue; |
| |
| pci_warn(pdev, "%s: PCI config conflict @%#x, was ecap %#x now ecap %#x\n", |
| __func__, epos + i, map[epos + i], ecap); |
| } |
| |
| /* |
| * Even though ecap is 2 bytes, we're currently a long way |
| * from exceeding 1 byte capabilities. If we ever make it |
| * up to 0xFE we'll need to up this to a two-byte, byte map. |
| */ |
| BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT); |
| |
| memset(map + epos, ecap, len); |
| ret = vfio_fill_vconfig_bytes(vdev, epos, len); |
| if (ret) |
| return ret; |
| |
| /* |
| * If we're just using this capability to anchor the list, |
| * hide the real ID. Only count real ecaps. XXX PCI spec |
| * indicates to use cap id = 0, version = 0, next = 0 if |
| * ecaps are absent, hope users check all the way to next. |
| */ |
| if (hidden) |
| *(__le32 *)&vdev->vconfig[epos] &= |
| cpu_to_le32((0xffcU << 20)); |
| else |
| ecaps++; |
| |
| prev = (__le32 *)&vdev->vconfig[epos]; |
| epos = PCI_EXT_CAP_NEXT(header); |
| } |
| |
| if (!ecaps) |
| *(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0; |
| |
| return 0; |
| } |
| |
| /* |
| * Nag about hardware bugs, hopefully to have vendors fix them, but at least |
| * to collect a list of dependencies for the VF INTx pin quirk below. |
| */ |
| static const struct pci_device_id known_bogus_vf_intx_pin[] = { |
| { PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x270c) }, |
| {} |
| }; |
| |
| /* |
| * For each device we allocate a pci_config_map that indicates the |
| * capability occupying each dword and thus the struct perm_bits we |
| * use for read and write. We also allocate a virtualized config |
| * space which tracks reads and writes to bits that we emulate for |
| * the user. Initial values filled from device. |
| * |
| * Using shared struct perm_bits between all vfio-pci devices saves |
| * us from allocating cfg_size buffers for virt and write for every |
| * device. We could remove vconfig and allocate individual buffers |
| * for each area requiring emulated bits, but the array of pointers |
| * would be comparable in size (at least for standard config space). |
| */ |
| int vfio_config_init(struct vfio_pci_core_device *vdev) |
| { |
| struct pci_dev *pdev = vdev->pdev; |
| u8 *map, *vconfig; |
| int ret; |
| |
| /* |
| * Config space, caps and ecaps are all dword aligned, so we could |
| * use one byte per dword to record the type. However, there are |
| * no requirements on the length of a capability, so the gap between |
| * capabilities needs byte granularity. |
| */ |
| map = kmalloc(pdev->cfg_size, GFP_KERNEL_ACCOUNT); |
| if (!map) |
| return -ENOMEM; |
| |
| vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL_ACCOUNT); |
| if (!vconfig) { |
| kfree(map); |
| return -ENOMEM; |
| } |
| |
| vdev->pci_config_map = map; |
| vdev->vconfig = vconfig; |
| |
| memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF); |
| memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID, |
| pdev->cfg_size - PCI_STD_HEADER_SIZEOF); |
| |
| ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF); |
| if (ret) |
| goto out; |
| |
| vdev->bardirty = true; |
| |
| /* |
| * XXX can we just pci_load_saved_state/pci_restore_state? |
| * may need to rebuild vconfig after that |
| */ |
| |
| /* For restore after reset */ |
| vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]); |
| vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]); |
| vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]); |
| vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]); |
| vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]); |
| vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]); |
| vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]); |
| |
| if (pdev->is_virtfn) { |
| *(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor); |
| *(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device); |
| |
| /* |
| * Per SR-IOV spec rev 1.1, 3.4.1.18 the interrupt pin register |
| * does not apply to VFs and VFs must implement this register |
| * as read-only with value zero. Userspace is not readily able |
| * to identify whether a device is a VF and thus that the pin |
| * definition on the device is bogus should it violate this |
| * requirement. We already virtualize the pin register for |
| * other purposes, so we simply need to replace the bogus value |
| * and consider VFs when we determine INTx IRQ count. |
| */ |
| if (vconfig[PCI_INTERRUPT_PIN] && |
| !pci_match_id(known_bogus_vf_intx_pin, pdev)) |
| pci_warn(pdev, |
| "Hardware bug: VF reports bogus INTx pin %d\n", |
| vconfig[PCI_INTERRUPT_PIN]); |
| |
| vconfig[PCI_INTERRUPT_PIN] = 0; /* Gratuitous for good VFs */ |
| } |
| if (pdev->no_command_memory) { |
| /* |
| * VFs and devices that set pdev->no_command_memory do not |
| * implement the memory enable bit of the COMMAND register |
| * therefore we'll not have it set in our initial copy of |
| * config space after pci_enable_device(). For consistency |
| * with PFs, set the virtual enable bit here. |
| */ |
| *(__le16 *)&vconfig[PCI_COMMAND] |= |
| cpu_to_le16(PCI_COMMAND_MEMORY); |
| } |
| |
| if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || vdev->nointx) |
| vconfig[PCI_INTERRUPT_PIN] = 0; |
| |
| ret = vfio_cap_init(vdev); |
| if (ret) |
| goto out; |
| |
| ret = vfio_ecap_init(vdev); |
| if (ret) |
| goto out; |
| |
| return 0; |
| |
| out: |
| kfree(map); |
| vdev->pci_config_map = NULL; |
| kfree(vconfig); |
| vdev->vconfig = NULL; |
| return pcibios_err_to_errno(ret); |
| } |
| |
| void vfio_config_free(struct vfio_pci_core_device *vdev) |
| { |
| kfree(vdev->vconfig); |
| vdev->vconfig = NULL; |
| kfree(vdev->pci_config_map); |
| vdev->pci_config_map = NULL; |
| if (vdev->msi_perm) { |
| free_perm_bits(vdev->msi_perm); |
| kfree(vdev->msi_perm); |
| vdev->msi_perm = NULL; |
| } |
| } |
| |
| /* |
| * Find the remaining number of bytes in a dword that match the given |
| * position. Stop at either the end of the capability or the dword boundary. |
| */ |
| static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_core_device *vdev, |
| loff_t pos) |
| { |
| u8 cap = vdev->pci_config_map[pos]; |
| size_t i; |
| |
| for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++) |
| /* nop */; |
| |
| return i; |
| } |
| |
| static ssize_t vfio_config_do_rw(struct vfio_pci_core_device *vdev, char __user *buf, |
| size_t count, loff_t *ppos, bool iswrite) |
| { |
| struct pci_dev *pdev = vdev->pdev; |
| struct perm_bits *perm; |
| __le32 val = 0; |
| int cap_start = 0, offset; |
| u8 cap_id; |
| ssize_t ret; |
| |
| if (*ppos < 0 || *ppos >= pdev->cfg_size || |
| *ppos + count > pdev->cfg_size) |
| return -EFAULT; |
| |
| /* |
| * Chop accesses into aligned chunks containing no more than a |
| * single capability. Caller increments to the next chunk. |
| */ |
| count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos)); |
| if (count >= 4 && !(*ppos % 4)) |
| count = 4; |
| else if (count >= 2 && !(*ppos % 2)) |
| count = 2; |
| else |
| count = 1; |
| |
| ret = count; |
| |
| cap_id = vdev->pci_config_map[*ppos]; |
| |
| if (cap_id == PCI_CAP_ID_INVALID) { |
| perm = &unassigned_perms; |
| cap_start = *ppos; |
| } else if (cap_id == PCI_CAP_ID_INVALID_VIRT) { |
| perm = &virt_perms; |
| cap_start = *ppos; |
| } else { |
| if (*ppos >= PCI_CFG_SPACE_SIZE) { |
| WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX); |
| |
| perm = &ecap_perms[cap_id]; |
| cap_start = vfio_find_cap_start(vdev, *ppos); |
| } else { |
| WARN_ON(cap_id > PCI_CAP_ID_MAX); |
| |
| perm = &cap_perms[cap_id]; |
| |
| if (cap_id == PCI_CAP_ID_MSI) |
| perm = vdev->msi_perm; |
| |
| if (cap_id > PCI_CAP_ID_BASIC) |
| cap_start = vfio_find_cap_start(vdev, *ppos); |
| } |
| } |
| |
| WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC); |
| WARN_ON(cap_start > *ppos); |
| |
| offset = *ppos - cap_start; |
| |
| if (iswrite) { |
| if (!perm->writefn) |
| return ret; |
| |
| if (copy_from_user(&val, buf, count)) |
| return -EFAULT; |
| |
| ret = perm->writefn(vdev, *ppos, count, perm, offset, val); |
| } else { |
| if (perm->readfn) { |
| ret = perm->readfn(vdev, *ppos, count, |
| perm, offset, &val); |
| if (ret < 0) |
| return ret; |
| } |
| |
| if (copy_to_user(buf, &val, count)) |
| return -EFAULT; |
| } |
| |
| return ret; |
| } |
| |
| ssize_t vfio_pci_config_rw(struct vfio_pci_core_device *vdev, char __user *buf, |
| size_t count, loff_t *ppos, bool iswrite) |
| { |
| size_t done = 0; |
| int ret = 0; |
| loff_t pos = *ppos; |
| |
| pos &= VFIO_PCI_OFFSET_MASK; |
| |
| while (count) { |
| ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite); |
| if (ret < 0) |
| return ret; |
| |
| count -= ret; |
| done += ret; |
| buf += ret; |
| pos += ret; |
| } |
| |
| *ppos += done; |
| |
| return done; |
| } |