| /* SPDX-License-Identifier: GPL-2.0 */ |
| /* |
| * This file contains the 64-bit "server" PowerPC variant |
| * of the low level exception handling including exception |
| * vectors, exception return, part of the slb and stab |
| * handling and other fixed offset specific things. |
| * |
| * This file is meant to be #included from head_64.S due to |
| * position dependent assembly. |
| * |
| * Most of this originates from head_64.S and thus has the same |
| * copyright history. |
| * |
| */ |
| |
| #include <asm/hw_irq.h> |
| #include <asm/exception-64s.h> |
| #include <asm/ptrace.h> |
| #include <asm/cpuidle.h> |
| #include <asm/head-64.h> |
| #include <asm/feature-fixups.h> |
| #include <asm/kup.h> |
| |
| /* PACA save area offsets (exgen, exmc, etc) */ |
| #define EX_R9 0 |
| #define EX_R10 8 |
| #define EX_R11 16 |
| #define EX_R12 24 |
| #define EX_R13 32 |
| #define EX_DAR 40 |
| #define EX_DSISR 48 |
| #define EX_CCR 52 |
| #define EX_CFAR 56 |
| #define EX_PPR 64 |
| #define EX_CTR 72 |
| .if EX_SIZE != 10 |
| .error "EX_SIZE is wrong" |
| .endif |
| |
| /* |
| * Following are fixed section helper macros. |
| * |
| * EXC_REAL_BEGIN/END - real, unrelocated exception vectors |
| * EXC_VIRT_BEGIN/END - virt (AIL), unrelocated exception vectors |
| * TRAMP_REAL_BEGIN - real, unrelocated helpers (virt may call these) |
| * TRAMP_VIRT_BEGIN - virt, unreloc helpers (in practice, real can use) |
| * EXC_COMMON - After switching to virtual, relocated mode. |
| */ |
| |
| #define EXC_REAL_BEGIN(name, start, size) \ |
| FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##name, start, size) |
| |
| #define EXC_REAL_END(name, start, size) \ |
| FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##name, start, size) |
| |
| #define EXC_VIRT_BEGIN(name, start, size) \ |
| FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size) |
| |
| #define EXC_VIRT_END(name, start, size) \ |
| FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size) |
| |
| #define EXC_COMMON_BEGIN(name) \ |
| USE_TEXT_SECTION(); \ |
| .balign IFETCH_ALIGN_BYTES; \ |
| .global name; \ |
| _ASM_NOKPROBE_SYMBOL(name); \ |
| DEFINE_FIXED_SYMBOL(name); \ |
| name: |
| |
| #define TRAMP_REAL_BEGIN(name) \ |
| FIXED_SECTION_ENTRY_BEGIN(real_trampolines, name) |
| |
| #define TRAMP_VIRT_BEGIN(name) \ |
| FIXED_SECTION_ENTRY_BEGIN(virt_trampolines, name) |
| |
| #define EXC_REAL_NONE(start, size) \ |
| FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##unused, start, size); \ |
| FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##unused, start, size) |
| |
| #define EXC_VIRT_NONE(start, size) \ |
| FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size); \ |
| FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size) |
| |
| /* |
| * We're short on space and time in the exception prolog, so we can't |
| * use the normal LOAD_REG_IMMEDIATE macro to load the address of label. |
| * Instead we get the base of the kernel from paca->kernelbase and or in the low |
| * part of label. This requires that the label be within 64KB of kernelbase, and |
| * that kernelbase be 64K aligned. |
| */ |
| #define LOAD_HANDLER(reg, label) \ |
| ld reg,PACAKBASE(r13); /* get high part of &label */ \ |
| ori reg,reg,FIXED_SYMBOL_ABS_ADDR(label) |
| |
| #define __LOAD_HANDLER(reg, label) \ |
| ld reg,PACAKBASE(r13); \ |
| ori reg,reg,(ABS_ADDR(label))@l |
| |
| /* |
| * Branches from unrelocated code (e.g., interrupts) to labels outside |
| * head-y require >64K offsets. |
| */ |
| #define __LOAD_FAR_HANDLER(reg, label) \ |
| ld reg,PACAKBASE(r13); \ |
| ori reg,reg,(ABS_ADDR(label))@l; \ |
| addis reg,reg,(ABS_ADDR(label))@h |
| |
| /* |
| * Branch to label using its 0xC000 address. This results in instruction |
| * address suitable for MSR[IR]=0 or 1, which allows relocation to be turned |
| * on using mtmsr rather than rfid. |
| * |
| * This could set the 0xc bits for !RELOCATABLE as an immediate, rather than |
| * load KBASE for a slight optimisation. |
| */ |
| #define BRANCH_TO_C000(reg, label) \ |
| __LOAD_FAR_HANDLER(reg, label); \ |
| mtctr reg; \ |
| bctr |
| |
| /* |
| * Interrupt code generation macros |
| */ |
| #define IVEC .L_IVEC_\name\() /* Interrupt vector address */ |
| #define IHSRR .L_IHSRR_\name\() /* Sets SRR or HSRR registers */ |
| #define IHSRR_IF_HVMODE .L_IHSRR_IF_HVMODE_\name\() /* HSRR if HV else SRR */ |
| #define IAREA .L_IAREA_\name\() /* PACA save area */ |
| #define IVIRT .L_IVIRT_\name\() /* Has virt mode entry point */ |
| #define IISIDE .L_IISIDE_\name\() /* Uses SRR0/1 not DAR/DSISR */ |
| #define IDAR .L_IDAR_\name\() /* Uses DAR (or SRR0) */ |
| #define IDSISR .L_IDSISR_\name\() /* Uses DSISR (or SRR1) */ |
| #define ISET_RI .L_ISET_RI_\name\() /* Run common code w/ MSR[RI]=1 */ |
| #define IBRANCH_TO_COMMON .L_IBRANCH_TO_COMMON_\name\() /* ENTRY branch to common */ |
| #define IREALMODE_COMMON .L_IREALMODE_COMMON_\name\() /* Common runs in realmode */ |
| #define IMASK .L_IMASK_\name\() /* IRQ soft-mask bit */ |
| #define IKVM_SKIP .L_IKVM_SKIP_\name\() /* Generate KVM skip handler */ |
| #define IKVM_REAL .L_IKVM_REAL_\name\() /* Real entry tests KVM */ |
| #define __IKVM_REAL(name) .L_IKVM_REAL_ ## name |
| #define IKVM_VIRT .L_IKVM_VIRT_\name\() /* Virt entry tests KVM */ |
| #define ISTACK .L_ISTACK_\name\() /* Set regular kernel stack */ |
| #define __ISTACK(name) .L_ISTACK_ ## name |
| #define IKUAP .L_IKUAP_\name\() /* Do KUAP lock */ |
| |
| #define INT_DEFINE_BEGIN(n) \ |
| .macro int_define_ ## n name |
| |
| #define INT_DEFINE_END(n) \ |
| .endm ; \ |
| int_define_ ## n n ; \ |
| do_define_int n |
| |
| .macro do_define_int name |
| .ifndef IVEC |
| .error "IVEC not defined" |
| .endif |
| .ifndef IHSRR |
| IHSRR=0 |
| .endif |
| .ifndef IHSRR_IF_HVMODE |
| IHSRR_IF_HVMODE=0 |
| .endif |
| .ifndef IAREA |
| IAREA=PACA_EXGEN |
| .endif |
| .ifndef IVIRT |
| IVIRT=1 |
| .endif |
| .ifndef IISIDE |
| IISIDE=0 |
| .endif |
| .ifndef IDAR |
| IDAR=0 |
| .endif |
| .ifndef IDSISR |
| IDSISR=0 |
| .endif |
| .ifndef ISET_RI |
| ISET_RI=1 |
| .endif |
| .ifndef IBRANCH_TO_COMMON |
| IBRANCH_TO_COMMON=1 |
| .endif |
| .ifndef IREALMODE_COMMON |
| IREALMODE_COMMON=0 |
| .else |
| .if ! IBRANCH_TO_COMMON |
| .error "IREALMODE_COMMON=1 but IBRANCH_TO_COMMON=0" |
| .endif |
| .endif |
| .ifndef IMASK |
| IMASK=0 |
| .endif |
| .ifndef IKVM_SKIP |
| IKVM_SKIP=0 |
| .endif |
| .ifndef IKVM_REAL |
| IKVM_REAL=0 |
| .endif |
| .ifndef IKVM_VIRT |
| IKVM_VIRT=0 |
| .endif |
| .ifndef ISTACK |
| ISTACK=1 |
| .endif |
| .ifndef IKUAP |
| IKUAP=1 |
| .endif |
| .endm |
| |
| #ifdef CONFIG_KVM_BOOK3S_64_HANDLER |
| #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE |
| /* |
| * All interrupts which set HSRR registers, as well as SRESET and MCE and |
| * syscall when invoked with "sc 1" switch to MSR[HV]=1 (HVMODE) to be taken, |
| * so they all generally need to test whether they were taken in guest context. |
| * |
| * Note: SRESET and MCE may also be sent to the guest by the hypervisor, and be |
| * taken with MSR[HV]=0. |
| * |
| * Interrupts which set SRR registers (with the above exceptions) do not |
| * elevate to MSR[HV]=1 mode, though most can be taken when running with |
| * MSR[HV]=1 (e.g., bare metal kernel and userspace). So these interrupts do |
| * not need to test whether a guest is running because they get delivered to |
| * the guest directly, including nested HV KVM guests. |
| * |
| * The exception is PR KVM, where the guest runs with MSR[PR]=1 and the host |
| * runs with MSR[HV]=0, so the host takes all interrupts on behalf of the |
| * guest. PR KVM runs with LPCR[AIL]=0 which causes interrupts to always be |
| * delivered to the real-mode entry point, therefore such interrupts only test |
| * KVM in their real mode handlers, and only when PR KVM is possible. |
| * |
| * Interrupts that are taken in MSR[HV]=0 and escalate to MSR[HV]=1 are always |
| * delivered in real-mode when the MMU is in hash mode because the MMU |
| * registers are not set appropriately to translate host addresses. In nested |
| * radix mode these can be delivered in virt-mode as the host translations are |
| * used implicitly (see: effective LPID, effective PID). |
| */ |
| |
| /* |
| * If an interrupt is taken while a guest is running, it is immediately routed |
| * to KVM to handle. If both HV and PR KVM arepossible, KVM interrupts go first |
| * to kvmppc_interrupt_hv, which handles the PR guest case. |
| */ |
| #define kvmppc_interrupt kvmppc_interrupt_hv |
| #else |
| #define kvmppc_interrupt kvmppc_interrupt_pr |
| #endif |
| |
| .macro KVMTEST name |
| lbz r10,HSTATE_IN_GUEST(r13) |
| cmpwi r10,0 |
| bne \name\()_kvm |
| .endm |
| |
| .macro GEN_KVM name |
| .balign IFETCH_ALIGN_BYTES |
| \name\()_kvm: |
| |
| .if IKVM_SKIP |
| cmpwi r10,KVM_GUEST_MODE_SKIP |
| beq 89f |
| .else |
| BEGIN_FTR_SECTION |
| ld r10,IAREA+EX_CFAR(r13) |
| std r10,HSTATE_CFAR(r13) |
| END_FTR_SECTION_IFSET(CPU_FTR_CFAR) |
| .endif |
| |
| ld r10,IAREA+EX_CTR(r13) |
| mtctr r10 |
| BEGIN_FTR_SECTION |
| ld r10,IAREA+EX_PPR(r13) |
| std r10,HSTATE_PPR(r13) |
| END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR) |
| ld r11,IAREA+EX_R11(r13) |
| ld r12,IAREA+EX_R12(r13) |
| std r12,HSTATE_SCRATCH0(r13) |
| sldi r12,r9,32 |
| ld r9,IAREA+EX_R9(r13) |
| ld r10,IAREA+EX_R10(r13) |
| /* HSRR variants have the 0x2 bit added to their trap number */ |
| .if IHSRR_IF_HVMODE |
| BEGIN_FTR_SECTION |
| ori r12,r12,(IVEC + 0x2) |
| FTR_SECTION_ELSE |
| ori r12,r12,(IVEC) |
| ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) |
| .elseif IHSRR |
| ori r12,r12,(IVEC+ 0x2) |
| .else |
| ori r12,r12,(IVEC) |
| .endif |
| b kvmppc_interrupt |
| |
| .if IKVM_SKIP |
| 89: mtocrf 0x80,r9 |
| ld r10,IAREA+EX_CTR(r13) |
| mtctr r10 |
| ld r9,IAREA+EX_R9(r13) |
| ld r10,IAREA+EX_R10(r13) |
| ld r11,IAREA+EX_R11(r13) |
| ld r12,IAREA+EX_R12(r13) |
| .if IHSRR_IF_HVMODE |
| BEGIN_FTR_SECTION |
| b kvmppc_skip_Hinterrupt |
| FTR_SECTION_ELSE |
| b kvmppc_skip_interrupt |
| ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) |
| .elseif IHSRR |
| b kvmppc_skip_Hinterrupt |
| .else |
| b kvmppc_skip_interrupt |
| .endif |
| .endif |
| .endm |
| |
| #else |
| .macro KVMTEST name |
| .endm |
| .macro GEN_KVM name |
| .endm |
| #endif |
| |
| /* |
| * This is the BOOK3S interrupt entry code macro. |
| * |
| * This can result in one of several things happening: |
| * - Branch to the _common handler, relocated, in virtual mode. |
| * These are normal interrupts (synchronous and asynchronous) handled by |
| * the kernel. |
| * - Branch to KVM, relocated but real mode interrupts remain in real mode. |
| * These occur when HSTATE_IN_GUEST is set. The interrupt may be caused by |
| * / intended for host or guest kernel, but KVM must always be involved |
| * because the machine state is set for guest execution. |
| * - Branch to the masked handler, unrelocated. |
| * These occur when maskable asynchronous interrupts are taken with the |
| * irq_soft_mask set. |
| * - Branch to an "early" handler in real mode but relocated. |
| * This is done if early=1. MCE and HMI use these to handle errors in real |
| * mode. |
| * - Fall through and continue executing in real, unrelocated mode. |
| * This is done if early=2. |
| */ |
| |
| .macro GEN_BRANCH_TO_COMMON name, virt |
| .if IREALMODE_COMMON |
| LOAD_HANDLER(r10, \name\()_common) |
| mtctr r10 |
| bctr |
| .else |
| .if \virt |
| #ifndef CONFIG_RELOCATABLE |
| b \name\()_common_virt |
| #else |
| LOAD_HANDLER(r10, \name\()_common_virt) |
| mtctr r10 |
| bctr |
| #endif |
| .else |
| LOAD_HANDLER(r10, \name\()_common_real) |
| mtctr r10 |
| bctr |
| .endif |
| .endif |
| .endm |
| |
| .macro GEN_INT_ENTRY name, virt, ool=0 |
| SET_SCRATCH0(r13) /* save r13 */ |
| GET_PACA(r13) |
| std r9,IAREA+EX_R9(r13) /* save r9 */ |
| BEGIN_FTR_SECTION |
| mfspr r9,SPRN_PPR |
| END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR) |
| HMT_MEDIUM |
| std r10,IAREA+EX_R10(r13) /* save r10 - r12 */ |
| BEGIN_FTR_SECTION |
| mfspr r10,SPRN_CFAR |
| END_FTR_SECTION_IFSET(CPU_FTR_CFAR) |
| .if \ool |
| .if !\virt |
| b tramp_real_\name |
| .pushsection .text |
| TRAMP_REAL_BEGIN(tramp_real_\name) |
| .else |
| b tramp_virt_\name |
| .pushsection .text |
| TRAMP_VIRT_BEGIN(tramp_virt_\name) |
| .endif |
| .endif |
| |
| BEGIN_FTR_SECTION |
| std r9,IAREA+EX_PPR(r13) |
| END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR) |
| BEGIN_FTR_SECTION |
| std r10,IAREA+EX_CFAR(r13) |
| END_FTR_SECTION_IFSET(CPU_FTR_CFAR) |
| INTERRUPT_TO_KERNEL |
| mfctr r10 |
| std r10,IAREA+EX_CTR(r13) |
| mfcr r9 |
| std r11,IAREA+EX_R11(r13) |
| std r12,IAREA+EX_R12(r13) |
| |
| /* |
| * DAR/DSISR, SCRATCH0 must be read before setting MSR[RI], |
| * because a d-side MCE will clobber those registers so is |
| * not recoverable if they are live. |
| */ |
| GET_SCRATCH0(r10) |
| std r10,IAREA+EX_R13(r13) |
| .if IDAR && !IISIDE |
| .if IHSRR |
| mfspr r10,SPRN_HDAR |
| .else |
| mfspr r10,SPRN_DAR |
| .endif |
| std r10,IAREA+EX_DAR(r13) |
| .endif |
| .if IDSISR && !IISIDE |
| .if IHSRR |
| mfspr r10,SPRN_HDSISR |
| .else |
| mfspr r10,SPRN_DSISR |
| .endif |
| stw r10,IAREA+EX_DSISR(r13) |
| .endif |
| |
| .if IHSRR_IF_HVMODE |
| BEGIN_FTR_SECTION |
| mfspr r11,SPRN_HSRR0 /* save HSRR0 */ |
| mfspr r12,SPRN_HSRR1 /* and HSRR1 */ |
| FTR_SECTION_ELSE |
| mfspr r11,SPRN_SRR0 /* save SRR0 */ |
| mfspr r12,SPRN_SRR1 /* and SRR1 */ |
| ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) |
| .elseif IHSRR |
| mfspr r11,SPRN_HSRR0 /* save HSRR0 */ |
| mfspr r12,SPRN_HSRR1 /* and HSRR1 */ |
| .else |
| mfspr r11,SPRN_SRR0 /* save SRR0 */ |
| mfspr r12,SPRN_SRR1 /* and SRR1 */ |
| .endif |
| |
| .if IBRANCH_TO_COMMON |
| GEN_BRANCH_TO_COMMON \name \virt |
| .endif |
| |
| .if \ool |
| .popsection |
| .endif |
| .endm |
| |
| /* |
| * __GEN_COMMON_ENTRY is required to receive the branch from interrupt |
| * entry, except in the case of the real-mode handlers which require |
| * __GEN_REALMODE_COMMON_ENTRY. |
| * |
| * This switches to virtual mode and sets MSR[RI]. |
| */ |
| .macro __GEN_COMMON_ENTRY name |
| DEFINE_FIXED_SYMBOL(\name\()_common_real) |
| \name\()_common_real: |
| .if IKVM_REAL |
| KVMTEST \name |
| .endif |
| |
| ld r10,PACAKMSR(r13) /* get MSR value for kernel */ |
| /* MSR[RI] is clear iff using SRR regs */ |
| .if IHSRR_IF_HVMODE |
| BEGIN_FTR_SECTION |
| xori r10,r10,MSR_RI |
| END_FTR_SECTION_IFCLR(CPU_FTR_HVMODE) |
| .elseif ! IHSRR |
| xori r10,r10,MSR_RI |
| .endif |
| mtmsrd r10 |
| |
| .if IVIRT |
| .if IKVM_VIRT |
| b 1f /* skip the virt test coming from real */ |
| .endif |
| |
| .balign IFETCH_ALIGN_BYTES |
| DEFINE_FIXED_SYMBOL(\name\()_common_virt) |
| \name\()_common_virt: |
| .if IKVM_VIRT |
| KVMTEST \name |
| 1: |
| .endif |
| .endif /* IVIRT */ |
| .endm |
| |
| /* |
| * Don't switch to virt mode. Used for early MCE and HMI handlers that |
| * want to run in real mode. |
| */ |
| .macro __GEN_REALMODE_COMMON_ENTRY name |
| DEFINE_FIXED_SYMBOL(\name\()_common_real) |
| \name\()_common_real: |
| .if IKVM_REAL |
| KVMTEST \name |
| .endif |
| .endm |
| |
| .macro __GEN_COMMON_BODY name |
| .if IMASK |
| .if ! ISTACK |
| .error "No support for masked interrupt to use custom stack" |
| .endif |
| |
| /* If coming from user, skip soft-mask tests. */ |
| andi. r10,r12,MSR_PR |
| bne 2f |
| |
| /* Kernel code running below __end_interrupts is implicitly |
| * soft-masked */ |
| LOAD_HANDLER(r10, __end_interrupts) |
| cmpld r11,r10 |
| li r10,IMASK |
| blt- 1f |
| |
| /* Test the soft mask state against our interrupt's bit */ |
| lbz r10,PACAIRQSOFTMASK(r13) |
| 1: andi. r10,r10,IMASK |
| /* Associate vector numbers with bits in paca->irq_happened */ |
| .if IVEC == 0x500 || IVEC == 0xea0 |
| li r10,PACA_IRQ_EE |
| .elseif IVEC == 0x900 |
| li r10,PACA_IRQ_DEC |
| .elseif IVEC == 0xa00 || IVEC == 0xe80 |
| li r10,PACA_IRQ_DBELL |
| .elseif IVEC == 0xe60 |
| li r10,PACA_IRQ_HMI |
| .elseif IVEC == 0xf00 |
| li r10,PACA_IRQ_PMI |
| .else |
| .abort "Bad maskable vector" |
| .endif |
| |
| .if IHSRR_IF_HVMODE |
| BEGIN_FTR_SECTION |
| bne masked_Hinterrupt |
| FTR_SECTION_ELSE |
| bne masked_interrupt |
| ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) |
| .elseif IHSRR |
| bne masked_Hinterrupt |
| .else |
| bne masked_interrupt |
| .endif |
| .endif |
| |
| .if ISTACK |
| andi. r10,r12,MSR_PR /* See if coming from user */ |
| 2: mr r10,r1 /* Save r1 */ |
| subi r1,r1,INT_FRAME_SIZE /* alloc frame on kernel stack */ |
| beq- 100f |
| ld r1,PACAKSAVE(r13) /* kernel stack to use */ |
| 100: tdgei r1,-INT_FRAME_SIZE /* trap if r1 is in userspace */ |
| EMIT_BUG_ENTRY 100b,__FILE__,__LINE__,0 |
| .endif |
| |
| std r9,_CCR(r1) /* save CR in stackframe */ |
| std r11,_NIP(r1) /* save SRR0 in stackframe */ |
| std r12,_MSR(r1) /* save SRR1 in stackframe */ |
| std r10,0(r1) /* make stack chain pointer */ |
| std r0,GPR0(r1) /* save r0 in stackframe */ |
| std r10,GPR1(r1) /* save r1 in stackframe */ |
| |
| .if ISET_RI |
| li r10,MSR_RI |
| mtmsrd r10,1 /* Set MSR_RI */ |
| .endif |
| |
| .if ISTACK |
| .if IKUAP |
| kuap_save_amr_and_lock r9, r10, cr1, cr0 |
| .endif |
| beq 101f /* if from kernel mode */ |
| BEGIN_FTR_SECTION |
| ld r9,IAREA+EX_PPR(r13) /* Read PPR from paca */ |
| std r9,_PPR(r1) |
| END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR) |
| 101: |
| .else |
| .if IKUAP |
| kuap_save_amr_and_lock r9, r10, cr1 |
| .endif |
| .endif |
| |
| /* Save original regs values from save area to stack frame. */ |
| ld r9,IAREA+EX_R9(r13) /* move r9, r10 to stackframe */ |
| ld r10,IAREA+EX_R10(r13) |
| std r9,GPR9(r1) |
| std r10,GPR10(r1) |
| ld r9,IAREA+EX_R11(r13) /* move r11 - r13 to stackframe */ |
| ld r10,IAREA+EX_R12(r13) |
| ld r11,IAREA+EX_R13(r13) |
| std r9,GPR11(r1) |
| std r10,GPR12(r1) |
| std r11,GPR13(r1) |
| |
| SAVE_NVGPRS(r1) |
| |
| .if IDAR |
| .if IISIDE |
| ld r10,_NIP(r1) |
| .else |
| ld r10,IAREA+EX_DAR(r13) |
| .endif |
| std r10,_DAR(r1) |
| .endif |
| |
| .if IDSISR |
| .if IISIDE |
| ld r10,_MSR(r1) |
| lis r11,DSISR_SRR1_MATCH_64S@h |
| and r10,r10,r11 |
| .else |
| lwz r10,IAREA+EX_DSISR(r13) |
| .endif |
| std r10,_DSISR(r1) |
| .endif |
| |
| BEGIN_FTR_SECTION |
| ld r10,IAREA+EX_CFAR(r13) |
| std r10,ORIG_GPR3(r1) |
| END_FTR_SECTION_IFSET(CPU_FTR_CFAR) |
| ld r10,IAREA+EX_CTR(r13) |
| std r10,_CTR(r1) |
| std r2,GPR2(r1) /* save r2 in stackframe */ |
| SAVE_4GPRS(3, r1) /* save r3 - r6 in stackframe */ |
| SAVE_2GPRS(7, r1) /* save r7, r8 in stackframe */ |
| mflr r9 /* Get LR, later save to stack */ |
| ld r2,PACATOC(r13) /* get kernel TOC into r2 */ |
| std r9,_LINK(r1) |
| lbz r10,PACAIRQSOFTMASK(r13) |
| mfspr r11,SPRN_XER /* save XER in stackframe */ |
| std r10,SOFTE(r1) |
| std r11,_XER(r1) |
| li r9,IVEC |
| std r9,_TRAP(r1) /* set trap number */ |
| li r10,0 |
| ld r11,exception_marker@toc(r2) |
| std r10,RESULT(r1) /* clear regs->result */ |
| std r11,STACK_FRAME_OVERHEAD-16(r1) /* mark the frame */ |
| .endm |
| |
| /* |
| * On entry r13 points to the paca, r9-r13 are saved in the paca, |
| * r9 contains the saved CR, r11 and r12 contain the saved SRR0 and |
| * SRR1, and relocation is on. |
| * |
| * If stack=0, then the stack is already set in r1, and r1 is saved in r10. |
| * PPR save and CPU accounting is not done for the !stack case (XXX why not?) |
| */ |
| .macro GEN_COMMON name |
| __GEN_COMMON_ENTRY \name |
| __GEN_COMMON_BODY \name |
| .endm |
| |
| /* |
| * Restore all registers including H/SRR0/1 saved in a stack frame of a |
| * standard exception. |
| */ |
| .macro EXCEPTION_RESTORE_REGS hsrr=0 |
| /* Move original SRR0 and SRR1 into the respective regs */ |
| ld r9,_MSR(r1) |
| .if \hsrr |
| mtspr SPRN_HSRR1,r9 |
| .else |
| mtspr SPRN_SRR1,r9 |
| .endif |
| ld r9,_NIP(r1) |
| .if \hsrr |
| mtspr SPRN_HSRR0,r9 |
| .else |
| mtspr SPRN_SRR0,r9 |
| .endif |
| ld r9,_CTR(r1) |
| mtctr r9 |
| ld r9,_XER(r1) |
| mtxer r9 |
| ld r9,_LINK(r1) |
| mtlr r9 |
| ld r9,_CCR(r1) |
| mtcr r9 |
| REST_8GPRS(2, r1) |
| REST_4GPRS(10, r1) |
| REST_GPR(0, r1) |
| /* restore original r1. */ |
| ld r1,GPR1(r1) |
| .endm |
| |
| /* |
| * When the idle code in power4_idle puts the CPU into NAP mode, |
| * it has to do so in a loop, and relies on the external interrupt |
| * and decrementer interrupt entry code to get it out of the loop. |
| * It sets the _TLF_NAPPING bit in current_thread_info()->local_flags |
| * to signal that it is in the loop and needs help to get out. |
| */ |
| #ifdef CONFIG_PPC_970_NAP |
| #define FINISH_NAP \ |
| BEGIN_FTR_SECTION \ |
| ld r11, PACA_THREAD_INFO(r13); \ |
| ld r9,TI_LOCAL_FLAGS(r11); \ |
| andi. r10,r9,_TLF_NAPPING; \ |
| bnel power4_fixup_nap; \ |
| END_FTR_SECTION_IFSET(CPU_FTR_CAN_NAP) |
| #else |
| #define FINISH_NAP |
| #endif |
| |
| /* |
| * There are a few constraints to be concerned with. |
| * - Real mode exceptions code/data must be located at their physical location. |
| * - Virtual mode exceptions must be mapped at their 0xc000... location. |
| * - Fixed location code must not call directly beyond the __end_interrupts |
| * area when built with CONFIG_RELOCATABLE. LOAD_HANDLER / bctr sequence |
| * must be used. |
| * - LOAD_HANDLER targets must be within first 64K of physical 0 / |
| * virtual 0xc00... |
| * - Conditional branch targets must be within +/-32K of caller. |
| * |
| * "Virtual exceptions" run with relocation on (MSR_IR=1, MSR_DR=1), and |
| * therefore don't have to run in physically located code or rfid to |
| * virtual mode kernel code. However on relocatable kernels they do have |
| * to branch to KERNELBASE offset because the rest of the kernel (outside |
| * the exception vectors) may be located elsewhere. |
| * |
| * Virtual exceptions correspond with physical, except their entry points |
| * are offset by 0xc000000000000000 and also tend to get an added 0x4000 |
| * offset applied. Virtual exceptions are enabled with the Alternate |
| * Interrupt Location (AIL) bit set in the LPCR. However this does not |
| * guarantee they will be delivered virtually. Some conditions (see the ISA) |
| * cause exceptions to be delivered in real mode. |
| * |
| * The scv instructions are a special case. They get a 0x3000 offset applied. |
| * scv exceptions have unique reentrancy properties, see below. |
| * |
| * It's impossible to receive interrupts below 0x300 via AIL. |
| * |
| * KVM: None of the virtual exceptions are from the guest. Anything that |
| * escalated to HV=1 from HV=0 is delivered via real mode handlers. |
| * |
| * |
| * We layout physical memory as follows: |
| * 0x0000 - 0x00ff : Secondary processor spin code |
| * 0x0100 - 0x18ff : Real mode pSeries interrupt vectors |
| * 0x1900 - 0x2fff : Real mode trampolines |
| * 0x3000 - 0x58ff : Relon (IR=1,DR=1) mode pSeries interrupt vectors |
| * 0x5900 - 0x6fff : Relon mode trampolines |
| * 0x7000 - 0x7fff : FWNMI data area |
| * 0x8000 - .... : Common interrupt handlers, remaining early |
| * setup code, rest of kernel. |
| * |
| * We could reclaim 0x4000-0x42ff for real mode trampolines if the space |
| * is necessary. Until then it's more consistent to explicitly put VIRT_NONE |
| * vectors there. |
| */ |
| OPEN_FIXED_SECTION(real_vectors, 0x0100, 0x1900) |
| OPEN_FIXED_SECTION(real_trampolines, 0x1900, 0x3000) |
| OPEN_FIXED_SECTION(virt_vectors, 0x3000, 0x5900) |
| OPEN_FIXED_SECTION(virt_trampolines, 0x5900, 0x7000) |
| |
| #ifdef CONFIG_PPC_POWERNV |
| .globl start_real_trampolines |
| .globl end_real_trampolines |
| .globl start_virt_trampolines |
| .globl end_virt_trampolines |
| #endif |
| |
| #if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_POWERNV) |
| /* |
| * Data area reserved for FWNMI option. |
| * This address (0x7000) is fixed by the RPA. |
| * pseries and powernv need to keep the whole page from |
| * 0x7000 to 0x8000 free for use by the firmware |
| */ |
| ZERO_FIXED_SECTION(fwnmi_page, 0x7000, 0x8000) |
| OPEN_TEXT_SECTION(0x8000) |
| #else |
| OPEN_TEXT_SECTION(0x7000) |
| #endif |
| |
| USE_FIXED_SECTION(real_vectors) |
| |
| /* |
| * This is the start of the interrupt handlers for pSeries |
| * This code runs with relocation off. |
| * Code from here to __end_interrupts gets copied down to real |
| * address 0x100 when we are running a relocatable kernel. |
| * Therefore any relative branches in this section must only |
| * branch to labels in this section. |
| */ |
| .globl __start_interrupts |
| __start_interrupts: |
| |
| /** |
| * Interrupt 0x3000 - System Call Vectored Interrupt (syscall). |
| * This is a synchronous interrupt invoked with the "scv" instruction. The |
| * system call does not alter the HV bit, so it is directed to the OS. |
| * |
| * Handling: |
| * scv instructions enter the kernel without changing EE, RI, ME, or HV. |
| * In particular, this means we can take a maskable interrupt at any point |
| * in the scv handler, which is unlike any other interrupt. This is solved |
| * by treating the instruction addresses below __end_interrupts as being |
| * soft-masked. |
| * |
| * AIL-0 mode scv exceptions go to 0x17000-0x17fff, but we set AIL-3 and |
| * ensure scv is never executed with relocation off, which means AIL-0 |
| * should never happen. |
| * |
| * Before leaving the below __end_interrupts text, at least of the following |
| * must be true: |
| * - MSR[PR]=1 (i.e., return to userspace) |
| * - MSR_EE|MSR_RI is set (no reentrant exceptions) |
| * - Standard kernel environment is set up (stack, paca, etc) |
| * |
| * Call convention: |
| * |
| * syscall register convention is in Documentation/powerpc/syscall64-abi.rst |
| */ |
| EXC_VIRT_BEGIN(system_call_vectored, 0x3000, 0x1000) |
| /* SCV 0 */ |
| mr r9,r13 |
| GET_PACA(r13) |
| mflr r11 |
| mfctr r12 |
| li r10,IRQS_ALL_DISABLED |
| stb r10,PACAIRQSOFTMASK(r13) |
| #ifdef CONFIG_RELOCATABLE |
| b system_call_vectored_tramp |
| #else |
| b system_call_vectored_common |
| #endif |
| nop |
| |
| /* SCV 1 - 127 */ |
| .rept 127 |
| mr r9,r13 |
| GET_PACA(r13) |
| mflr r11 |
| mfctr r12 |
| li r10,IRQS_ALL_DISABLED |
| stb r10,PACAIRQSOFTMASK(r13) |
| li r0,-1 /* cause failure */ |
| #ifdef CONFIG_RELOCATABLE |
| b system_call_vectored_sigill_tramp |
| #else |
| b system_call_vectored_sigill |
| #endif |
| .endr |
| EXC_VIRT_END(system_call_vectored, 0x3000, 0x1000) |
| |
| #ifdef CONFIG_RELOCATABLE |
| TRAMP_VIRT_BEGIN(system_call_vectored_tramp) |
| __LOAD_HANDLER(r10, system_call_vectored_common) |
| mtctr r10 |
| bctr |
| |
| TRAMP_VIRT_BEGIN(system_call_vectored_sigill_tramp) |
| __LOAD_HANDLER(r10, system_call_vectored_sigill) |
| mtctr r10 |
| bctr |
| #endif |
| |
| |
| /* No virt vectors corresponding with 0x0..0x100 */ |
| EXC_VIRT_NONE(0x4000, 0x100) |
| |
| |
| /** |
| * Interrupt 0x100 - System Reset Interrupt (SRESET aka NMI). |
| * This is a non-maskable, asynchronous interrupt always taken in real-mode. |
| * It is caused by: |
| * - Wake from power-saving state, on powernv. |
| * - An NMI from another CPU, triggered by firmware or hypercall. |
| * - As crash/debug signal injected from BMC, firmware or hypervisor. |
| * |
| * Handling: |
| * Power-save wakeup is the only performance critical path, so this is |
| * determined quickly as possible first. In this case volatile registers |
| * can be discarded and SPRs like CFAR don't need to be read. |
| * |
| * If not a powersave wakeup, then it's run as a regular interrupt, however |
| * it uses its own stack and PACA save area to preserve the regular kernel |
| * environment for debugging. |
| * |
| * This interrupt is not maskable, so triggering it when MSR[RI] is clear, |
| * or SCRATCH0 is in use, etc. may cause a crash. It's also not entirely |
| * correct to switch to virtual mode to run the regular interrupt handler |
| * because it might be interrupted when the MMU is in a bad state (e.g., SLB |
| * is clear). |
| * |
| * FWNMI: |
| * PAPR specifies a "fwnmi" facility which sends the sreset to a different |
| * entry point with a different register set up. Some hypervisors will |
| * send the sreset to 0x100 in the guest if it is not fwnmi capable. |
| * |
| * KVM: |
| * Unlike most SRR interrupts, this may be taken by the host while executing |
| * in a guest, so a KVM test is required. KVM will pull the CPU out of guest |
| * mode and then raise the sreset. |
| */ |
| INT_DEFINE_BEGIN(system_reset) |
| IVEC=0x100 |
| IAREA=PACA_EXNMI |
| IVIRT=0 /* no virt entry point */ |
| /* |
| * MSR_RI is not enabled, because PACA_EXNMI and nmi stack is |
| * being used, so a nested NMI exception would corrupt it. |
| */ |
| ISET_RI=0 |
| ISTACK=0 |
| IKVM_REAL=1 |
| INT_DEFINE_END(system_reset) |
| |
| EXC_REAL_BEGIN(system_reset, 0x100, 0x100) |
| #ifdef CONFIG_PPC_P7_NAP |
| /* |
| * If running native on arch 2.06 or later, check if we are waking up |
| * from nap/sleep/winkle, and branch to idle handler. This tests SRR1 |
| * bits 46:47. A non-0 value indicates that we are coming from a power |
| * saving state. The idle wakeup handler initially runs in real mode, |
| * but we branch to the 0xc000... address so we can turn on relocation |
| * with mtmsrd later, after SPRs are restored. |
| * |
| * Careful to minimise cost for the fast path (idle wakeup) while |
| * also avoiding clobbering CFAR for the debug path (non-idle). |
| * |
| * For the idle wake case volatile registers can be clobbered, which |
| * is why we use those initially. If it turns out to not be an idle |
| * wake, carefully put everything back the way it was, so we can use |
| * common exception macros to handle it. |
| */ |
| BEGIN_FTR_SECTION |
| SET_SCRATCH0(r13) |
| GET_PACA(r13) |
| std r3,PACA_EXNMI+0*8(r13) |
| std r4,PACA_EXNMI+1*8(r13) |
| std r5,PACA_EXNMI+2*8(r13) |
| mfspr r3,SPRN_SRR1 |
| mfocrf r4,0x80 |
| rlwinm. r5,r3,47-31,30,31 |
| bne+ system_reset_idle_wake |
| /* Not powersave wakeup. Restore regs for regular interrupt handler. */ |
| mtocrf 0x80,r4 |
| ld r3,PACA_EXNMI+0*8(r13) |
| ld r4,PACA_EXNMI+1*8(r13) |
| ld r5,PACA_EXNMI+2*8(r13) |
| GET_SCRATCH0(r13) |
| END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) |
| #endif |
| |
| GEN_INT_ENTRY system_reset, virt=0 |
| /* |
| * In theory, we should not enable relocation here if it was disabled |
| * in SRR1, because the MMU may not be configured to support it (e.g., |
| * SLB may have been cleared). In practice, there should only be a few |
| * small windows where that's the case, and sreset is considered to |
| * be dangerous anyway. |
| */ |
| EXC_REAL_END(system_reset, 0x100, 0x100) |
| EXC_VIRT_NONE(0x4100, 0x100) |
| |
| #ifdef CONFIG_PPC_P7_NAP |
| TRAMP_REAL_BEGIN(system_reset_idle_wake) |
| /* We are waking up from idle, so may clobber any volatile register */ |
| cmpwi cr1,r5,2 |
| bltlr cr1 /* no state loss, return to idle caller with r3=SRR1 */ |
| BRANCH_TO_C000(r12, DOTSYM(idle_return_gpr_loss)) |
| #endif |
| |
| #ifdef CONFIG_PPC_PSERIES |
| /* |
| * Vectors for the FWNMI option. Share common code. |
| */ |
| TRAMP_REAL_BEGIN(system_reset_fwnmi) |
| GEN_INT_ENTRY system_reset, virt=0 |
| |
| #endif /* CONFIG_PPC_PSERIES */ |
| |
| EXC_COMMON_BEGIN(system_reset_common) |
| __GEN_COMMON_ENTRY system_reset |
| /* |
| * Increment paca->in_nmi then enable MSR_RI. SLB or MCE will be able |
| * to recover, but nested NMI will notice in_nmi and not recover |
| * because of the use of the NMI stack. in_nmi reentrancy is tested in |
| * system_reset_exception. |
| */ |
| lhz r10,PACA_IN_NMI(r13) |
| addi r10,r10,1 |
| sth r10,PACA_IN_NMI(r13) |
| li r10,MSR_RI |
| mtmsrd r10,1 |
| |
| mr r10,r1 |
| ld r1,PACA_NMI_EMERG_SP(r13) |
| subi r1,r1,INT_FRAME_SIZE |
| __GEN_COMMON_BODY system_reset |
| |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl system_reset_exception |
| |
| /* Clear MSR_RI before setting SRR0 and SRR1. */ |
| li r9,0 |
| mtmsrd r9,1 |
| |
| /* |
| * MSR_RI is clear, now we can decrement paca->in_nmi. |
| */ |
| lhz r10,PACA_IN_NMI(r13) |
| subi r10,r10,1 |
| sth r10,PACA_IN_NMI(r13) |
| |
| kuap_kernel_restore r9, r10 |
| EXCEPTION_RESTORE_REGS |
| RFI_TO_USER_OR_KERNEL |
| |
| GEN_KVM system_reset |
| |
| |
| /** |
| * Interrupt 0x200 - Machine Check Interrupt (MCE). |
| * This is a non-maskable interrupt always taken in real-mode. It can be |
| * synchronous or asynchronous, caused by hardware or software, and it may be |
| * taken in a power-saving state. |
| * |
| * Handling: |
| * Similarly to system reset, this uses its own stack and PACA save area, |
| * the difference is re-entrancy is allowed on the machine check stack. |
| * |
| * machine_check_early is run in real mode, and carefully decodes the |
| * machine check and tries to handle it (e.g., flush the SLB if there was an |
| * error detected there), determines if it was recoverable and logs the |
| * event. |
| * |
| * This early code does not "reconcile" irq soft-mask state like SRESET or |
| * regular interrupts do, so irqs_disabled() among other things may not work |
| * properly (irq disable/enable already doesn't work because irq tracing can |
| * not work in real mode). |
| * |
| * Then, depending on the execution context when the interrupt is taken, there |
| * are 3 main actions: |
| * - Executing in kernel mode. The event is queued with irq_work, which means |
| * it is handled when it is next safe to do so (i.e., the kernel has enabled |
| * interrupts), which could be immediately when the interrupt returns. This |
| * avoids nasty issues like switching to virtual mode when the MMU is in a |
| * bad state, or when executing OPAL code. (SRESET is exposed to such issues, |
| * but it has different priorities). Check to see if the CPU was in power |
| * save, and return via the wake up code if it was. |
| * |
| * - Executing in user mode. machine_check_exception is run like a normal |
| * interrupt handler, which processes the data generated by the early handler. |
| * |
| * - Executing in guest mode. The interrupt is run with its KVM test, and |
| * branches to KVM to deal with. KVM may queue the event for the host |
| * to report later. |
| * |
| * This interrupt is not maskable, so if it triggers when MSR[RI] is clear, |
| * or SCRATCH0 is in use, it may cause a crash. |
| * |
| * KVM: |
| * See SRESET. |
| */ |
| INT_DEFINE_BEGIN(machine_check_early) |
| IVEC=0x200 |
| IAREA=PACA_EXMC |
| IVIRT=0 /* no virt entry point */ |
| IREALMODE_COMMON=1 |
| /* |
| * MSR_RI is not enabled, because PACA_EXMC is being used, so a |
| * nested machine check corrupts it. machine_check_common enables |
| * MSR_RI. |
| */ |
| ISET_RI=0 |
| ISTACK=0 |
| IDAR=1 |
| IDSISR=1 |
| IKUAP=0 /* We don't touch AMR here, we never go to virtual mode */ |
| INT_DEFINE_END(machine_check_early) |
| |
| INT_DEFINE_BEGIN(machine_check) |
| IVEC=0x200 |
| IAREA=PACA_EXMC |
| IVIRT=0 /* no virt entry point */ |
| ISET_RI=0 |
| IDAR=1 |
| IDSISR=1 |
| IKVM_SKIP=1 |
| IKVM_REAL=1 |
| INT_DEFINE_END(machine_check) |
| |
| EXC_REAL_BEGIN(machine_check, 0x200, 0x100) |
| GEN_INT_ENTRY machine_check_early, virt=0 |
| EXC_REAL_END(machine_check, 0x200, 0x100) |
| EXC_VIRT_NONE(0x4200, 0x100) |
| |
| #ifdef CONFIG_PPC_PSERIES |
| TRAMP_REAL_BEGIN(machine_check_fwnmi) |
| /* See comment at machine_check exception, don't turn on RI */ |
| GEN_INT_ENTRY machine_check_early, virt=0 |
| #endif |
| |
| #define MACHINE_CHECK_HANDLER_WINDUP \ |
| /* Clear MSR_RI before setting SRR0 and SRR1. */\ |
| li r9,0; \ |
| mtmsrd r9,1; /* Clear MSR_RI */ \ |
| /* Decrement paca->in_mce now RI is clear. */ \ |
| lhz r12,PACA_IN_MCE(r13); \ |
| subi r12,r12,1; \ |
| sth r12,PACA_IN_MCE(r13); \ |
| EXCEPTION_RESTORE_REGS |
| |
| EXC_COMMON_BEGIN(machine_check_early_common) |
| __GEN_REALMODE_COMMON_ENTRY machine_check_early |
| |
| /* |
| * Switch to mc_emergency stack and handle re-entrancy (we limit |
| * the nested MCE upto level 4 to avoid stack overflow). |
| * Save MCE registers srr1, srr0, dar and dsisr and then set ME=1 |
| * |
| * We use paca->in_mce to check whether this is the first entry or |
| * nested machine check. We increment paca->in_mce to track nested |
| * machine checks. |
| * |
| * If this is the first entry then set stack pointer to |
| * paca->mc_emergency_sp, otherwise r1 is already pointing to |
| * stack frame on mc_emergency stack. |
| * |
| * NOTE: We are here with MSR_ME=0 (off), which means we risk a |
| * checkstop if we get another machine check exception before we do |
| * rfid with MSR_ME=1. |
| * |
| * This interrupt can wake directly from idle. If that is the case, |
| * the machine check is handled then the idle wakeup code is called |
| * to restore state. |
| */ |
| lhz r10,PACA_IN_MCE(r13) |
| cmpwi r10,0 /* Are we in nested machine check */ |
| cmpwi cr1,r10,MAX_MCE_DEPTH /* Are we at maximum nesting */ |
| addi r10,r10,1 /* increment paca->in_mce */ |
| sth r10,PACA_IN_MCE(r13) |
| |
| mr r10,r1 /* Save r1 */ |
| bne 1f |
| /* First machine check entry */ |
| ld r1,PACAMCEMERGSP(r13) /* Use MC emergency stack */ |
| 1: /* Limit nested MCE to level 4 to avoid stack overflow */ |
| bgt cr1,unrecoverable_mce /* Check if we hit limit of 4 */ |
| subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */ |
| |
| __GEN_COMMON_BODY machine_check_early |
| |
| BEGIN_FTR_SECTION |
| bl enable_machine_check |
| END_FTR_SECTION_IFSET(CPU_FTR_HVMODE) |
| li r10,MSR_RI |
| mtmsrd r10,1 |
| |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl machine_check_early |
| std r3,RESULT(r1) /* Save result */ |
| ld r12,_MSR(r1) |
| |
| #ifdef CONFIG_PPC_P7_NAP |
| /* |
| * Check if thread was in power saving mode. We come here when any |
| * of the following is true: |
| * a. thread wasn't in power saving mode |
| * b. thread was in power saving mode with no state loss, |
| * supervisor state loss or hypervisor state loss. |
| * |
| * Go back to nap/sleep/winkle mode again if (b) is true. |
| */ |
| BEGIN_FTR_SECTION |
| rlwinm. r11,r12,47-31,30,31 |
| bne machine_check_idle_common |
| END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) |
| #endif |
| |
| #ifdef CONFIG_KVM_BOOK3S_64_HANDLER |
| /* |
| * Check if we are coming from guest. If yes, then run the normal |
| * exception handler which will take the |
| * machine_check_kvm->kvmppc_interrupt branch to deliver the MC event |
| * to guest. |
| */ |
| lbz r11,HSTATE_IN_GUEST(r13) |
| cmpwi r11,0 /* Check if coming from guest */ |
| bne mce_deliver /* continue if we are. */ |
| #endif |
| |
| /* |
| * Check if we are coming from userspace. If yes, then run the normal |
| * exception handler which will deliver the MC event to this kernel. |
| */ |
| andi. r11,r12,MSR_PR /* See if coming from user. */ |
| bne mce_deliver /* continue in V mode if we are. */ |
| |
| /* |
| * At this point we are coming from kernel context. |
| * Queue up the MCE event and return from the interrupt. |
| * But before that, check if this is an un-recoverable exception. |
| * If yes, then stay on emergency stack and panic. |
| */ |
| andi. r11,r12,MSR_RI |
| beq unrecoverable_mce |
| |
| /* |
| * Check if we have successfully handled/recovered from error, if not |
| * then stay on emergency stack and panic. |
| */ |
| ld r3,RESULT(r1) /* Load result */ |
| cmpdi r3,0 /* see if we handled MCE successfully */ |
| beq unrecoverable_mce /* if !handled then panic */ |
| |
| /* |
| * Return from MC interrupt. |
| * Queue up the MCE event so that we can log it later, while |
| * returning from kernel or opal call. |
| */ |
| bl machine_check_queue_event |
| MACHINE_CHECK_HANDLER_WINDUP |
| RFI_TO_KERNEL |
| |
| mce_deliver: |
| /* |
| * This is a host user or guest MCE. Restore all registers, then |
| * run the "late" handler. For host user, this will run the |
| * machine_check_exception handler in virtual mode like a normal |
| * interrupt handler. For guest, this will trigger the KVM test |
| * and branch to the KVM interrupt similarly to other interrupts. |
| */ |
| BEGIN_FTR_SECTION |
| ld r10,ORIG_GPR3(r1) |
| mtspr SPRN_CFAR,r10 |
| END_FTR_SECTION_IFSET(CPU_FTR_CFAR) |
| MACHINE_CHECK_HANDLER_WINDUP |
| GEN_INT_ENTRY machine_check, virt=0 |
| |
| EXC_COMMON_BEGIN(machine_check_common) |
| /* |
| * Machine check is different because we use a different |
| * save area: PACA_EXMC instead of PACA_EXGEN. |
| */ |
| GEN_COMMON machine_check |
| |
| FINISH_NAP |
| /* Enable MSR_RI when finished with PACA_EXMC */ |
| li r10,MSR_RI |
| mtmsrd r10,1 |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl machine_check_exception |
| b interrupt_return |
| |
| GEN_KVM machine_check |
| |
| |
| #ifdef CONFIG_PPC_P7_NAP |
| /* |
| * This is an idle wakeup. Low level machine check has already been |
| * done. Queue the event then call the idle code to do the wake up. |
| */ |
| EXC_COMMON_BEGIN(machine_check_idle_common) |
| bl machine_check_queue_event |
| |
| /* |
| * GPR-loss wakeups are relatively straightforward, because the |
| * idle sleep code has saved all non-volatile registers on its |
| * own stack, and r1 in PACAR1. |
| * |
| * For no-loss wakeups the r1 and lr registers used by the |
| * early machine check handler have to be restored first. r2 is |
| * the kernel TOC, so no need to restore it. |
| * |
| * Then decrement MCE nesting after finishing with the stack. |
| */ |
| ld r3,_MSR(r1) |
| ld r4,_LINK(r1) |
| ld r1,GPR1(r1) |
| |
| lhz r11,PACA_IN_MCE(r13) |
| subi r11,r11,1 |
| sth r11,PACA_IN_MCE(r13) |
| |
| mtlr r4 |
| rlwinm r10,r3,47-31,30,31 |
| cmpwi cr1,r10,2 |
| bltlr cr1 /* no state loss, return to idle caller with r3=SRR1 */ |
| b idle_return_gpr_loss |
| #endif |
| |
| EXC_COMMON_BEGIN(unrecoverable_mce) |
| /* |
| * We are going down. But there are chances that we might get hit by |
| * another MCE during panic path and we may run into unstable state |
| * with no way out. Hence, turn ME bit off while going down, so that |
| * when another MCE is hit during panic path, system will checkstop |
| * and hypervisor will get restarted cleanly by SP. |
| */ |
| BEGIN_FTR_SECTION |
| li r10,0 /* clear MSR_RI */ |
| mtmsrd r10,1 |
| bl disable_machine_check |
| END_FTR_SECTION_IFSET(CPU_FTR_HVMODE) |
| ld r10,PACAKMSR(r13) |
| li r3,MSR_ME |
| andc r10,r10,r3 |
| mtmsrd r10 |
| |
| lhz r12,PACA_IN_MCE(r13) |
| subi r12,r12,1 |
| sth r12,PACA_IN_MCE(r13) |
| |
| /* Invoke machine_check_exception to print MCE event and panic. */ |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl machine_check_exception |
| |
| /* |
| * We will not reach here. Even if we did, there is no way out. |
| * Call unrecoverable_exception and die. |
| */ |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl unrecoverable_exception |
| b . |
| |
| |
| /** |
| * Interrupt 0x300 - Data Storage Interrupt (DSI). |
| * This is a synchronous interrupt generated due to a data access exception, |
| * e.g., a load orstore which does not have a valid page table entry with |
| * permissions. DAWR matches also fault here, as do RC updates, and minor misc |
| * errors e.g., copy/paste, AMO, certain invalid CI accesses, etc. |
| * |
| * Handling: |
| * - Hash MMU |
| * Go to do_hash_fault, which attempts to fill the HPT from an entry in the |
| * Linux page table. Hash faults can hit in kernel mode in a fairly |
| * arbitrary state (e.g., interrupts disabled, locks held) when accessing |
| * "non-bolted" regions, e.g., vmalloc space. However these should always be |
| * backed by Linux page table entries. |
| * |
| * If no entry is found the Linux page fault handler is invoked (by |
| * do_hash_fault). Linux page faults can happen in kernel mode due to user |
| * copy operations of course. |
| * |
| * KVM: The KVM HDSI handler may perform a load with MSR[DR]=1 in guest |
| * MMU context, which may cause a DSI in the host, which must go to the |
| * KVM handler. MSR[IR] is not enabled, so the real-mode handler will |
| * always be used regardless of AIL setting. |
| * |
| * - Radix MMU |
| * The hardware loads from the Linux page table directly, so a fault goes |
| * immediately to Linux page fault. |
| * |
| * Conditions like DAWR match are handled on the way in to Linux page fault. |
| */ |
| INT_DEFINE_BEGIN(data_access) |
| IVEC=0x300 |
| IDAR=1 |
| IDSISR=1 |
| IKVM_SKIP=1 |
| IKVM_REAL=1 |
| INT_DEFINE_END(data_access) |
| |
| EXC_REAL_BEGIN(data_access, 0x300, 0x80) |
| GEN_INT_ENTRY data_access, virt=0 |
| EXC_REAL_END(data_access, 0x300, 0x80) |
| EXC_VIRT_BEGIN(data_access, 0x4300, 0x80) |
| GEN_INT_ENTRY data_access, virt=1 |
| EXC_VIRT_END(data_access, 0x4300, 0x80) |
| EXC_COMMON_BEGIN(data_access_common) |
| GEN_COMMON data_access |
| ld r4,_DSISR(r1) |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| andis. r0,r4,DSISR_DABRMATCH@h |
| bne- 1f |
| BEGIN_MMU_FTR_SECTION |
| bl do_hash_fault |
| MMU_FTR_SECTION_ELSE |
| bl do_page_fault |
| ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX) |
| b interrupt_return |
| |
| 1: bl do_break |
| /* |
| * do_break() may have changed the NV GPRS while handling a breakpoint. |
| * If so, we need to restore them with their updated values. |
| */ |
| REST_NVGPRS(r1) |
| b interrupt_return |
| |
| GEN_KVM data_access |
| |
| |
| /** |
| * Interrupt 0x380 - Data Segment Interrupt (DSLB). |
| * This is a synchronous interrupt in response to an MMU fault missing SLB |
| * entry for HPT, or an address outside RPT translation range. |
| * |
| * Handling: |
| * - HPT: |
| * This refills the SLB, or reports an access fault similarly to a bad page |
| * fault. When coming from user-mode, the SLB handler may access any kernel |
| * data, though it may itself take a DSLB. When coming from kernel mode, |
| * recursive faults must be avoided so access is restricted to the kernel |
| * image text/data, kernel stack, and any data allocated below |
| * ppc64_bolted_size (first segment). The kernel handler must avoid stomping |
| * on user-handler data structures. |
| * |
| * KVM: Same as 0x300, DSLB must test for KVM guest. |
| */ |
| INT_DEFINE_BEGIN(data_access_slb) |
| IVEC=0x380 |
| IDAR=1 |
| IKVM_SKIP=1 |
| IKVM_REAL=1 |
| INT_DEFINE_END(data_access_slb) |
| |
| EXC_REAL_BEGIN(data_access_slb, 0x380, 0x80) |
| GEN_INT_ENTRY data_access_slb, virt=0 |
| EXC_REAL_END(data_access_slb, 0x380, 0x80) |
| EXC_VIRT_BEGIN(data_access_slb, 0x4380, 0x80) |
| GEN_INT_ENTRY data_access_slb, virt=1 |
| EXC_VIRT_END(data_access_slb, 0x4380, 0x80) |
| EXC_COMMON_BEGIN(data_access_slb_common) |
| GEN_COMMON data_access_slb |
| BEGIN_MMU_FTR_SECTION |
| /* HPT case, do SLB fault */ |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl do_slb_fault |
| cmpdi r3,0 |
| bne- 1f |
| b fast_interrupt_return |
| 1: /* Error case */ |
| MMU_FTR_SECTION_ELSE |
| /* Radix case, access is outside page table range */ |
| li r3,-EFAULT |
| ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX) |
| std r3,RESULT(r1) |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl do_bad_slb_fault |
| b interrupt_return |
| |
| GEN_KVM data_access_slb |
| |
| |
| /** |
| * Interrupt 0x400 - Instruction Storage Interrupt (ISI). |
| * This is a synchronous interrupt in response to an MMU fault due to an |
| * instruction fetch. |
| * |
| * Handling: |
| * Similar to DSI, though in response to fetch. The faulting address is found |
| * in SRR0 (rather than DAR), and status in SRR1 (rather than DSISR). |
| */ |
| INT_DEFINE_BEGIN(instruction_access) |
| IVEC=0x400 |
| IISIDE=1 |
| IDAR=1 |
| IDSISR=1 |
| #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE |
| IKVM_REAL=1 |
| #endif |
| INT_DEFINE_END(instruction_access) |
| |
| EXC_REAL_BEGIN(instruction_access, 0x400, 0x80) |
| GEN_INT_ENTRY instruction_access, virt=0 |
| EXC_REAL_END(instruction_access, 0x400, 0x80) |
| EXC_VIRT_BEGIN(instruction_access, 0x4400, 0x80) |
| GEN_INT_ENTRY instruction_access, virt=1 |
| EXC_VIRT_END(instruction_access, 0x4400, 0x80) |
| EXC_COMMON_BEGIN(instruction_access_common) |
| GEN_COMMON instruction_access |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| BEGIN_MMU_FTR_SECTION |
| bl do_hash_fault |
| MMU_FTR_SECTION_ELSE |
| bl do_page_fault |
| ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX) |
| b interrupt_return |
| |
| GEN_KVM instruction_access |
| |
| |
| /** |
| * Interrupt 0x480 - Instruction Segment Interrupt (ISLB). |
| * This is a synchronous interrupt in response to an MMU fault due to an |
| * instruction fetch. |
| * |
| * Handling: |
| * Similar to DSLB, though in response to fetch. The faulting address is found |
| * in SRR0 (rather than DAR). |
| */ |
| INT_DEFINE_BEGIN(instruction_access_slb) |
| IVEC=0x480 |
| IISIDE=1 |
| IDAR=1 |
| #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE |
| IKVM_REAL=1 |
| #endif |
| INT_DEFINE_END(instruction_access_slb) |
| |
| EXC_REAL_BEGIN(instruction_access_slb, 0x480, 0x80) |
| GEN_INT_ENTRY instruction_access_slb, virt=0 |
| EXC_REAL_END(instruction_access_slb, 0x480, 0x80) |
| EXC_VIRT_BEGIN(instruction_access_slb, 0x4480, 0x80) |
| GEN_INT_ENTRY instruction_access_slb, virt=1 |
| EXC_VIRT_END(instruction_access_slb, 0x4480, 0x80) |
| EXC_COMMON_BEGIN(instruction_access_slb_common) |
| GEN_COMMON instruction_access_slb |
| BEGIN_MMU_FTR_SECTION |
| /* HPT case, do SLB fault */ |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl do_slb_fault |
| cmpdi r3,0 |
| bne- 1f |
| b fast_interrupt_return |
| 1: /* Error case */ |
| MMU_FTR_SECTION_ELSE |
| /* Radix case, access is outside page table range */ |
| li r3,-EFAULT |
| ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX) |
| std r3,RESULT(r1) |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl do_bad_slb_fault |
| b interrupt_return |
| |
| GEN_KVM instruction_access_slb |
| |
| |
| /** |
| * Interrupt 0x500 - External Interrupt. |
| * This is an asynchronous maskable interrupt in response to an "external |
| * exception" from the interrupt controller or hypervisor (e.g., device |
| * interrupt). It is maskable in hardware by clearing MSR[EE], and |
| * soft-maskable with IRQS_DISABLED mask (i.e., local_irq_disable()). |
| * |
| * When running in HV mode, Linux sets up the LPCR[LPES] bit such that |
| * interrupts are delivered with HSRR registers, guests use SRRs, which |
| * reqiures IHSRR_IF_HVMODE. |
| * |
| * On bare metal POWER9 and later, Linux sets the LPCR[HVICE] bit such that |
| * external interrupts are delivered as Hypervisor Virtualization Interrupts |
| * rather than External Interrupts. |
| * |
| * Handling: |
| * This calls into Linux IRQ handler. NVGPRs are not saved to reduce overhead, |
| * because registers at the time of the interrupt are not so important as it is |
| * asynchronous. |
| * |
| * If soft masked, the masked handler will note the pending interrupt for |
| * replay, and clear MSR[EE] in the interrupted context. |
| */ |
| INT_DEFINE_BEGIN(hardware_interrupt) |
| IVEC=0x500 |
| IHSRR_IF_HVMODE=1 |
| IMASK=IRQS_DISABLED |
| IKVM_REAL=1 |
| IKVM_VIRT=1 |
| INT_DEFINE_END(hardware_interrupt) |
| |
| EXC_REAL_BEGIN(hardware_interrupt, 0x500, 0x100) |
| GEN_INT_ENTRY hardware_interrupt, virt=0 |
| EXC_REAL_END(hardware_interrupt, 0x500, 0x100) |
| EXC_VIRT_BEGIN(hardware_interrupt, 0x4500, 0x100) |
| GEN_INT_ENTRY hardware_interrupt, virt=1 |
| EXC_VIRT_END(hardware_interrupt, 0x4500, 0x100) |
| EXC_COMMON_BEGIN(hardware_interrupt_common) |
| GEN_COMMON hardware_interrupt |
| FINISH_NAP |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl do_IRQ |
| b interrupt_return |
| |
| GEN_KVM hardware_interrupt |
| |
| |
| /** |
| * Interrupt 0x600 - Alignment Interrupt |
| * This is a synchronous interrupt in response to data alignment fault. |
| */ |
| INT_DEFINE_BEGIN(alignment) |
| IVEC=0x600 |
| IDAR=1 |
| IDSISR=1 |
| #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE |
| IKVM_REAL=1 |
| #endif |
| INT_DEFINE_END(alignment) |
| |
| EXC_REAL_BEGIN(alignment, 0x600, 0x100) |
| GEN_INT_ENTRY alignment, virt=0 |
| EXC_REAL_END(alignment, 0x600, 0x100) |
| EXC_VIRT_BEGIN(alignment, 0x4600, 0x100) |
| GEN_INT_ENTRY alignment, virt=1 |
| EXC_VIRT_END(alignment, 0x4600, 0x100) |
| EXC_COMMON_BEGIN(alignment_common) |
| GEN_COMMON alignment |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl alignment_exception |
| REST_NVGPRS(r1) /* instruction emulation may change GPRs */ |
| b interrupt_return |
| |
| GEN_KVM alignment |
| |
| |
| /** |
| * Interrupt 0x700 - Program Interrupt (program check). |
| * This is a synchronous interrupt in response to various instruction faults: |
| * traps, privilege errors, TM errors, floating point exceptions. |
| * |
| * Handling: |
| * This interrupt may use the "emergency stack" in some cases when being taken |
| * from kernel context, which complicates handling. |
| */ |
| INT_DEFINE_BEGIN(program_check) |
| IVEC=0x700 |
| #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE |
| IKVM_REAL=1 |
| #endif |
| INT_DEFINE_END(program_check) |
| |
| EXC_REAL_BEGIN(program_check, 0x700, 0x100) |
| |
| #ifdef CONFIG_CPU_LITTLE_ENDIAN |
| /* |
| * There's a short window during boot where although the kernel is |
| * running little endian, any exceptions will cause the CPU to switch |
| * back to big endian. For example a WARN() boils down to a trap |
| * instruction, which will cause a program check, and we end up here but |
| * with the CPU in big endian mode. The first instruction of the program |
| * check handler (in GEN_INT_ENTRY below) is an mtsprg, which when |
| * executed in the wrong endian is an lhzu with a ~3GB displacement from |
| * r3. The content of r3 is random, so that is a load from some random |
| * location, and depending on the system can easily lead to a checkstop, |
| * or an infinitely recursive page fault. |
| * |
| * So to handle that case we have a trampoline here that can detect we |
| * are in the wrong endian and flip us back to the correct endian. We |
| * can't flip MSR[LE] using mtmsr, so we have to use rfid. That requires |
| * backing up SRR0/1 as well as a GPR. To do that we use SPRG0/2/3, as |
| * SPRG1 is already used for the paca. SPRG3 is user readable, but this |
| * trampoline is only active very early in boot, and SPRG3 will be |
| * reinitialised in vdso_getcpu_init() before userspace starts. |
| */ |
| BEGIN_FTR_SECTION |
| tdi 0,0,0x48 // Trap never, or in reverse endian: b . + 8 |
| b 1f // Skip trampoline if endian is correct |
| .long 0xa643707d // mtsprg 0, r11 Backup r11 |
| .long 0xa6027a7d // mfsrr0 r11 |
| .long 0xa643727d // mtsprg 2, r11 Backup SRR0 in SPRG2 |
| .long 0xa6027b7d // mfsrr1 r11 |
| .long 0xa643737d // mtsprg 3, r11 Backup SRR1 in SPRG3 |
| .long 0xa600607d // mfmsr r11 |
| .long 0x01006b69 // xori r11, r11, 1 Invert MSR[LE] |
| .long 0xa6037b7d // mtsrr1 r11 |
| .long 0x34076039 // li r11, 0x734 |
| .long 0xa6037a7d // mtsrr0 r11 |
| .long 0x2400004c // rfid |
| mfsprg r11, 3 |
| mtsrr1 r11 // Restore SRR1 |
| mfsprg r11, 2 |
| mtsrr0 r11 // Restore SRR0 |
| mfsprg r11, 0 // Restore r11 |
| 1: |
| END_FTR_SECTION(0, 1) // nop out after boot |
| #endif /* CONFIG_CPU_LITTLE_ENDIAN */ |
| |
| GEN_INT_ENTRY program_check, virt=0 |
| EXC_REAL_END(program_check, 0x700, 0x100) |
| EXC_VIRT_BEGIN(program_check, 0x4700, 0x100) |
| GEN_INT_ENTRY program_check, virt=1 |
| EXC_VIRT_END(program_check, 0x4700, 0x100) |
| EXC_COMMON_BEGIN(program_check_common) |
| __GEN_COMMON_ENTRY program_check |
| |
| /* |
| * It's possible to receive a TM Bad Thing type program check with |
| * userspace register values (in particular r1), but with SRR1 reporting |
| * that we came from the kernel. Normally that would confuse the bad |
| * stack logic, and we would report a bad kernel stack pointer. Instead |
| * we switch to the emergency stack if we're taking a TM Bad Thing from |
| * the kernel. |
| */ |
| |
| andi. r10,r12,MSR_PR |
| bne 2f /* If userspace, go normal path */ |
| |
| andis. r10,r12,(SRR1_PROGTM)@h |
| bne 1f /* If TM, emergency */ |
| |
| cmpdi r1,-INT_FRAME_SIZE /* check if r1 is in userspace */ |
| blt 2f /* normal path if not */ |
| |
| /* Use the emergency stack */ |
| 1: andi. r10,r12,MSR_PR /* Set CR0 correctly for label */ |
| /* 3 in EXCEPTION_PROLOG_COMMON */ |
| mr r10,r1 /* Save r1 */ |
| ld r1,PACAEMERGSP(r13) /* Use emergency stack */ |
| subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */ |
| __ISTACK(program_check)=0 |
| __GEN_COMMON_BODY program_check |
| b 3f |
| 2: |
| __ISTACK(program_check)=1 |
| __GEN_COMMON_BODY program_check |
| 3: |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl program_check_exception |
| REST_NVGPRS(r1) /* instruction emulation may change GPRs */ |
| b interrupt_return |
| |
| GEN_KVM program_check |
| |
| |
| /* |
| * Interrupt 0x800 - Floating-Point Unavailable Interrupt. |
| * This is a synchronous interrupt in response to executing an fp instruction |
| * with MSR[FP]=0. |
| * |
| * Handling: |
| * This will load FP registers and enable the FP bit if coming from userspace, |
| * otherwise report a bad kernel use of FP. |
| */ |
| INT_DEFINE_BEGIN(fp_unavailable) |
| IVEC=0x800 |
| #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE |
| IKVM_REAL=1 |
| #endif |
| INT_DEFINE_END(fp_unavailable) |
| |
| EXC_REAL_BEGIN(fp_unavailable, 0x800, 0x100) |
| GEN_INT_ENTRY fp_unavailable, virt=0 |
| EXC_REAL_END(fp_unavailable, 0x800, 0x100) |
| EXC_VIRT_BEGIN(fp_unavailable, 0x4800, 0x100) |
| GEN_INT_ENTRY fp_unavailable, virt=1 |
| EXC_VIRT_END(fp_unavailable, 0x4800, 0x100) |
| EXC_COMMON_BEGIN(fp_unavailable_common) |
| GEN_COMMON fp_unavailable |
| bne 1f /* if from user, just load it up */ |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl kernel_fp_unavailable_exception |
| 0: trap |
| EMIT_BUG_ENTRY 0b, __FILE__, __LINE__, 0 |
| 1: |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| BEGIN_FTR_SECTION |
| /* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in |
| * transaction), go do TM stuff |
| */ |
| rldicl. r0, r12, (64-MSR_TS_LG), (64-2) |
| bne- 2f |
| END_FTR_SECTION_IFSET(CPU_FTR_TM) |
| #endif |
| bl load_up_fpu |
| b fast_interrupt_return |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| 2: /* User process was in a transaction */ |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl fp_unavailable_tm |
| b interrupt_return |
| #endif |
| |
| GEN_KVM fp_unavailable |
| |
| |
| /** |
| * Interrupt 0x900 - Decrementer Interrupt. |
| * This is an asynchronous interrupt in response to a decrementer exception |
| * (e.g., DEC has wrapped below zero). It is maskable in hardware by clearing |
| * MSR[EE], and soft-maskable with IRQS_DISABLED mask (i.e., |
| * local_irq_disable()). |
| * |
| * Handling: |
| * This calls into Linux timer handler. NVGPRs are not saved (see 0x500). |
| * |
| * If soft masked, the masked handler will note the pending interrupt for |
| * replay, and bump the decrementer to a high value, leaving MSR[EE] enabled |
| * in the interrupted context. |
| * If PPC_WATCHDOG is configured, the soft masked handler will actually set |
| * things back up to run soft_nmi_interrupt as a regular interrupt handler |
| * on the emergency stack. |
| */ |
| INT_DEFINE_BEGIN(decrementer) |
| IVEC=0x900 |
| IMASK=IRQS_DISABLED |
| #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE |
| IKVM_REAL=1 |
| #endif |
| INT_DEFINE_END(decrementer) |
| |
| EXC_REAL_BEGIN(decrementer, 0x900, 0x80) |
| GEN_INT_ENTRY decrementer, virt=0 |
| EXC_REAL_END(decrementer, 0x900, 0x80) |
| EXC_VIRT_BEGIN(decrementer, 0x4900, 0x80) |
| GEN_INT_ENTRY decrementer, virt=1 |
| EXC_VIRT_END(decrementer, 0x4900, 0x80) |
| EXC_COMMON_BEGIN(decrementer_common) |
| GEN_COMMON decrementer |
| FINISH_NAP |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl timer_interrupt |
| b interrupt_return |
| |
| GEN_KVM decrementer |
| |
| |
| /** |
| * Interrupt 0x980 - Hypervisor Decrementer Interrupt. |
| * This is an asynchronous interrupt, similar to 0x900 but for the HDEC |
| * register. |
| * |
| * Handling: |
| * Linux does not use this outside KVM where it's used to keep a host timer |
| * while the guest is given control of DEC. It should normally be caught by |
| * the KVM test and routed there. |
| */ |
| INT_DEFINE_BEGIN(hdecrementer) |
| IVEC=0x980 |
| IHSRR=1 |
| ISTACK=0 |
| IKVM_REAL=1 |
| IKVM_VIRT=1 |
| INT_DEFINE_END(hdecrementer) |
| |
| EXC_REAL_BEGIN(hdecrementer, 0x980, 0x80) |
| GEN_INT_ENTRY hdecrementer, virt=0 |
| EXC_REAL_END(hdecrementer, 0x980, 0x80) |
| EXC_VIRT_BEGIN(hdecrementer, 0x4980, 0x80) |
| GEN_INT_ENTRY hdecrementer, virt=1 |
| EXC_VIRT_END(hdecrementer, 0x4980, 0x80) |
| EXC_COMMON_BEGIN(hdecrementer_common) |
| __GEN_COMMON_ENTRY hdecrementer |
| /* |
| * Hypervisor decrementer interrupts not caught by the KVM test |
| * shouldn't occur but are sometimes left pending on exit from a KVM |
| * guest. We don't need to do anything to clear them, as they are |
| * edge-triggered. |
| * |
| * Be careful to avoid touching the kernel stack. |
| */ |
| ld r10,PACA_EXGEN+EX_CTR(r13) |
| mtctr r10 |
| mtcrf 0x80,r9 |
| ld r9,PACA_EXGEN+EX_R9(r13) |
| ld r10,PACA_EXGEN+EX_R10(r13) |
| ld r11,PACA_EXGEN+EX_R11(r13) |
| ld r12,PACA_EXGEN+EX_R12(r13) |
| ld r13,PACA_EXGEN+EX_R13(r13) |
| HRFI_TO_KERNEL |
| |
| GEN_KVM hdecrementer |
| |
| |
| /** |
| * Interrupt 0xa00 - Directed Privileged Doorbell Interrupt. |
| * This is an asynchronous interrupt in response to a msgsndp doorbell. |
| * It is maskable in hardware by clearing MSR[EE], and soft-maskable with |
| * IRQS_DISABLED mask (i.e., local_irq_disable()). |
| * |
| * Handling: |
| * Guests may use this for IPIs between threads in a core if the |
| * hypervisor supports it. NVGPRS are not saved (see 0x500). |
| * |
| * If soft masked, the masked handler will note the pending interrupt for |
| * replay, leaving MSR[EE] enabled in the interrupted context because the |
| * doorbells are edge triggered. |
| */ |
| INT_DEFINE_BEGIN(doorbell_super) |
| IVEC=0xa00 |
| IMASK=IRQS_DISABLED |
| #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE |
| IKVM_REAL=1 |
| #endif |
| INT_DEFINE_END(doorbell_super) |
| |
| EXC_REAL_BEGIN(doorbell_super, 0xa00, 0x100) |
| GEN_INT_ENTRY doorbell_super, virt=0 |
| EXC_REAL_END(doorbell_super, 0xa00, 0x100) |
| EXC_VIRT_BEGIN(doorbell_super, 0x4a00, 0x100) |
| GEN_INT_ENTRY doorbell_super, virt=1 |
| EXC_VIRT_END(doorbell_super, 0x4a00, 0x100) |
| EXC_COMMON_BEGIN(doorbell_super_common) |
| GEN_COMMON doorbell_super |
| FINISH_NAP |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| #ifdef CONFIG_PPC_DOORBELL |
| bl doorbell_exception |
| #else |
| bl unknown_async_exception |
| #endif |
| b interrupt_return |
| |
| GEN_KVM doorbell_super |
| |
| |
| EXC_REAL_NONE(0xb00, 0x100) |
| EXC_VIRT_NONE(0x4b00, 0x100) |
| |
| /** |
| * Interrupt 0xc00 - System Call Interrupt (syscall, hcall). |
| * This is a synchronous interrupt invoked with the "sc" instruction. The |
| * system call is invoked with "sc 0" and does not alter the HV bit, so it |
| * is directed to the currently running OS. The hypercall is invoked with |
| * "sc 1" and it sets HV=1, so it elevates to hypervisor. |
| * |
| * In HPT, sc 1 always goes to 0xc00 real mode. In RADIX, sc 1 can go to |
| * 0x4c00 virtual mode. |
| * |
| * Handling: |
| * If the KVM test fires then it was due to a hypercall and is accordingly |
| * routed to KVM. Otherwise this executes a normal Linux system call. |
| * |
| * Call convention: |
| * |
| * syscall and hypercalls register conventions are documented in |
| * Documentation/powerpc/syscall64-abi.rst and |
| * Documentation/powerpc/papr_hcalls.rst respectively. |
| * |
| * The intersection of volatile registers that don't contain possible |
| * inputs is: cr0, xer, ctr. We may use these as scratch regs upon entry |
| * without saving, though xer is not a good idea to use, as hardware may |
| * interpret some bits so it may be costly to change them. |
| */ |
| INT_DEFINE_BEGIN(system_call) |
| IVEC=0xc00 |
| IKVM_REAL=1 |
| IKVM_VIRT=1 |
| INT_DEFINE_END(system_call) |
| |
| .macro SYSTEM_CALL virt |
| #ifdef CONFIG_KVM_BOOK3S_64_HANDLER |
| /* |
| * There is a little bit of juggling to get syscall and hcall |
| * working well. Save r13 in ctr to avoid using SPRG scratch |
| * register. |
| * |
| * Userspace syscalls have already saved the PPR, hcalls must save |
| * it before setting HMT_MEDIUM. |
| */ |
| mtctr r13 |
| GET_PACA(r13) |
| std r10,PACA_EXGEN+EX_R10(r13) |
| INTERRUPT_TO_KERNEL |
| KVMTEST system_call /* uses r10, branch to system_call_kvm */ |
| mfctr r9 |
| #else |
| mr r9,r13 |
| GET_PACA(r13) |
| INTERRUPT_TO_KERNEL |
| #endif |
| |
| #ifdef CONFIG_PPC_FAST_ENDIAN_SWITCH |
| BEGIN_FTR_SECTION |
| cmpdi r0,0x1ebe |
| beq- 1f |
| END_FTR_SECTION_IFSET(CPU_FTR_REAL_LE) |
| #endif |
| |
| /* We reach here with PACA in r13, r13 in r9. */ |
| mfspr r11,SPRN_SRR0 |
| mfspr r12,SPRN_SRR1 |
| |
| HMT_MEDIUM |
| |
| .if ! \virt |
| __LOAD_HANDLER(r10, system_call_common_real) |
| mtctr r10 |
| bctr |
| .else |
| li r10,MSR_RI |
| mtmsrd r10,1 /* Set RI (EE=0) */ |
| #ifdef CONFIG_RELOCATABLE |
| __LOAD_HANDLER(r10, system_call_common) |
| mtctr r10 |
| bctr |
| #else |
| b system_call_common |
| #endif |
| .endif |
| |
| #ifdef CONFIG_PPC_FAST_ENDIAN_SWITCH |
| /* Fast LE/BE switch system call */ |
| 1: mfspr r12,SPRN_SRR1 |
| xori r12,r12,MSR_LE |
| mtspr SPRN_SRR1,r12 |
| mr r13,r9 |
| RFI_TO_USER /* return to userspace */ |
| b . /* prevent speculative execution */ |
| #endif |
| .endm |
| |
| EXC_REAL_BEGIN(system_call, 0xc00, 0x100) |
| SYSTEM_CALL 0 |
| EXC_REAL_END(system_call, 0xc00, 0x100) |
| EXC_VIRT_BEGIN(system_call, 0x4c00, 0x100) |
| SYSTEM_CALL 1 |
| EXC_VIRT_END(system_call, 0x4c00, 0x100) |
| |
| #ifdef CONFIG_KVM_BOOK3S_64_HANDLER |
| TRAMP_REAL_BEGIN(system_call_kvm) |
| /* |
| * This is a hcall, so register convention is as above, with these |
| * differences: |
| * r13 = PACA |
| * ctr = orig r13 |
| * orig r10 saved in PACA |
| */ |
| /* |
| * Save the PPR (on systems that support it) before changing to |
| * HMT_MEDIUM. That allows the KVM code to save that value into the |
| * guest state (it is the guest's PPR value). |
| */ |
| BEGIN_FTR_SECTION |
| mfspr r10,SPRN_PPR |
| std r10,HSTATE_PPR(r13) |
| END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR) |
| HMT_MEDIUM |
| mfctr r10 |
| SET_SCRATCH0(r10) |
| mfcr r10 |
| std r12,HSTATE_SCRATCH0(r13) |
| sldi r12,r10,32 |
| ori r12,r12,0xc00 |
| #ifdef CONFIG_RELOCATABLE |
| /* |
| * Requires __LOAD_FAR_HANDLER beause kvmppc_interrupt lives |
| * outside the head section. |
| */ |
| __LOAD_FAR_HANDLER(r10, kvmppc_interrupt) |
| mtctr r10 |
| ld r10,PACA_EXGEN+EX_R10(r13) |
| bctr |
| #else |
| ld r10,PACA_EXGEN+EX_R10(r13) |
| b kvmppc_interrupt |
| #endif |
| #endif |
| |
| |
| /** |
| * Interrupt 0xd00 - Trace Interrupt. |
| * This is a synchronous interrupt in response to instruction step or |
| * breakpoint faults. |
| */ |
| INT_DEFINE_BEGIN(single_step) |
| IVEC=0xd00 |
| #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE |
| IKVM_REAL=1 |
| #endif |
| INT_DEFINE_END(single_step) |
| |
| EXC_REAL_BEGIN(single_step, 0xd00, 0x100) |
| GEN_INT_ENTRY single_step, virt=0 |
| EXC_REAL_END(single_step, 0xd00, 0x100) |
| EXC_VIRT_BEGIN(single_step, 0x4d00, 0x100) |
| GEN_INT_ENTRY single_step, virt=1 |
| EXC_VIRT_END(single_step, 0x4d00, 0x100) |
| EXC_COMMON_BEGIN(single_step_common) |
| GEN_COMMON single_step |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl single_step_exception |
| b interrupt_return |
| |
| GEN_KVM single_step |
| |
| |
| /** |
| * Interrupt 0xe00 - Hypervisor Data Storage Interrupt (HDSI). |
| * This is a synchronous interrupt in response to an MMU fault caused by a |
| * guest data access. |
| * |
| * Handling: |
| * This should always get routed to KVM. In radix MMU mode, this is caused |
| * by a guest nested radix access that can't be performed due to the |
| * partition scope page table. In hash mode, this can be caused by guests |
| * running with translation disabled (virtual real mode) or with VPM enabled. |
| * KVM will update the page table structures or disallow the access. |
| */ |
| INT_DEFINE_BEGIN(h_data_storage) |
| IVEC=0xe00 |
| IHSRR=1 |
| IDAR=1 |
| IDSISR=1 |
| IKVM_SKIP=1 |
| IKVM_REAL=1 |
| IKVM_VIRT=1 |
| INT_DEFINE_END(h_data_storage) |
| |
| EXC_REAL_BEGIN(h_data_storage, 0xe00, 0x20) |
| GEN_INT_ENTRY h_data_storage, virt=0, ool=1 |
| EXC_REAL_END(h_data_storage, 0xe00, 0x20) |
| EXC_VIRT_BEGIN(h_data_storage, 0x4e00, 0x20) |
| GEN_INT_ENTRY h_data_storage, virt=1, ool=1 |
| EXC_VIRT_END(h_data_storage, 0x4e00, 0x20) |
| EXC_COMMON_BEGIN(h_data_storage_common) |
| GEN_COMMON h_data_storage |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| BEGIN_MMU_FTR_SECTION |
| bl do_bad_page_fault_segv |
| MMU_FTR_SECTION_ELSE |
| bl unknown_exception |
| ALT_MMU_FTR_SECTION_END_IFSET(MMU_FTR_TYPE_RADIX) |
| b interrupt_return |
| |
| GEN_KVM h_data_storage |
| |
| |
| /** |
| * Interrupt 0xe20 - Hypervisor Instruction Storage Interrupt (HISI). |
| * This is a synchronous interrupt in response to an MMU fault caused by a |
| * guest instruction fetch, similar to HDSI. |
| */ |
| INT_DEFINE_BEGIN(h_instr_storage) |
| IVEC=0xe20 |
| IHSRR=1 |
| IKVM_REAL=1 |
| IKVM_VIRT=1 |
| INT_DEFINE_END(h_instr_storage) |
| |
| EXC_REAL_BEGIN(h_instr_storage, 0xe20, 0x20) |
| GEN_INT_ENTRY h_instr_storage, virt=0, ool=1 |
| EXC_REAL_END(h_instr_storage, 0xe20, 0x20) |
| EXC_VIRT_BEGIN(h_instr_storage, 0x4e20, 0x20) |
| GEN_INT_ENTRY h_instr_storage, virt=1, ool=1 |
| EXC_VIRT_END(h_instr_storage, 0x4e20, 0x20) |
| EXC_COMMON_BEGIN(h_instr_storage_common) |
| GEN_COMMON h_instr_storage |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl unknown_exception |
| b interrupt_return |
| |
| GEN_KVM h_instr_storage |
| |
| |
| /** |
| * Interrupt 0xe40 - Hypervisor Emulation Assistance Interrupt. |
| */ |
| INT_DEFINE_BEGIN(emulation_assist) |
| IVEC=0xe40 |
| IHSRR=1 |
| IKVM_REAL=1 |
| IKVM_VIRT=1 |
| INT_DEFINE_END(emulation_assist) |
| |
| EXC_REAL_BEGIN(emulation_assist, 0xe40, 0x20) |
| GEN_INT_ENTRY emulation_assist, virt=0, ool=1 |
| EXC_REAL_END(emulation_assist, 0xe40, 0x20) |
| EXC_VIRT_BEGIN(emulation_assist, 0x4e40, 0x20) |
| GEN_INT_ENTRY emulation_assist, virt=1, ool=1 |
| EXC_VIRT_END(emulation_assist, 0x4e40, 0x20) |
| EXC_COMMON_BEGIN(emulation_assist_common) |
| GEN_COMMON emulation_assist |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl emulation_assist_interrupt |
| REST_NVGPRS(r1) /* instruction emulation may change GPRs */ |
| b interrupt_return |
| |
| GEN_KVM emulation_assist |
| |
| |
| /** |
| * Interrupt 0xe60 - Hypervisor Maintenance Interrupt (HMI). |
| * This is an asynchronous interrupt caused by a Hypervisor Maintenance |
| * Exception. It is always taken in real mode but uses HSRR registers |
| * unlike SRESET and MCE. |
| * |
| * It is maskable in hardware by clearing MSR[EE], and partially soft-maskable |
| * with IRQS_DISABLED mask (i.e., local_irq_disable()). |
| * |
| * Handling: |
| * This is a special case, this is handled similarly to machine checks, with an |
| * initial real mode handler that is not soft-masked, which attempts to fix the |
| * problem. Then a regular handler which is soft-maskable and reports the |
| * problem. |
| * |
| * The emergency stack is used for the early real mode handler. |
| * |
| * XXX: unclear why MCE and HMI schemes could not be made common, e.g., |
| * either use soft-masking for the MCE, or use irq_work for the HMI. |
| * |
| * KVM: |
| * Unlike MCE, this calls into KVM without calling the real mode handler |
| * first. |
| */ |
| INT_DEFINE_BEGIN(hmi_exception_early) |
| IVEC=0xe60 |
| IHSRR=1 |
| IREALMODE_COMMON=1 |
| ISTACK=0 |
| IKUAP=0 /* We don't touch AMR here, we never go to virtual mode */ |
| IKVM_REAL=1 |
| INT_DEFINE_END(hmi_exception_early) |
| |
| INT_DEFINE_BEGIN(hmi_exception) |
| IVEC=0xe60 |
| IHSRR=1 |
| IMASK=IRQS_DISABLED |
| IKVM_REAL=1 |
| INT_DEFINE_END(hmi_exception) |
| |
| EXC_REAL_BEGIN(hmi_exception, 0xe60, 0x20) |
| GEN_INT_ENTRY hmi_exception_early, virt=0, ool=1 |
| EXC_REAL_END(hmi_exception, 0xe60, 0x20) |
| EXC_VIRT_NONE(0x4e60, 0x20) |
| |
| EXC_COMMON_BEGIN(hmi_exception_early_common) |
| __GEN_REALMODE_COMMON_ENTRY hmi_exception_early |
| |
| mr r10,r1 /* Save r1 */ |
| ld r1,PACAEMERGSP(r13) /* Use emergency stack for realmode */ |
| subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */ |
| |
| __GEN_COMMON_BODY hmi_exception_early |
| |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl hmi_exception_realmode |
| cmpdi cr0,r3,0 |
| bne 1f |
| |
| EXCEPTION_RESTORE_REGS hsrr=1 |
| HRFI_TO_USER_OR_KERNEL |
| |
| 1: |
| /* |
| * Go to virtual mode and pull the HMI event information from |
| * firmware. |
| */ |
| EXCEPTION_RESTORE_REGS hsrr=1 |
| GEN_INT_ENTRY hmi_exception, virt=0 |
| |
| GEN_KVM hmi_exception_early |
| |
| EXC_COMMON_BEGIN(hmi_exception_common) |
| GEN_COMMON hmi_exception |
| FINISH_NAP |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl handle_hmi_exception |
| b interrupt_return |
| |
| GEN_KVM hmi_exception |
| |
| |
| /** |
| * Interrupt 0xe80 - Directed Hypervisor Doorbell Interrupt. |
| * This is an asynchronous interrupt in response to a msgsnd doorbell. |
| * Similar to the 0xa00 doorbell but for host rather than guest. |
| */ |
| INT_DEFINE_BEGIN(h_doorbell) |
| IVEC=0xe80 |
| IHSRR=1 |
| IMASK=IRQS_DISABLED |
| IKVM_REAL=1 |
| IKVM_VIRT=1 |
| INT_DEFINE_END(h_doorbell) |
| |
| EXC_REAL_BEGIN(h_doorbell, 0xe80, 0x20) |
| GEN_INT_ENTRY h_doorbell, virt=0, ool=1 |
| EXC_REAL_END(h_doorbell, 0xe80, 0x20) |
| EXC_VIRT_BEGIN(h_doorbell, 0x4e80, 0x20) |
| GEN_INT_ENTRY h_doorbell, virt=1, ool=1 |
| EXC_VIRT_END(h_doorbell, 0x4e80, 0x20) |
| EXC_COMMON_BEGIN(h_doorbell_common) |
| GEN_COMMON h_doorbell |
| FINISH_NAP |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| #ifdef CONFIG_PPC_DOORBELL |
| bl doorbell_exception |
| #else |
| bl unknown_async_exception |
| #endif |
| b interrupt_return |
| |
| GEN_KVM h_doorbell |
| |
| |
| /** |
| * Interrupt 0xea0 - Hypervisor Virtualization Interrupt. |
| * This is an asynchronous interrupt in response to an "external exception". |
| * Similar to 0x500 but for host only. |
| */ |
| INT_DEFINE_BEGIN(h_virt_irq) |
| IVEC=0xea0 |
| IHSRR=1 |
| IMASK=IRQS_DISABLED |
| IKVM_REAL=1 |
| IKVM_VIRT=1 |
| INT_DEFINE_END(h_virt_irq) |
| |
| EXC_REAL_BEGIN(h_virt_irq, 0xea0, 0x20) |
| GEN_INT_ENTRY h_virt_irq, virt=0, ool=1 |
| EXC_REAL_END(h_virt_irq, 0xea0, 0x20) |
| EXC_VIRT_BEGIN(h_virt_irq, 0x4ea0, 0x20) |
| GEN_INT_ENTRY h_virt_irq, virt=1, ool=1 |
| EXC_VIRT_END(h_virt_irq, 0x4ea0, 0x20) |
| EXC_COMMON_BEGIN(h_virt_irq_common) |
| GEN_COMMON h_virt_irq |
| FINISH_NAP |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl do_IRQ |
| b interrupt_return |
| |
| GEN_KVM h_virt_irq |
| |
| |
| EXC_REAL_NONE(0xec0, 0x20) |
| EXC_VIRT_NONE(0x4ec0, 0x20) |
| EXC_REAL_NONE(0xee0, 0x20) |
| EXC_VIRT_NONE(0x4ee0, 0x20) |
| |
| |
| /* |
| * Interrupt 0xf00 - Performance Monitor Interrupt (PMI, PMU). |
| * This is an asynchronous interrupt in response to a PMU exception. |
| * It is maskable in hardware by clearing MSR[EE], and soft-maskable with |
| * IRQS_PMI_DISABLED mask (NOTE: NOT local_irq_disable()). |
| * |
| * Handling: |
| * This calls into the perf subsystem. |
| * |
| * Like the watchdog soft-nmi, it appears an NMI interrupt to Linux, in that it |
| * runs under local_irq_disable. However it may be soft-masked in |
| * powerpc-specific code. |
| * |
| * If soft masked, the masked handler will note the pending interrupt for |
| * replay, and clear MSR[EE] in the interrupted context. |
| */ |
| INT_DEFINE_BEGIN(performance_monitor) |
| IVEC=0xf00 |
| IMASK=IRQS_PMI_DISABLED |
| #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE |
| IKVM_REAL=1 |
| #endif |
| INT_DEFINE_END(performance_monitor) |
| |
| EXC_REAL_BEGIN(performance_monitor, 0xf00, 0x20) |
| GEN_INT_ENTRY performance_monitor, virt=0, ool=1 |
| EXC_REAL_END(performance_monitor, 0xf00, 0x20) |
| EXC_VIRT_BEGIN(performance_monitor, 0x4f00, 0x20) |
| GEN_INT_ENTRY performance_monitor, virt=1, ool=1 |
| EXC_VIRT_END(performance_monitor, 0x4f00, 0x20) |
| EXC_COMMON_BEGIN(performance_monitor_common) |
| GEN_COMMON performance_monitor |
| FINISH_NAP |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl performance_monitor_exception |
| b interrupt_return |
| |
| GEN_KVM performance_monitor |
| |
| |
| /** |
| * Interrupt 0xf20 - Vector Unavailable Interrupt. |
| * This is a synchronous interrupt in response to |
| * executing a vector (or altivec) instruction with MSR[VEC]=0. |
| * Similar to FP unavailable. |
| */ |
| INT_DEFINE_BEGIN(altivec_unavailable) |
| IVEC=0xf20 |
| #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE |
| IKVM_REAL=1 |
| #endif |
| INT_DEFINE_END(altivec_unavailable) |
| |
| EXC_REAL_BEGIN(altivec_unavailable, 0xf20, 0x20) |
| GEN_INT_ENTRY altivec_unavailable, virt=0, ool=1 |
| EXC_REAL_END(altivec_unavailable, 0xf20, 0x20) |
| EXC_VIRT_BEGIN(altivec_unavailable, 0x4f20, 0x20) |
| GEN_INT_ENTRY altivec_unavailable, virt=1, ool=1 |
| EXC_VIRT_END(altivec_unavailable, 0x4f20, 0x20) |
| EXC_COMMON_BEGIN(altivec_unavailable_common) |
| GEN_COMMON altivec_unavailable |
| #ifdef CONFIG_ALTIVEC |
| BEGIN_FTR_SECTION |
| beq 1f |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| BEGIN_FTR_SECTION_NESTED(69) |
| /* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in |
| * transaction), go do TM stuff |
| */ |
| rldicl. r0, r12, (64-MSR_TS_LG), (64-2) |
| bne- 2f |
| END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69) |
| #endif |
| bl load_up_altivec |
| b fast_interrupt_return |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| 2: /* User process was in a transaction */ |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl altivec_unavailable_tm |
| b interrupt_return |
| #endif |
| 1: |
| END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC) |
| #endif |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl altivec_unavailable_exception |
| b interrupt_return |
| |
| GEN_KVM altivec_unavailable |
| |
| |
| /** |
| * Interrupt 0xf40 - VSX Unavailable Interrupt. |
| * This is a synchronous interrupt in response to |
| * executing a VSX instruction with MSR[VSX]=0. |
| * Similar to FP unavailable. |
| */ |
| INT_DEFINE_BEGIN(vsx_unavailable) |
| IVEC=0xf40 |
| #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE |
| IKVM_REAL=1 |
| #endif |
| INT_DEFINE_END(vsx_unavailable) |
| |
| EXC_REAL_BEGIN(vsx_unavailable, 0xf40, 0x20) |
| GEN_INT_ENTRY vsx_unavailable, virt=0, ool=1 |
| EXC_REAL_END(vsx_unavailable, 0xf40, 0x20) |
| EXC_VIRT_BEGIN(vsx_unavailable, 0x4f40, 0x20) |
| GEN_INT_ENTRY vsx_unavailable, virt=1, ool=1 |
| EXC_VIRT_END(vsx_unavailable, 0x4f40, 0x20) |
| EXC_COMMON_BEGIN(vsx_unavailable_common) |
| GEN_COMMON vsx_unavailable |
| #ifdef CONFIG_VSX |
| BEGIN_FTR_SECTION |
| beq 1f |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| BEGIN_FTR_SECTION_NESTED(69) |
| /* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in |
| * transaction), go do TM stuff |
| */ |
| rldicl. r0, r12, (64-MSR_TS_LG), (64-2) |
| bne- 2f |
| END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69) |
| #endif |
| b load_up_vsx |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| 2: /* User process was in a transaction */ |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl vsx_unavailable_tm |
| b interrupt_return |
| #endif |
| 1: |
| END_FTR_SECTION_IFSET(CPU_FTR_VSX) |
| #endif |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl vsx_unavailable_exception |
| b interrupt_return |
| |
| GEN_KVM vsx_unavailable |
| |
| |
| /** |
| * Interrupt 0xf60 - Facility Unavailable Interrupt. |
| * This is a synchronous interrupt in response to |
| * executing an instruction without access to the facility that can be |
| * resolved by the OS (e.g., FSCR, MSR). |
| * Similar to FP unavailable. |
| */ |
| INT_DEFINE_BEGIN(facility_unavailable) |
| IVEC=0xf60 |
| #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE |
| IKVM_REAL=1 |
| #endif |
| INT_DEFINE_END(facility_unavailable) |
| |
| EXC_REAL_BEGIN(facility_unavailable, 0xf60, 0x20) |
| GEN_INT_ENTRY facility_unavailable, virt=0, ool=1 |
| EXC_REAL_END(facility_unavailable, 0xf60, 0x20) |
| EXC_VIRT_BEGIN(facility_unavailable, 0x4f60, 0x20) |
| GEN_INT_ENTRY facility_unavailable, virt=1, ool=1 |
| EXC_VIRT_END(facility_unavailable, 0x4f60, 0x20) |
| EXC_COMMON_BEGIN(facility_unavailable_common) |
| GEN_COMMON facility_unavailable |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl facility_unavailable_exception |
| REST_NVGPRS(r1) /* instruction emulation may change GPRs */ |
| b interrupt_return |
| |
| GEN_KVM facility_unavailable |
| |
| |
| /** |
| * Interrupt 0xf60 - Hypervisor Facility Unavailable Interrupt. |
| * This is a synchronous interrupt in response to |
| * executing an instruction without access to the facility that can only |
| * be resolved in HV mode (e.g., HFSCR). |
| * Similar to FP unavailable. |
| */ |
| INT_DEFINE_BEGIN(h_facility_unavailable) |
| IVEC=0xf80 |
| IHSRR=1 |
| IKVM_REAL=1 |
| IKVM_VIRT=1 |
| INT_DEFINE_END(h_facility_unavailable) |
| |
| EXC_REAL_BEGIN(h_facility_unavailable, 0xf80, 0x20) |
| GEN_INT_ENTRY h_facility_unavailable, virt=0, ool=1 |
| EXC_REAL_END(h_facility_unavailable, 0xf80, 0x20) |
| EXC_VIRT_BEGIN(h_facility_unavailable, 0x4f80, 0x20) |
| GEN_INT_ENTRY h_facility_unavailable, virt=1, ool=1 |
| EXC_VIRT_END(h_facility_unavailable, 0x4f80, 0x20) |
| EXC_COMMON_BEGIN(h_facility_unavailable_common) |
| GEN_COMMON h_facility_unavailable |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl facility_unavailable_exception |
| REST_NVGPRS(r1) /* XXX Shouldn't be necessary in practice */ |
| b interrupt_return |
| |
| GEN_KVM h_facility_unavailable |
| |
| |
| EXC_REAL_NONE(0xfa0, 0x20) |
| EXC_VIRT_NONE(0x4fa0, 0x20) |
| EXC_REAL_NONE(0xfc0, 0x20) |
| EXC_VIRT_NONE(0x4fc0, 0x20) |
| EXC_REAL_NONE(0xfe0, 0x20) |
| EXC_VIRT_NONE(0x4fe0, 0x20) |
| |
| EXC_REAL_NONE(0x1000, 0x100) |
| EXC_VIRT_NONE(0x5000, 0x100) |
| EXC_REAL_NONE(0x1100, 0x100) |
| EXC_VIRT_NONE(0x5100, 0x100) |
| |
| #ifdef CONFIG_CBE_RAS |
| INT_DEFINE_BEGIN(cbe_system_error) |
| IVEC=0x1200 |
| IHSRR=1 |
| IKVM_SKIP=1 |
| IKVM_REAL=1 |
| INT_DEFINE_END(cbe_system_error) |
| |
| EXC_REAL_BEGIN(cbe_system_error, 0x1200, 0x100) |
| GEN_INT_ENTRY cbe_system_error, virt=0 |
| EXC_REAL_END(cbe_system_error, 0x1200, 0x100) |
| EXC_VIRT_NONE(0x5200, 0x100) |
| EXC_COMMON_BEGIN(cbe_system_error_common) |
| GEN_COMMON cbe_system_error |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl cbe_system_error_exception |
| b interrupt_return |
| |
| GEN_KVM cbe_system_error |
| |
| #else /* CONFIG_CBE_RAS */ |
| EXC_REAL_NONE(0x1200, 0x100) |
| EXC_VIRT_NONE(0x5200, 0x100) |
| #endif |
| |
| |
| INT_DEFINE_BEGIN(instruction_breakpoint) |
| IVEC=0x1300 |
| #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE |
| IKVM_SKIP=1 |
| IKVM_REAL=1 |
| #endif |
| INT_DEFINE_END(instruction_breakpoint) |
| |
| EXC_REAL_BEGIN(instruction_breakpoint, 0x1300, 0x100) |
| GEN_INT_ENTRY instruction_breakpoint, virt=0 |
| EXC_REAL_END(instruction_breakpoint, 0x1300, 0x100) |
| EXC_VIRT_BEGIN(instruction_breakpoint, 0x5300, 0x100) |
| GEN_INT_ENTRY instruction_breakpoint, virt=1 |
| EXC_VIRT_END(instruction_breakpoint, 0x5300, 0x100) |
| EXC_COMMON_BEGIN(instruction_breakpoint_common) |
| GEN_COMMON instruction_breakpoint |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl instruction_breakpoint_exception |
| b interrupt_return |
| |
| GEN_KVM instruction_breakpoint |
| |
| |
| EXC_REAL_NONE(0x1400, 0x100) |
| EXC_VIRT_NONE(0x5400, 0x100) |
| |
| /** |
| * Interrupt 0x1500 - Soft Patch Interrupt |
| * |
| * Handling: |
| * This is an implementation specific interrupt which can be used for a |
| * range of exceptions. |
| * |
| * This interrupt handler is unique in that it runs the denormal assist |
| * code even for guests (and even in guest context) without going to KVM, |
| * for speed. POWER9 does not raise denorm exceptions, so this special case |
| * could be phased out in future to reduce special cases. |
| */ |
| INT_DEFINE_BEGIN(denorm_exception) |
| IVEC=0x1500 |
| IHSRR=1 |
| IBRANCH_TO_COMMON=0 |
| IKVM_REAL=1 |
| INT_DEFINE_END(denorm_exception) |
| |
| EXC_REAL_BEGIN(denorm_exception, 0x1500, 0x100) |
| GEN_INT_ENTRY denorm_exception, virt=0 |
| #ifdef CONFIG_PPC_DENORMALISATION |
| andis. r10,r12,(HSRR1_DENORM)@h /* denorm? */ |
| bne+ denorm_assist |
| #endif |
| GEN_BRANCH_TO_COMMON denorm_exception, virt=0 |
| EXC_REAL_END(denorm_exception, 0x1500, 0x100) |
| #ifdef CONFIG_PPC_DENORMALISATION |
| EXC_VIRT_BEGIN(denorm_exception, 0x5500, 0x100) |
| GEN_INT_ENTRY denorm_exception, virt=1 |
| andis. r10,r12,(HSRR1_DENORM)@h /* denorm? */ |
| bne+ denorm_assist |
| GEN_BRANCH_TO_COMMON denorm_exception, virt=1 |
| EXC_VIRT_END(denorm_exception, 0x5500, 0x100) |
| #else |
| EXC_VIRT_NONE(0x5500, 0x100) |
| #endif |
| |
| #ifdef CONFIG_PPC_DENORMALISATION |
| TRAMP_REAL_BEGIN(denorm_assist) |
| BEGIN_FTR_SECTION |
| /* |
| * To denormalise we need to move a copy of the register to itself. |
| * For POWER6 do that here for all FP regs. |
| */ |
| mfmsr r10 |
| ori r10,r10,(MSR_FP|MSR_FE0|MSR_FE1) |
| xori r10,r10,(MSR_FE0|MSR_FE1) |
| mtmsrd r10 |
| sync |
| |
| .Lreg=0 |
| .rept 32 |
| fmr .Lreg,.Lreg |
| .Lreg=.Lreg+1 |
| .endr |
| |
| FTR_SECTION_ELSE |
| /* |
| * To denormalise we need to move a copy of the register to itself. |
| * For POWER7 do that here for the first 32 VSX registers only. |
| */ |
| mfmsr r10 |
| oris r10,r10,MSR_VSX@h |
| mtmsrd r10 |
| sync |
| |
| .Lreg=0 |
| .rept 32 |
| XVCPSGNDP(.Lreg,.Lreg,.Lreg) |
| .Lreg=.Lreg+1 |
| .endr |
| |
| ALT_FTR_SECTION_END_IFCLR(CPU_FTR_ARCH_206) |
| |
| BEGIN_FTR_SECTION |
| b denorm_done |
| END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S) |
| /* |
| * To denormalise we need to move a copy of the register to itself. |
| * For POWER8 we need to do that for all 64 VSX registers |
| */ |
| .Lreg=32 |
| .rept 32 |
| XVCPSGNDP(.Lreg,.Lreg,.Lreg) |
| .Lreg=.Lreg+1 |
| .endr |
| |
| denorm_done: |
| mfspr r11,SPRN_HSRR0 |
| subi r11,r11,4 |
| mtspr SPRN_HSRR0,r11 |
| mtcrf 0x80,r9 |
| ld r9,PACA_EXGEN+EX_R9(r13) |
| BEGIN_FTR_SECTION |
| ld r10,PACA_EXGEN+EX_PPR(r13) |
| mtspr SPRN_PPR,r10 |
| END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR) |
| BEGIN_FTR_SECTION |
| ld r10,PACA_EXGEN+EX_CFAR(r13) |
| mtspr SPRN_CFAR,r10 |
| END_FTR_SECTION_IFSET(CPU_FTR_CFAR) |
| ld r10,PACA_EXGEN+EX_R10(r13) |
| ld r11,PACA_EXGEN+EX_R11(r13) |
| ld r12,PACA_EXGEN+EX_R12(r13) |
| ld r13,PACA_EXGEN+EX_R13(r13) |
| HRFI_TO_UNKNOWN |
| b . |
| #endif |
| |
| EXC_COMMON_BEGIN(denorm_exception_common) |
| GEN_COMMON denorm_exception |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl unknown_exception |
| b interrupt_return |
| |
| GEN_KVM denorm_exception |
| |
| |
| #ifdef CONFIG_CBE_RAS |
| INT_DEFINE_BEGIN(cbe_maintenance) |
| IVEC=0x1600 |
| IHSRR=1 |
| IKVM_SKIP=1 |
| IKVM_REAL=1 |
| INT_DEFINE_END(cbe_maintenance) |
| |
| EXC_REAL_BEGIN(cbe_maintenance, 0x1600, 0x100) |
| GEN_INT_ENTRY cbe_maintenance, virt=0 |
| EXC_REAL_END(cbe_maintenance, 0x1600, 0x100) |
| EXC_VIRT_NONE(0x5600, 0x100) |
| EXC_COMMON_BEGIN(cbe_maintenance_common) |
| GEN_COMMON cbe_maintenance |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl cbe_maintenance_exception |
| b interrupt_return |
| |
| GEN_KVM cbe_maintenance |
| |
| #else /* CONFIG_CBE_RAS */ |
| EXC_REAL_NONE(0x1600, 0x100) |
| EXC_VIRT_NONE(0x5600, 0x100) |
| #endif |
| |
| |
| INT_DEFINE_BEGIN(altivec_assist) |
| IVEC=0x1700 |
| #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE |
| IKVM_REAL=1 |
| #endif |
| INT_DEFINE_END(altivec_assist) |
| |
| EXC_REAL_BEGIN(altivec_assist, 0x1700, 0x100) |
| GEN_INT_ENTRY altivec_assist, virt=0 |
| EXC_REAL_END(altivec_assist, 0x1700, 0x100) |
| EXC_VIRT_BEGIN(altivec_assist, 0x5700, 0x100) |
| GEN_INT_ENTRY altivec_assist, virt=1 |
| EXC_VIRT_END(altivec_assist, 0x5700, 0x100) |
| EXC_COMMON_BEGIN(altivec_assist_common) |
| GEN_COMMON altivec_assist |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| #ifdef CONFIG_ALTIVEC |
| bl altivec_assist_exception |
| REST_NVGPRS(r1) /* instruction emulation may change GPRs */ |
| #else |
| bl unknown_exception |
| #endif |
| b interrupt_return |
| |
| GEN_KVM altivec_assist |
| |
| |
| #ifdef CONFIG_CBE_RAS |
| INT_DEFINE_BEGIN(cbe_thermal) |
| IVEC=0x1800 |
| IHSRR=1 |
| IKVM_SKIP=1 |
| IKVM_REAL=1 |
| INT_DEFINE_END(cbe_thermal) |
| |
| EXC_REAL_BEGIN(cbe_thermal, 0x1800, 0x100) |
| GEN_INT_ENTRY cbe_thermal, virt=0 |
| EXC_REAL_END(cbe_thermal, 0x1800, 0x100) |
| EXC_VIRT_NONE(0x5800, 0x100) |
| EXC_COMMON_BEGIN(cbe_thermal_common) |
| GEN_COMMON cbe_thermal |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl cbe_thermal_exception |
| b interrupt_return |
| |
| GEN_KVM cbe_thermal |
| |
| #else /* CONFIG_CBE_RAS */ |
| EXC_REAL_NONE(0x1800, 0x100) |
| EXC_VIRT_NONE(0x5800, 0x100) |
| #endif |
| |
| |
| #ifdef CONFIG_PPC_WATCHDOG |
| |
| INT_DEFINE_BEGIN(soft_nmi) |
| IVEC=0x900 |
| ISTACK=0 |
| INT_DEFINE_END(soft_nmi) |
| |
| /* |
| * Branch to soft_nmi_interrupt using the emergency stack. The emergency |
| * stack is one that is usable by maskable interrupts so long as MSR_EE |
| * remains off. It is used for recovery when something has corrupted the |
| * normal kernel stack, for example. The "soft NMI" must not use the process |
| * stack because we want irq disabled sections to avoid touching the stack |
| * at all (other than PMU interrupts), so use the emergency stack for this, |
| * and run it entirely with interrupts hard disabled. |
| */ |
| EXC_COMMON_BEGIN(soft_nmi_common) |
| mfspr r11,SPRN_SRR0 |
| mr r10,r1 |
| ld r1,PACAEMERGSP(r13) |
| subi r1,r1,INT_FRAME_SIZE |
| __GEN_COMMON_BODY soft_nmi |
| |
| addi r3,r1,STACK_FRAME_OVERHEAD |
| bl soft_nmi_interrupt |
| |
| /* Clear MSR_RI before setting SRR0 and SRR1. */ |
| li r9,0 |
| mtmsrd r9,1 |
| |
| kuap_kernel_restore r9, r10 |
| EXCEPTION_RESTORE_REGS hsrr=0 |
| RFI_TO_KERNEL |
| |
| #endif /* CONFIG_PPC_WATCHDOG */ |
| |
| /* |
| * An interrupt came in while soft-disabled. We set paca->irq_happened, then: |
| * - If it was a decrementer interrupt, we bump the dec to max and and return. |
| * - If it was a doorbell we return immediately since doorbells are edge |
| * triggered and won't automatically refire. |
| * - If it was a HMI we return immediately since we handled it in realmode |
| * and it won't refire. |
| * - Else it is one of PACA_IRQ_MUST_HARD_MASK, so hard disable and return. |
| * This is called with r10 containing the value to OR to the paca field. |
| */ |
| .macro MASKED_INTERRUPT hsrr=0 |
| .if \hsrr |
| masked_Hinterrupt: |
| .else |
| masked_interrupt: |
| .endif |
| lbz r11,PACAIRQHAPPENED(r13) |
| or r11,r11,r10 |
| stb r11,PACAIRQHAPPENED(r13) |
| cmpwi r10,PACA_IRQ_DEC |
| bne 1f |
| lis r10,0x7fff |
| ori r10,r10,0xffff |
| mtspr SPRN_DEC,r10 |
| #ifdef CONFIG_PPC_WATCHDOG |
| b soft_nmi_common |
| #else |
| b 2f |
| #endif |
| 1: andi. r10,r10,PACA_IRQ_MUST_HARD_MASK |
| beq 2f |
| xori r12,r12,MSR_EE /* clear MSR_EE */ |
| .if \hsrr |
| mtspr SPRN_HSRR1,r12 |
| .else |
| mtspr SPRN_SRR1,r12 |
| .endif |
| ori r11,r11,PACA_IRQ_HARD_DIS |
| stb r11,PACAIRQHAPPENED(r13) |
| 2: /* done */ |
| ld r10,PACA_EXGEN+EX_CTR(r13) |
| mtctr r10 |
| mtcrf 0x80,r9 |
| std r1,PACAR1(r13) |
| ld r9,PACA_EXGEN+EX_R9(r13) |
| ld r10,PACA_EXGEN+EX_R10(r13) |
| ld r11,PACA_EXGEN+EX_R11(r13) |
| ld r12,PACA_EXGEN+EX_R12(r13) |
| ld r13,PACA_EXGEN+EX_R13(r13) |
| /* May return to masked low address where r13 is not set up */ |
| .if \hsrr |
| HRFI_TO_KERNEL |
| .else |
| RFI_TO_KERNEL |
| .endif |
| b . |
| .endm |
| |
| TRAMP_REAL_BEGIN(stf_barrier_fallback) |
| std r9,PACA_EXRFI+EX_R9(r13) |
| std r10,PACA_EXRFI+EX_R10(r13) |
| sync |
| ld r9,PACA_EXRFI+EX_R9(r13) |
| ld r10,PACA_EXRFI+EX_R10(r13) |
| ori 31,31,0 |
| .rept 14 |
| b 1f |
| 1: |
| .endr |
| blr |
| |
| /* Clobbers r10, r11, ctr */ |
| .macro L1D_DISPLACEMENT_FLUSH |
| ld r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13) |
| ld r11,PACA_L1D_FLUSH_SIZE(r13) |
| srdi r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */ |
| mtctr r11 |
| DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */ |
| |
| /* order ld/st prior to dcbt stop all streams with flushing */ |
| sync |
| |
| /* |
| * The load addresses are at staggered offsets within cachelines, |
| * which suits some pipelines better (on others it should not |
| * hurt). |
| */ |
| 1: |
| ld r11,(0x80 + 8)*0(r10) |
| ld r11,(0x80 + 8)*1(r10) |
| ld r11,(0x80 + 8)*2(r10) |
| ld r11,(0x80 + 8)*3(r10) |
| ld r11,(0x80 + 8)*4(r10) |
| ld r11,(0x80 + 8)*5(r10) |
| ld r11,(0x80 + 8)*6(r10) |
| ld r11,(0x80 + 8)*7(r10) |
| addi r10,r10,0x80*8 |
| bdnz 1b |
| .endm |
| |
| TRAMP_REAL_BEGIN(entry_flush_fallback) |
| std r9,PACA_EXRFI+EX_R9(r13) |
| std r10,PACA_EXRFI+EX_R10(r13) |
| std r11,PACA_EXRFI+EX_R11(r13) |
| mfctr r9 |
| L1D_DISPLACEMENT_FLUSH |
| mtctr r9 |
| ld r9,PACA_EXRFI+EX_R9(r13) |
| ld r10,PACA_EXRFI+EX_R10(r13) |
| ld r11,PACA_EXRFI+EX_R11(r13) |
| blr |
| |
| /* |
| * The SCV entry flush happens with interrupts enabled, so it must disable |
| * to prevent EXRFI being clobbered by NMIs (e.g., soft_nmi_common). r10 |
| * (containing LR) does not need to be preserved here because scv entry |
| * puts 0 in the pt_regs, CTR can be clobbered for the same reason. |
| */ |
| TRAMP_REAL_BEGIN(scv_entry_flush_fallback) |
| li r10,0 |
| mtmsrd r10,1 |
| lbz r10,PACAIRQHAPPENED(r13) |
| ori r10,r10,PACA_IRQ_HARD_DIS |
| stb r10,PACAIRQHAPPENED(r13) |
| std r11,PACA_EXRFI+EX_R11(r13) |
| L1D_DISPLACEMENT_FLUSH |
| ld r11,PACA_EXRFI+EX_R11(r13) |
| li r10,MSR_RI |
| mtmsrd r10,1 |
| blr |
| |
| TRAMP_REAL_BEGIN(rfi_flush_fallback) |
| SET_SCRATCH0(r13); |
| GET_PACA(r13); |
| std r1,PACA_EXRFI+EX_R12(r13) |
| ld r1,PACAKSAVE(r13) |
| std r9,PACA_EXRFI+EX_R9(r13) |
| std r10,PACA_EXRFI+EX_R10(r13) |
| std r11,PACA_EXRFI+EX_R11(r13) |
| mfctr r9 |
| L1D_DISPLACEMENT_FLUSH |
| mtctr r9 |
| ld r9,PACA_EXRFI+EX_R9(r13) |
| ld r10,PACA_EXRFI+EX_R10(r13) |
| ld r11,PACA_EXRFI+EX_R11(r13) |
| ld r1,PACA_EXRFI+EX_R12(r13) |
| GET_SCRATCH0(r13); |
| rfid |
| |
| TRAMP_REAL_BEGIN(hrfi_flush_fallback) |
| SET_SCRATCH0(r13); |
| GET_PACA(r13); |
| std r1,PACA_EXRFI+EX_R12(r13) |
| ld r1,PACAKSAVE(r13) |
| std r9,PACA_EXRFI+EX_R9(r13) |
| std r10,PACA_EXRFI+EX_R10(r13) |
| std r11,PACA_EXRFI+EX_R11(r13) |
| mfctr r9 |
| L1D_DISPLACEMENT_FLUSH |
| mtctr r9 |
| ld r9,PACA_EXRFI+EX_R9(r13) |
| ld r10,PACA_EXRFI+EX_R10(r13) |
| ld r11,PACA_EXRFI+EX_R11(r13) |
| ld r1,PACA_EXRFI+EX_R12(r13) |
| GET_SCRATCH0(r13); |
| hrfid |
| |
| TRAMP_REAL_BEGIN(rfscv_flush_fallback) |
| /* system call volatile */ |
| mr r7,r13 |
| GET_PACA(r13); |
| mr r8,r1 |
| ld r1,PACAKSAVE(r13) |
| mfctr r9 |
| ld r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13) |
| ld r11,PACA_L1D_FLUSH_SIZE(r13) |
| srdi r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */ |
| mtctr r11 |
| DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */ |
| |
| /* order ld/st prior to dcbt stop all streams with flushing */ |
| sync |
| |
| /* |
| * The load adresses are at staggered offsets within cachelines, |
| * which suits some pipelines better (on others it should not |
| * hurt). |
| */ |
| 1: |
| ld r11,(0x80 + 8)*0(r10) |
| ld r11,(0x80 + 8)*1(r10) |
| ld r11,(0x80 + 8)*2(r10) |
| ld r11,(0x80 + 8)*3(r10) |
| ld r11,(0x80 + 8)*4(r10) |
| ld r11,(0x80 + 8)*5(r10) |
| ld r11,(0x80 + 8)*6(r10) |
| ld r11,(0x80 + 8)*7(r10) |
| addi r10,r10,0x80*8 |
| bdnz 1b |
| |
| mtctr r9 |
| li r9,0 |
| li r10,0 |
| li r11,0 |
| mr r1,r8 |
| mr r13,r7 |
| RFSCV |
| |
| USE_TEXT_SECTION() |
| |
| _GLOBAL(do_uaccess_flush) |
| UACCESS_FLUSH_FIXUP_SECTION |
| nop |
| nop |
| nop |
| blr |
| L1D_DISPLACEMENT_FLUSH |
| blr |
| _ASM_NOKPROBE_SYMBOL(do_uaccess_flush) |
| EXPORT_SYMBOL(do_uaccess_flush) |
| |
| |
| MASKED_INTERRUPT |
| MASKED_INTERRUPT hsrr=1 |
| |
| #ifdef CONFIG_KVM_BOOK3S_64_HANDLER |
| kvmppc_skip_interrupt: |
| /* |
| * Here all GPRs are unchanged from when the interrupt happened |
| * except for r13, which is saved in SPRG_SCRATCH0. |
| */ |
| mfspr r13, SPRN_SRR0 |
| addi r13, r13, 4 |
| mtspr SPRN_SRR0, r13 |
| GET_SCRATCH0(r13) |
| RFI_TO_KERNEL |
| b . |
| |
| kvmppc_skip_Hinterrupt: |
| /* |
| * Here all GPRs are unchanged from when the interrupt happened |
| * except for r13, which is saved in SPRG_SCRATCH0. |
| */ |
| mfspr r13, SPRN_HSRR0 |
| addi r13, r13, 4 |
| mtspr SPRN_HSRR0, r13 |
| GET_SCRATCH0(r13) |
| HRFI_TO_KERNEL |
| b . |
| #endif |
| |
| /* |
| * Relocation-on interrupts: A subset of the interrupts can be delivered |
| * with IR=1/DR=1, if AIL==2 and MSR.HV won't be changed by delivering |
| * it. Addresses are the same as the original interrupt addresses, but |
| * offset by 0xc000000000004000. |
| * It's impossible to receive interrupts below 0x300 via this mechanism. |
| * KVM: None of these traps are from the guest ; anything that escalated |
| * to HV=1 from HV=0 is delivered via real mode handlers. |
| */ |
| |
| /* |
| * This uses the standard macro, since the original 0x300 vector |
| * only has extra guff for STAB-based processors -- which never |
| * come here. |
| */ |
| |
| USE_FIXED_SECTION(virt_trampolines) |
| /* |
| * All code below __end_interrupts is treated as soft-masked. If |
| * any code runs here with MSR[EE]=1, it must then cope with pending |
| * soft interrupt being raised (i.e., by ensuring it is replayed). |
| * |
| * The __end_interrupts marker must be past the out-of-line (OOL) |
| * handlers, so that they are copied to real address 0x100 when running |
| * a relocatable kernel. This ensures they can be reached from the short |
| * trampoline handlers (like 0x4f00, 0x4f20, etc.) which branch |
| * directly, without using LOAD_HANDLER(). |
| */ |
| .align 7 |
| .globl __end_interrupts |
| __end_interrupts: |
| DEFINE_FIXED_SYMBOL(__end_interrupts) |
| |
| #ifdef CONFIG_PPC_970_NAP |
| /* |
| * Called by exception entry code if _TLF_NAPPING was set, this clears |
| * the NAPPING flag, and redirects the exception exit to |
| * power4_fixup_nap_return. |
| */ |
| .globl power4_fixup_nap |
| EXC_COMMON_BEGIN(power4_fixup_nap) |
| andc r9,r9,r10 |
| std r9,TI_LOCAL_FLAGS(r11) |
| LOAD_REG_ADDR(r10, power4_idle_nap_return) |
| std r10,_NIP(r1) |
| blr |
| |
| power4_idle_nap_return: |
| blr |
| #endif |
| |
| CLOSE_FIXED_SECTION(real_vectors); |
| CLOSE_FIXED_SECTION(real_trampolines); |
| CLOSE_FIXED_SECTION(virt_vectors); |
| CLOSE_FIXED_SECTION(virt_trampolines); |
| |
| USE_TEXT_SECTION() |
| |
| /* MSR[RI] should be clear because this uses SRR[01] */ |
| enable_machine_check: |
| mflr r0 |
| bcl 20,31,$+4 |
| 0: mflr r3 |
| addi r3,r3,(1f - 0b) |
| mtspr SPRN_SRR0,r3 |
| mfmsr r3 |
| ori r3,r3,MSR_ME |
| mtspr SPRN_SRR1,r3 |
| RFI_TO_KERNEL |
| 1: mtlr r0 |
| blr |
| |
| /* MSR[RI] should be clear because this uses SRR[01] */ |
| disable_machine_check: |
| mflr r0 |
| bcl 20,31,$+4 |
| 0: mflr r3 |
| addi r3,r3,(1f - 0b) |
| mtspr SPRN_SRR0,r3 |
| mfmsr r3 |
| li r4,MSR_ME |
| andc r3,r3,r4 |
| mtspr SPRN_SRR1,r3 |
| RFI_TO_KERNEL |
| 1: mtlr r0 |
| blr |