| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * asc7621.c - Part of lm_sensors, Linux kernel modules for hardware monitoring |
| * Copyright (c) 2007, 2010 George Joseph <george.joseph@fairview5.com> |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/jiffies.h> |
| #include <linux/i2c.h> |
| #include <linux/hwmon.h> |
| #include <linux/hwmon-sysfs.h> |
| #include <linux/err.h> |
| #include <linux/mutex.h> |
| |
| /* Addresses to scan */ |
| static const unsigned short normal_i2c[] = { |
| 0x2c, 0x2d, 0x2e, I2C_CLIENT_END |
| }; |
| |
| enum asc7621_type { |
| asc7621, |
| asc7621a |
| }; |
| |
| #define INTERVAL_HIGH (HZ + HZ / 2) |
| #define INTERVAL_LOW (1 * 60 * HZ) |
| #define PRI_NONE 0 |
| #define PRI_LOW 1 |
| #define PRI_HIGH 2 |
| #define FIRST_CHIP asc7621 |
| #define LAST_CHIP asc7621a |
| |
| struct asc7621_chip { |
| char *name; |
| enum asc7621_type chip_type; |
| u8 company_reg; |
| u8 company_id; |
| u8 verstep_reg; |
| u8 verstep_id; |
| const unsigned short *addresses; |
| }; |
| |
| static struct asc7621_chip asc7621_chips[] = { |
| { |
| .name = "asc7621", |
| .chip_type = asc7621, |
| .company_reg = 0x3e, |
| .company_id = 0x61, |
| .verstep_reg = 0x3f, |
| .verstep_id = 0x6c, |
| .addresses = normal_i2c, |
| }, |
| { |
| .name = "asc7621a", |
| .chip_type = asc7621a, |
| .company_reg = 0x3e, |
| .company_id = 0x61, |
| .verstep_reg = 0x3f, |
| .verstep_id = 0x6d, |
| .addresses = normal_i2c, |
| }, |
| }; |
| |
| /* |
| * Defines the highest register to be used, not the count. |
| * The actual count will probably be smaller because of gaps |
| * in the implementation (unused register locations). |
| * This define will safely set the array size of both the parameter |
| * and data arrays. |
| * This comes from the data sheet register description table. |
| */ |
| #define LAST_REGISTER 0xff |
| |
| struct asc7621_data { |
| struct i2c_client client; |
| struct device *class_dev; |
| struct mutex update_lock; |
| int valid; /* !=0 if following fields are valid */ |
| unsigned long last_high_reading; /* In jiffies */ |
| unsigned long last_low_reading; /* In jiffies */ |
| /* |
| * Registers we care about occupy the corresponding index |
| * in the array. Registers we don't care about are left |
| * at 0. |
| */ |
| u8 reg[LAST_REGISTER + 1]; |
| }; |
| |
| /* |
| * Macro to get the parent asc7621_param structure |
| * from a sensor_device_attribute passed into the |
| * show/store functions. |
| */ |
| #define to_asc7621_param(_sda) \ |
| container_of(_sda, struct asc7621_param, sda) |
| |
| /* |
| * Each parameter to be retrieved needs an asc7621_param structure |
| * allocated. It contains the sensor_device_attribute structure |
| * and the control info needed to retrieve the value from the register map. |
| */ |
| struct asc7621_param { |
| struct sensor_device_attribute sda; |
| u8 priority; |
| u8 msb[3]; |
| u8 lsb[3]; |
| u8 mask[3]; |
| u8 shift[3]; |
| }; |
| |
| /* |
| * This is the map that ultimately indicates whether we'll be |
| * retrieving a register value or not, and at what frequency. |
| */ |
| static u8 asc7621_register_priorities[255]; |
| |
| static struct asc7621_data *asc7621_update_device(struct device *dev); |
| |
| static inline u8 read_byte(struct i2c_client *client, u8 reg) |
| { |
| int res = i2c_smbus_read_byte_data(client, reg); |
| if (res < 0) { |
| dev_err(&client->dev, |
| "Unable to read from register 0x%02x.\n", reg); |
| return 0; |
| } |
| return res & 0xff; |
| } |
| |
| static inline int write_byte(struct i2c_client *client, u8 reg, u8 data) |
| { |
| int res = i2c_smbus_write_byte_data(client, reg, data); |
| if (res < 0) { |
| dev_err(&client->dev, |
| "Unable to write value 0x%02x to register 0x%02x.\n", |
| data, reg); |
| } |
| return res; |
| } |
| |
| /* |
| * Data Handlers |
| * Each function handles the formatting, storage |
| * and retrieval of like parameters. |
| */ |
| |
| #define SETUP_SHOW_DATA_PARAM(d, a) \ |
| struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \ |
| struct asc7621_data *data = asc7621_update_device(d); \ |
| struct asc7621_param *param = to_asc7621_param(sda) |
| |
| #define SETUP_STORE_DATA_PARAM(d, a) \ |
| struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \ |
| struct i2c_client *client = to_i2c_client(d); \ |
| struct asc7621_data *data = i2c_get_clientdata(client); \ |
| struct asc7621_param *param = to_asc7621_param(sda) |
| |
| /* |
| * u8 is just what it sounds like...an unsigned byte with no |
| * special formatting. |
| */ |
| static ssize_t show_u8(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| SETUP_SHOW_DATA_PARAM(dev, attr); |
| |
| return sprintf(buf, "%u\n", data->reg[param->msb[0]]); |
| } |
| |
| static ssize_t store_u8(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| SETUP_STORE_DATA_PARAM(dev, attr); |
| long reqval; |
| |
| if (kstrtol(buf, 10, &reqval)) |
| return -EINVAL; |
| |
| reqval = clamp_val(reqval, 0, 255); |
| |
| mutex_lock(&data->update_lock); |
| data->reg[param->msb[0]] = reqval; |
| write_byte(client, param->msb[0], reqval); |
| mutex_unlock(&data->update_lock); |
| return count; |
| } |
| |
| /* |
| * Many of the config values occupy only a few bits of a register. |
| */ |
| static ssize_t show_bitmask(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| SETUP_SHOW_DATA_PARAM(dev, attr); |
| |
| return sprintf(buf, "%u\n", |
| (data->reg[param->msb[0]] >> param-> |
| shift[0]) & param->mask[0]); |
| } |
| |
| static ssize_t store_bitmask(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| SETUP_STORE_DATA_PARAM(dev, attr); |
| long reqval; |
| u8 currval; |
| |
| if (kstrtol(buf, 10, &reqval)) |
| return -EINVAL; |
| |
| reqval = clamp_val(reqval, 0, param->mask[0]); |
| |
| reqval = (reqval & param->mask[0]) << param->shift[0]; |
| |
| mutex_lock(&data->update_lock); |
| currval = read_byte(client, param->msb[0]); |
| reqval |= (currval & ~(param->mask[0] << param->shift[0])); |
| data->reg[param->msb[0]] = reqval; |
| write_byte(client, param->msb[0], reqval); |
| mutex_unlock(&data->update_lock); |
| return count; |
| } |
| |
| /* |
| * 16 bit fan rpm values |
| * reported by the device as the number of 11.111us periods (90khz) |
| * between full fan rotations. Therefore... |
| * RPM = (90000 * 60) / register value |
| */ |
| static ssize_t show_fan16(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| SETUP_SHOW_DATA_PARAM(dev, attr); |
| u16 regval; |
| |
| mutex_lock(&data->update_lock); |
| regval = (data->reg[param->msb[0]] << 8) | data->reg[param->lsb[0]]; |
| mutex_unlock(&data->update_lock); |
| |
| return sprintf(buf, "%u\n", |
| (regval == 0 ? -1 : (regval) == |
| 0xffff ? 0 : 5400000 / regval)); |
| } |
| |
| static ssize_t store_fan16(struct device *dev, |
| struct device_attribute *attr, const char *buf, |
| size_t count) |
| { |
| SETUP_STORE_DATA_PARAM(dev, attr); |
| long reqval; |
| |
| if (kstrtol(buf, 10, &reqval)) |
| return -EINVAL; |
| |
| /* |
| * If a minimum RPM of zero is requested, then we set the register to |
| * 0xffff. This value allows the fan to be stopped completely without |
| * generating an alarm. |
| */ |
| reqval = |
| (reqval <= 0 ? 0xffff : clamp_val(5400000 / reqval, 0, 0xfffe)); |
| |
| mutex_lock(&data->update_lock); |
| data->reg[param->msb[0]] = (reqval >> 8) & 0xff; |
| data->reg[param->lsb[0]] = reqval & 0xff; |
| write_byte(client, param->msb[0], data->reg[param->msb[0]]); |
| write_byte(client, param->lsb[0], data->reg[param->lsb[0]]); |
| mutex_unlock(&data->update_lock); |
| |
| return count; |
| } |
| |
| /* |
| * Voltages are scaled in the device so that the nominal voltage |
| * is 3/4ths of the 0-255 range (i.e. 192). |
| * If all voltages are 'normal' then all voltage registers will |
| * read 0xC0. |
| * |
| * The data sheet provides us with the 3/4 scale value for each voltage |
| * which is stored in in_scaling. The sda->index parameter value provides |
| * the index into in_scaling. |
| * |
| * NOTE: The chip expects the first 2 inputs be 2.5 and 2.25 volts |
| * respectively. That doesn't mean that's what the motherboard provides. :) |
| */ |
| |
| static const int asc7621_in_scaling[] = { |
| 2500, 2250, 3300, 5000, 12000 |
| }; |
| |
| static ssize_t show_in10(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| SETUP_SHOW_DATA_PARAM(dev, attr); |
| u16 regval; |
| u8 nr = sda->index; |
| |
| mutex_lock(&data->update_lock); |
| regval = (data->reg[param->msb[0]] << 8) | (data->reg[param->lsb[0]]); |
| mutex_unlock(&data->update_lock); |
| |
| /* The LSB value is a 2-bit scaling of the MSB's LSbit value. */ |
| regval = (regval >> 6) * asc7621_in_scaling[nr] / (0xc0 << 2); |
| |
| return sprintf(buf, "%u\n", regval); |
| } |
| |
| /* 8 bit voltage values (the mins and maxs) */ |
| static ssize_t show_in8(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| SETUP_SHOW_DATA_PARAM(dev, attr); |
| u8 nr = sda->index; |
| |
| return sprintf(buf, "%u\n", |
| ((data->reg[param->msb[0]] * |
| asc7621_in_scaling[nr]) / 0xc0)); |
| } |
| |
| static ssize_t store_in8(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| SETUP_STORE_DATA_PARAM(dev, attr); |
| long reqval; |
| u8 nr = sda->index; |
| |
| if (kstrtol(buf, 10, &reqval)) |
| return -EINVAL; |
| |
| reqval = clamp_val(reqval, 0, 0xffff); |
| |
| reqval = reqval * 0xc0 / asc7621_in_scaling[nr]; |
| |
| reqval = clamp_val(reqval, 0, 0xff); |
| |
| mutex_lock(&data->update_lock); |
| data->reg[param->msb[0]] = reqval; |
| write_byte(client, param->msb[0], reqval); |
| mutex_unlock(&data->update_lock); |
| |
| return count; |
| } |
| |
| static ssize_t show_temp8(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| SETUP_SHOW_DATA_PARAM(dev, attr); |
| |
| return sprintf(buf, "%d\n", ((s8) data->reg[param->msb[0]]) * 1000); |
| } |
| |
| static ssize_t store_temp8(struct device *dev, |
| struct device_attribute *attr, const char *buf, |
| size_t count) |
| { |
| SETUP_STORE_DATA_PARAM(dev, attr); |
| long reqval; |
| s8 temp; |
| |
| if (kstrtol(buf, 10, &reqval)) |
| return -EINVAL; |
| |
| reqval = clamp_val(reqval, -127000, 127000); |
| |
| temp = reqval / 1000; |
| |
| mutex_lock(&data->update_lock); |
| data->reg[param->msb[0]] = temp; |
| write_byte(client, param->msb[0], temp); |
| mutex_unlock(&data->update_lock); |
| return count; |
| } |
| |
| /* |
| * Temperatures that occupy 2 bytes always have the whole |
| * number of degrees in the MSB with some part of the LSB |
| * indicating fractional degrees. |
| */ |
| |
| /* mmmmmmmm.llxxxxxx */ |
| static ssize_t show_temp10(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| SETUP_SHOW_DATA_PARAM(dev, attr); |
| u8 msb, lsb; |
| int temp; |
| |
| mutex_lock(&data->update_lock); |
| msb = data->reg[param->msb[0]]; |
| lsb = (data->reg[param->lsb[0]] >> 6) & 0x03; |
| temp = (((s8) msb) * 1000) + (lsb * 250); |
| mutex_unlock(&data->update_lock); |
| |
| return sprintf(buf, "%d\n", temp); |
| } |
| |
| /* mmmmmm.ll */ |
| static ssize_t show_temp62(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| SETUP_SHOW_DATA_PARAM(dev, attr); |
| u8 regval = data->reg[param->msb[0]]; |
| int temp = ((s8) (regval & 0xfc) * 1000) + ((regval & 0x03) * 250); |
| |
| return sprintf(buf, "%d\n", temp); |
| } |
| |
| static ssize_t store_temp62(struct device *dev, |
| struct device_attribute *attr, const char *buf, |
| size_t count) |
| { |
| SETUP_STORE_DATA_PARAM(dev, attr); |
| long reqval, i, f; |
| s8 temp; |
| |
| if (kstrtol(buf, 10, &reqval)) |
| return -EINVAL; |
| |
| reqval = clamp_val(reqval, -32000, 31750); |
| i = reqval / 1000; |
| f = reqval - (i * 1000); |
| temp = i << 2; |
| temp |= f / 250; |
| |
| mutex_lock(&data->update_lock); |
| data->reg[param->msb[0]] = temp; |
| write_byte(client, param->msb[0], temp); |
| mutex_unlock(&data->update_lock); |
| return count; |
| } |
| |
| /* |
| * The aSC7621 doesn't provide an "auto_point2". Instead, you |
| * specify the auto_point1 and a range. To keep with the sysfs |
| * hwmon specs, we synthesize the auto_point_2 from them. |
| */ |
| |
| static const u32 asc7621_range_map[] = { |
| 2000, 2500, 3330, 4000, 5000, 6670, 8000, 10000, |
| 13330, 16000, 20000, 26670, 32000, 40000, 53330, 80000, |
| }; |
| |
| static ssize_t show_ap2_temp(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| SETUP_SHOW_DATA_PARAM(dev, attr); |
| long auto_point1; |
| u8 regval; |
| int temp; |
| |
| mutex_lock(&data->update_lock); |
| auto_point1 = ((s8) data->reg[param->msb[1]]) * 1000; |
| regval = |
| ((data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]); |
| temp = auto_point1 + asc7621_range_map[clamp_val(regval, 0, 15)]; |
| mutex_unlock(&data->update_lock); |
| |
| return sprintf(buf, "%d\n", temp); |
| |
| } |
| |
| static ssize_t store_ap2_temp(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| SETUP_STORE_DATA_PARAM(dev, attr); |
| long reqval, auto_point1; |
| int i; |
| u8 currval, newval = 0; |
| |
| if (kstrtol(buf, 10, &reqval)) |
| return -EINVAL; |
| |
| mutex_lock(&data->update_lock); |
| auto_point1 = data->reg[param->msb[1]] * 1000; |
| reqval = clamp_val(reqval, auto_point1 + 2000, auto_point1 + 80000); |
| |
| for (i = ARRAY_SIZE(asc7621_range_map) - 1; i >= 0; i--) { |
| if (reqval >= auto_point1 + asc7621_range_map[i]) { |
| newval = i; |
| break; |
| } |
| } |
| |
| newval = (newval & param->mask[0]) << param->shift[0]; |
| currval = read_byte(client, param->msb[0]); |
| newval |= (currval & ~(param->mask[0] << param->shift[0])); |
| data->reg[param->msb[0]] = newval; |
| write_byte(client, param->msb[0], newval); |
| mutex_unlock(&data->update_lock); |
| return count; |
| } |
| |
| static ssize_t show_pwm_ac(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| SETUP_SHOW_DATA_PARAM(dev, attr); |
| u8 config, altbit, regval; |
| static const u8 map[] = { |
| 0x01, 0x02, 0x04, 0x1f, 0x00, 0x06, 0x07, 0x10, |
| 0x08, 0x0f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f |
| }; |
| |
| mutex_lock(&data->update_lock); |
| config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]; |
| altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1]; |
| regval = config | (altbit << 3); |
| mutex_unlock(&data->update_lock); |
| |
| return sprintf(buf, "%u\n", map[clamp_val(regval, 0, 15)]); |
| } |
| |
| static ssize_t store_pwm_ac(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| SETUP_STORE_DATA_PARAM(dev, attr); |
| unsigned long reqval; |
| u8 currval, config, altbit, newval; |
| static const u16 map[] = { |
| 0x04, 0x00, 0x01, 0xff, 0x02, 0xff, 0x05, 0x06, |
| 0x08, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x0f, |
| 0x07, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03, |
| }; |
| |
| if (kstrtoul(buf, 10, &reqval)) |
| return -EINVAL; |
| |
| if (reqval > 31) |
| return -EINVAL; |
| |
| reqval = map[reqval]; |
| if (reqval == 0xff) |
| return -EINVAL; |
| |
| config = reqval & 0x07; |
| altbit = (reqval >> 3) & 0x01; |
| |
| config = (config & param->mask[0]) << param->shift[0]; |
| altbit = (altbit & param->mask[1]) << param->shift[1]; |
| |
| mutex_lock(&data->update_lock); |
| currval = read_byte(client, param->msb[0]); |
| newval = config | (currval & ~(param->mask[0] << param->shift[0])); |
| newval = altbit | (newval & ~(param->mask[1] << param->shift[1])); |
| data->reg[param->msb[0]] = newval; |
| write_byte(client, param->msb[0], newval); |
| mutex_unlock(&data->update_lock); |
| return count; |
| } |
| |
| static ssize_t show_pwm_enable(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| SETUP_SHOW_DATA_PARAM(dev, attr); |
| u8 config, altbit, minoff, val, newval; |
| |
| mutex_lock(&data->update_lock); |
| config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]; |
| altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1]; |
| minoff = (data->reg[param->msb[2]] >> param->shift[2]) & param->mask[2]; |
| mutex_unlock(&data->update_lock); |
| |
| val = config | (altbit << 3); |
| |
| if (val == 3 || val >= 10) |
| newval = 255; |
| else if (val == 4) |
| newval = 0; |
| else if (val == 7) |
| newval = 1; |
| else if (minoff == 1) |
| newval = 2; |
| else |
| newval = 3; |
| |
| return sprintf(buf, "%u\n", newval); |
| } |
| |
| static ssize_t store_pwm_enable(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| SETUP_STORE_DATA_PARAM(dev, attr); |
| long reqval; |
| u8 currval, config, altbit, newval, minoff = 255; |
| |
| if (kstrtol(buf, 10, &reqval)) |
| return -EINVAL; |
| |
| switch (reqval) { |
| case 0: |
| newval = 0x04; |
| break; |
| case 1: |
| newval = 0x07; |
| break; |
| case 2: |
| newval = 0x00; |
| minoff = 1; |
| break; |
| case 3: |
| newval = 0x00; |
| minoff = 0; |
| break; |
| case 255: |
| newval = 0x03; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| config = newval & 0x07; |
| altbit = (newval >> 3) & 0x01; |
| |
| mutex_lock(&data->update_lock); |
| config = (config & param->mask[0]) << param->shift[0]; |
| altbit = (altbit & param->mask[1]) << param->shift[1]; |
| currval = read_byte(client, param->msb[0]); |
| newval = config | (currval & ~(param->mask[0] << param->shift[0])); |
| newval = altbit | (newval & ~(param->mask[1] << param->shift[1])); |
| data->reg[param->msb[0]] = newval; |
| write_byte(client, param->msb[0], newval); |
| if (minoff < 255) { |
| minoff = (minoff & param->mask[2]) << param->shift[2]; |
| currval = read_byte(client, param->msb[2]); |
| newval = |
| minoff | (currval & ~(param->mask[2] << param->shift[2])); |
| data->reg[param->msb[2]] = newval; |
| write_byte(client, param->msb[2], newval); |
| } |
| mutex_unlock(&data->update_lock); |
| return count; |
| } |
| |
| static const u32 asc7621_pwm_freq_map[] = { |
| 10, 15, 23, 30, 38, 47, 62, 94, |
| 23000, 24000, 25000, 26000, 27000, 28000, 29000, 30000 |
| }; |
| |
| static ssize_t show_pwm_freq(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| SETUP_SHOW_DATA_PARAM(dev, attr); |
| u8 regval = |
| (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]; |
| |
| regval = clamp_val(regval, 0, 15); |
| |
| return sprintf(buf, "%u\n", asc7621_pwm_freq_map[regval]); |
| } |
| |
| static ssize_t store_pwm_freq(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| SETUP_STORE_DATA_PARAM(dev, attr); |
| unsigned long reqval; |
| u8 currval, newval = 255; |
| int i; |
| |
| if (kstrtoul(buf, 10, &reqval)) |
| return -EINVAL; |
| |
| for (i = 0; i < ARRAY_SIZE(asc7621_pwm_freq_map); i++) { |
| if (reqval == asc7621_pwm_freq_map[i]) { |
| newval = i; |
| break; |
| } |
| } |
| if (newval == 255) |
| return -EINVAL; |
| |
| newval = (newval & param->mask[0]) << param->shift[0]; |
| |
| mutex_lock(&data->update_lock); |
| currval = read_byte(client, param->msb[0]); |
| newval |= (currval & ~(param->mask[0] << param->shift[0])); |
| data->reg[param->msb[0]] = newval; |
| write_byte(client, param->msb[0], newval); |
| mutex_unlock(&data->update_lock); |
| return count; |
| } |
| |
| static const u32 asc7621_pwm_auto_spinup_map[] = { |
| 0, 100, 250, 400, 700, 1000, 2000, 4000 |
| }; |
| |
| static ssize_t show_pwm_ast(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| SETUP_SHOW_DATA_PARAM(dev, attr); |
| u8 regval = |
| (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]; |
| |
| regval = clamp_val(regval, 0, 7); |
| |
| return sprintf(buf, "%u\n", asc7621_pwm_auto_spinup_map[regval]); |
| |
| } |
| |
| static ssize_t store_pwm_ast(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| SETUP_STORE_DATA_PARAM(dev, attr); |
| long reqval; |
| u8 currval, newval = 255; |
| u32 i; |
| |
| if (kstrtol(buf, 10, &reqval)) |
| return -EINVAL; |
| |
| for (i = 0; i < ARRAY_SIZE(asc7621_pwm_auto_spinup_map); i++) { |
| if (reqval == asc7621_pwm_auto_spinup_map[i]) { |
| newval = i; |
| break; |
| } |
| } |
| if (newval == 255) |
| return -EINVAL; |
| |
| newval = (newval & param->mask[0]) << param->shift[0]; |
| |
| mutex_lock(&data->update_lock); |
| currval = read_byte(client, param->msb[0]); |
| newval |= (currval & ~(param->mask[0] << param->shift[0])); |
| data->reg[param->msb[0]] = newval; |
| write_byte(client, param->msb[0], newval); |
| mutex_unlock(&data->update_lock); |
| return count; |
| } |
| |
| static const u32 asc7621_temp_smoothing_time_map[] = { |
| 35000, 17600, 11800, 7000, 4400, 3000, 1600, 800 |
| }; |
| |
| static ssize_t show_temp_st(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| SETUP_SHOW_DATA_PARAM(dev, attr); |
| u8 regval = |
| (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]; |
| regval = clamp_val(regval, 0, 7); |
| |
| return sprintf(buf, "%u\n", asc7621_temp_smoothing_time_map[regval]); |
| } |
| |
| static ssize_t store_temp_st(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| SETUP_STORE_DATA_PARAM(dev, attr); |
| long reqval; |
| u8 currval, newval = 255; |
| u32 i; |
| |
| if (kstrtol(buf, 10, &reqval)) |
| return -EINVAL; |
| |
| for (i = 0; i < ARRAY_SIZE(asc7621_temp_smoothing_time_map); i++) { |
| if (reqval == asc7621_temp_smoothing_time_map[i]) { |
| newval = i; |
| break; |
| } |
| } |
| |
| if (newval == 255) |
| return -EINVAL; |
| |
| newval = (newval & param->mask[0]) << param->shift[0]; |
| |
| mutex_lock(&data->update_lock); |
| currval = read_byte(client, param->msb[0]); |
| newval |= (currval & ~(param->mask[0] << param->shift[0])); |
| data->reg[param->msb[0]] = newval; |
| write_byte(client, param->msb[0], newval); |
| mutex_unlock(&data->update_lock); |
| return count; |
| } |
| |
| /* |
| * End of data handlers |
| * |
| * These defines do nothing more than make the table easier |
| * to read when wrapped at column 80. |
| */ |
| |
| /* |
| * Creates a variable length array inititalizer. |
| * VAA(1,3,5,7) would produce {1,3,5,7} |
| */ |
| #define VAA(args...) {args} |
| |
| #define PREAD(name, n, pri, rm, rl, m, s, r) \ |
| {.sda = SENSOR_ATTR(name, S_IRUGO, show_##r, NULL, n), \ |
| .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \ |
| .shift[0] = s,} |
| |
| #define PWRITE(name, n, pri, rm, rl, m, s, r) \ |
| {.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \ |
| .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \ |
| .shift[0] = s,} |
| |
| /* |
| * PWRITEM assumes that the initializers for the .msb, .lsb, .mask and .shift |
| * were created using the VAA macro. |
| */ |
| #define PWRITEM(name, n, pri, rm, rl, m, s, r) \ |
| {.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \ |
| .priority = pri, .msb = rm, .lsb = rl, .mask = m, .shift = s,} |
| |
| static struct asc7621_param asc7621_params[] = { |
| PREAD(in0_input, 0, PRI_HIGH, 0x20, 0x13, 0, 0, in10), |
| PREAD(in1_input, 1, PRI_HIGH, 0x21, 0x18, 0, 0, in10), |
| PREAD(in2_input, 2, PRI_HIGH, 0x22, 0x11, 0, 0, in10), |
| PREAD(in3_input, 3, PRI_HIGH, 0x23, 0x12, 0, 0, in10), |
| PREAD(in4_input, 4, PRI_HIGH, 0x24, 0x14, 0, 0, in10), |
| |
| PWRITE(in0_min, 0, PRI_LOW, 0x44, 0, 0, 0, in8), |
| PWRITE(in1_min, 1, PRI_LOW, 0x46, 0, 0, 0, in8), |
| PWRITE(in2_min, 2, PRI_LOW, 0x48, 0, 0, 0, in8), |
| PWRITE(in3_min, 3, PRI_LOW, 0x4a, 0, 0, 0, in8), |
| PWRITE(in4_min, 4, PRI_LOW, 0x4c, 0, 0, 0, in8), |
| |
| PWRITE(in0_max, 0, PRI_LOW, 0x45, 0, 0, 0, in8), |
| PWRITE(in1_max, 1, PRI_LOW, 0x47, 0, 0, 0, in8), |
| PWRITE(in2_max, 2, PRI_LOW, 0x49, 0, 0, 0, in8), |
| PWRITE(in3_max, 3, PRI_LOW, 0x4b, 0, 0, 0, in8), |
| PWRITE(in4_max, 4, PRI_LOW, 0x4d, 0, 0, 0, in8), |
| |
| PREAD(in0_alarm, 0, PRI_HIGH, 0x41, 0, 0x01, 0, bitmask), |
| PREAD(in1_alarm, 1, PRI_HIGH, 0x41, 0, 0x01, 1, bitmask), |
| PREAD(in2_alarm, 2, PRI_HIGH, 0x41, 0, 0x01, 2, bitmask), |
| PREAD(in3_alarm, 3, PRI_HIGH, 0x41, 0, 0x01, 3, bitmask), |
| PREAD(in4_alarm, 4, PRI_HIGH, 0x42, 0, 0x01, 0, bitmask), |
| |
| PREAD(fan1_input, 0, PRI_HIGH, 0x29, 0x28, 0, 0, fan16), |
| PREAD(fan2_input, 1, PRI_HIGH, 0x2b, 0x2a, 0, 0, fan16), |
| PREAD(fan3_input, 2, PRI_HIGH, 0x2d, 0x2c, 0, 0, fan16), |
| PREAD(fan4_input, 3, PRI_HIGH, 0x2f, 0x2e, 0, 0, fan16), |
| |
| PWRITE(fan1_min, 0, PRI_LOW, 0x55, 0x54, 0, 0, fan16), |
| PWRITE(fan2_min, 1, PRI_LOW, 0x57, 0x56, 0, 0, fan16), |
| PWRITE(fan3_min, 2, PRI_LOW, 0x59, 0x58, 0, 0, fan16), |
| PWRITE(fan4_min, 3, PRI_LOW, 0x5b, 0x5a, 0, 0, fan16), |
| |
| PREAD(fan1_alarm, 0, PRI_HIGH, 0x42, 0, 0x01, 2, bitmask), |
| PREAD(fan2_alarm, 1, PRI_HIGH, 0x42, 0, 0x01, 3, bitmask), |
| PREAD(fan3_alarm, 2, PRI_HIGH, 0x42, 0, 0x01, 4, bitmask), |
| PREAD(fan4_alarm, 3, PRI_HIGH, 0x42, 0, 0x01, 5, bitmask), |
| |
| PREAD(temp1_input, 0, PRI_HIGH, 0x25, 0x10, 0, 0, temp10), |
| PREAD(temp2_input, 1, PRI_HIGH, 0x26, 0x15, 0, 0, temp10), |
| PREAD(temp3_input, 2, PRI_HIGH, 0x27, 0x16, 0, 0, temp10), |
| PREAD(temp4_input, 3, PRI_HIGH, 0x33, 0x17, 0, 0, temp10), |
| PREAD(temp5_input, 4, PRI_HIGH, 0xf7, 0xf6, 0, 0, temp10), |
| PREAD(temp6_input, 5, PRI_HIGH, 0xf9, 0xf8, 0, 0, temp10), |
| PREAD(temp7_input, 6, PRI_HIGH, 0xfb, 0xfa, 0, 0, temp10), |
| PREAD(temp8_input, 7, PRI_HIGH, 0xfd, 0xfc, 0, 0, temp10), |
| |
| PWRITE(temp1_min, 0, PRI_LOW, 0x4e, 0, 0, 0, temp8), |
| PWRITE(temp2_min, 1, PRI_LOW, 0x50, 0, 0, 0, temp8), |
| PWRITE(temp3_min, 2, PRI_LOW, 0x52, 0, 0, 0, temp8), |
| PWRITE(temp4_min, 3, PRI_LOW, 0x34, 0, 0, 0, temp8), |
| |
| PWRITE(temp1_max, 0, PRI_LOW, 0x4f, 0, 0, 0, temp8), |
| PWRITE(temp2_max, 1, PRI_LOW, 0x51, 0, 0, 0, temp8), |
| PWRITE(temp3_max, 2, PRI_LOW, 0x53, 0, 0, 0, temp8), |
| PWRITE(temp4_max, 3, PRI_LOW, 0x35, 0, 0, 0, temp8), |
| |
| PREAD(temp1_alarm, 0, PRI_HIGH, 0x41, 0, 0x01, 4, bitmask), |
| PREAD(temp2_alarm, 1, PRI_HIGH, 0x41, 0, 0x01, 5, bitmask), |
| PREAD(temp3_alarm, 2, PRI_HIGH, 0x41, 0, 0x01, 6, bitmask), |
| PREAD(temp4_alarm, 3, PRI_HIGH, 0x43, 0, 0x01, 0, bitmask), |
| |
| PWRITE(temp1_source, 0, PRI_LOW, 0x02, 0, 0x07, 4, bitmask), |
| PWRITE(temp2_source, 1, PRI_LOW, 0x02, 0, 0x07, 0, bitmask), |
| PWRITE(temp3_source, 2, PRI_LOW, 0x03, 0, 0x07, 4, bitmask), |
| PWRITE(temp4_source, 3, PRI_LOW, 0x03, 0, 0x07, 0, bitmask), |
| |
| PWRITE(temp1_smoothing_enable, 0, PRI_LOW, 0x62, 0, 0x01, 3, bitmask), |
| PWRITE(temp2_smoothing_enable, 1, PRI_LOW, 0x63, 0, 0x01, 7, bitmask), |
| PWRITE(temp3_smoothing_enable, 2, PRI_LOW, 0x63, 0, 0x01, 3, bitmask), |
| PWRITE(temp4_smoothing_enable, 3, PRI_LOW, 0x3c, 0, 0x01, 3, bitmask), |
| |
| PWRITE(temp1_smoothing_time, 0, PRI_LOW, 0x62, 0, 0x07, 0, temp_st), |
| PWRITE(temp2_smoothing_time, 1, PRI_LOW, 0x63, 0, 0x07, 4, temp_st), |
| PWRITE(temp3_smoothing_time, 2, PRI_LOW, 0x63, 0, 0x07, 0, temp_st), |
| PWRITE(temp4_smoothing_time, 3, PRI_LOW, 0x3c, 0, 0x07, 0, temp_st), |
| |
| PWRITE(temp1_auto_point1_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4, |
| bitmask), |
| PWRITE(temp2_auto_point1_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0, |
| bitmask), |
| PWRITE(temp3_auto_point1_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4, |
| bitmask), |
| PWRITE(temp4_auto_point1_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0, |
| bitmask), |
| |
| PREAD(temp1_auto_point2_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4, |
| bitmask), |
| PREAD(temp2_auto_point2_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0, |
| bitmask), |
| PREAD(temp3_auto_point2_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4, |
| bitmask), |
| PREAD(temp4_auto_point2_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0, |
| bitmask), |
| |
| PWRITE(temp1_auto_point1_temp, 0, PRI_LOW, 0x67, 0, 0, 0, temp8), |
| PWRITE(temp2_auto_point1_temp, 1, PRI_LOW, 0x68, 0, 0, 0, temp8), |
| PWRITE(temp3_auto_point1_temp, 2, PRI_LOW, 0x69, 0, 0, 0, temp8), |
| PWRITE(temp4_auto_point1_temp, 3, PRI_LOW, 0x3b, 0, 0, 0, temp8), |
| |
| PWRITEM(temp1_auto_point2_temp, 0, PRI_LOW, VAA(0x5f, 0x67), VAA(0), |
| VAA(0x0f), VAA(4), ap2_temp), |
| PWRITEM(temp2_auto_point2_temp, 1, PRI_LOW, VAA(0x60, 0x68), VAA(0), |
| VAA(0x0f), VAA(4), ap2_temp), |
| PWRITEM(temp3_auto_point2_temp, 2, PRI_LOW, VAA(0x61, 0x69), VAA(0), |
| VAA(0x0f), VAA(4), ap2_temp), |
| PWRITEM(temp4_auto_point2_temp, 3, PRI_LOW, VAA(0x3c, 0x3b), VAA(0), |
| VAA(0x0f), VAA(4), ap2_temp), |
| |
| PWRITE(temp1_crit, 0, PRI_LOW, 0x6a, 0, 0, 0, temp8), |
| PWRITE(temp2_crit, 1, PRI_LOW, 0x6b, 0, 0, 0, temp8), |
| PWRITE(temp3_crit, 2, PRI_LOW, 0x6c, 0, 0, 0, temp8), |
| PWRITE(temp4_crit, 3, PRI_LOW, 0x3d, 0, 0, 0, temp8), |
| |
| PWRITE(temp5_enable, 4, PRI_LOW, 0x0e, 0, 0x01, 0, bitmask), |
| PWRITE(temp6_enable, 5, PRI_LOW, 0x0e, 0, 0x01, 1, bitmask), |
| PWRITE(temp7_enable, 6, PRI_LOW, 0x0e, 0, 0x01, 2, bitmask), |
| PWRITE(temp8_enable, 7, PRI_LOW, 0x0e, 0, 0x01, 3, bitmask), |
| |
| PWRITE(remote1_offset, 0, PRI_LOW, 0x1c, 0, 0, 0, temp62), |
| PWRITE(remote2_offset, 1, PRI_LOW, 0x1d, 0, 0, 0, temp62), |
| |
| PWRITE(pwm1, 0, PRI_HIGH, 0x30, 0, 0, 0, u8), |
| PWRITE(pwm2, 1, PRI_HIGH, 0x31, 0, 0, 0, u8), |
| PWRITE(pwm3, 2, PRI_HIGH, 0x32, 0, 0, 0, u8), |
| |
| PWRITE(pwm1_invert, 0, PRI_LOW, 0x5c, 0, 0x01, 4, bitmask), |
| PWRITE(pwm2_invert, 1, PRI_LOW, 0x5d, 0, 0x01, 4, bitmask), |
| PWRITE(pwm3_invert, 2, PRI_LOW, 0x5e, 0, 0x01, 4, bitmask), |
| |
| PWRITEM(pwm1_enable, 0, PRI_LOW, VAA(0x5c, 0x5c, 0x62), VAA(0, 0, 0), |
| VAA(0x07, 0x01, 0x01), VAA(5, 3, 5), pwm_enable), |
| PWRITEM(pwm2_enable, 1, PRI_LOW, VAA(0x5d, 0x5d, 0x62), VAA(0, 0, 0), |
| VAA(0x07, 0x01, 0x01), VAA(5, 3, 6), pwm_enable), |
| PWRITEM(pwm3_enable, 2, PRI_LOW, VAA(0x5e, 0x5e, 0x62), VAA(0, 0, 0), |
| VAA(0x07, 0x01, 0x01), VAA(5, 3, 7), pwm_enable), |
| |
| PWRITEM(pwm1_auto_channels, 0, PRI_LOW, VAA(0x5c, 0x5c), VAA(0, 0), |
| VAA(0x07, 0x01), VAA(5, 3), pwm_ac), |
| PWRITEM(pwm2_auto_channels, 1, PRI_LOW, VAA(0x5d, 0x5d), VAA(0, 0), |
| VAA(0x07, 0x01), VAA(5, 3), pwm_ac), |
| PWRITEM(pwm3_auto_channels, 2, PRI_LOW, VAA(0x5e, 0x5e), VAA(0, 0), |
| VAA(0x07, 0x01), VAA(5, 3), pwm_ac), |
| |
| PWRITE(pwm1_auto_point1_pwm, 0, PRI_LOW, 0x64, 0, 0, 0, u8), |
| PWRITE(pwm2_auto_point1_pwm, 1, PRI_LOW, 0x65, 0, 0, 0, u8), |
| PWRITE(pwm3_auto_point1_pwm, 2, PRI_LOW, 0x66, 0, 0, 0, u8), |
| |
| PWRITE(pwm1_auto_point2_pwm, 0, PRI_LOW, 0x38, 0, 0, 0, u8), |
| PWRITE(pwm2_auto_point2_pwm, 1, PRI_LOW, 0x39, 0, 0, 0, u8), |
| PWRITE(pwm3_auto_point2_pwm, 2, PRI_LOW, 0x3a, 0, 0, 0, u8), |
| |
| PWRITE(pwm1_freq, 0, PRI_LOW, 0x5f, 0, 0x0f, 0, pwm_freq), |
| PWRITE(pwm2_freq, 1, PRI_LOW, 0x60, 0, 0x0f, 0, pwm_freq), |
| PWRITE(pwm3_freq, 2, PRI_LOW, 0x61, 0, 0x0f, 0, pwm_freq), |
| |
| PREAD(pwm1_auto_zone_assigned, 0, PRI_LOW, 0, 0, 0x03, 2, bitmask), |
| PREAD(pwm2_auto_zone_assigned, 1, PRI_LOW, 0, 0, 0x03, 4, bitmask), |
| PREAD(pwm3_auto_zone_assigned, 2, PRI_LOW, 0, 0, 0x03, 6, bitmask), |
| |
| PWRITE(pwm1_auto_spinup_time, 0, PRI_LOW, 0x5c, 0, 0x07, 0, pwm_ast), |
| PWRITE(pwm2_auto_spinup_time, 1, PRI_LOW, 0x5d, 0, 0x07, 0, pwm_ast), |
| PWRITE(pwm3_auto_spinup_time, 2, PRI_LOW, 0x5e, 0, 0x07, 0, pwm_ast), |
| |
| PWRITE(peci_enable, 0, PRI_LOW, 0x40, 0, 0x01, 4, bitmask), |
| PWRITE(peci_avg, 0, PRI_LOW, 0x36, 0, 0x07, 0, bitmask), |
| PWRITE(peci_domain, 0, PRI_LOW, 0x36, 0, 0x01, 3, bitmask), |
| PWRITE(peci_legacy, 0, PRI_LOW, 0x36, 0, 0x01, 4, bitmask), |
| PWRITE(peci_diode, 0, PRI_LOW, 0x0e, 0, 0x07, 4, bitmask), |
| PWRITE(peci_4domain, 0, PRI_LOW, 0x0e, 0, 0x01, 4, bitmask), |
| |
| }; |
| |
| static struct asc7621_data *asc7621_update_device(struct device *dev) |
| { |
| struct i2c_client *client = to_i2c_client(dev); |
| struct asc7621_data *data = i2c_get_clientdata(client); |
| int i; |
| |
| /* |
| * The asc7621 chips guarantee consistent reads of multi-byte values |
| * regardless of the order of the reads. No special logic is needed |
| * so we can just read the registers in whatever order they appear |
| * in the asc7621_params array. |
| */ |
| |
| mutex_lock(&data->update_lock); |
| |
| /* Read all the high priority registers */ |
| |
| if (!data->valid || |
| time_after(jiffies, data->last_high_reading + INTERVAL_HIGH)) { |
| |
| for (i = 0; i < ARRAY_SIZE(asc7621_register_priorities); i++) { |
| if (asc7621_register_priorities[i] == PRI_HIGH) { |
| data->reg[i] = |
| i2c_smbus_read_byte_data(client, i) & 0xff; |
| } |
| } |
| data->last_high_reading = jiffies; |
| } /* last_reading */ |
| |
| /* Read all the low priority registers. */ |
| |
| if (!data->valid || |
| time_after(jiffies, data->last_low_reading + INTERVAL_LOW)) { |
| |
| for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) { |
| if (asc7621_register_priorities[i] == PRI_LOW) { |
| data->reg[i] = |
| i2c_smbus_read_byte_data(client, i) & 0xff; |
| } |
| } |
| data->last_low_reading = jiffies; |
| } /* last_reading */ |
| |
| data->valid = 1; |
| |
| mutex_unlock(&data->update_lock); |
| |
| return data; |
| } |
| |
| /* |
| * Standard detection and initialization below |
| * |
| * Helper function that checks if an address is valid |
| * for a particular chip. |
| */ |
| |
| static inline int valid_address_for_chip(int chip_type, int address) |
| { |
| int i; |
| |
| for (i = 0; asc7621_chips[chip_type].addresses[i] != I2C_CLIENT_END; |
| i++) { |
| if (asc7621_chips[chip_type].addresses[i] == address) |
| return 1; |
| } |
| return 0; |
| } |
| |
| static void asc7621_init_client(struct i2c_client *client) |
| { |
| int value; |
| |
| /* Warn if part was not "READY" */ |
| |
| value = read_byte(client, 0x40); |
| |
| if (value & 0x02) { |
| dev_err(&client->dev, |
| "Client (%d,0x%02x) config is locked.\n", |
| i2c_adapter_id(client->adapter), client->addr); |
| } |
| if (!(value & 0x04)) { |
| dev_err(&client->dev, "Client (%d,0x%02x) is not ready.\n", |
| i2c_adapter_id(client->adapter), client->addr); |
| } |
| |
| /* |
| * Start monitoring |
| * |
| * Try to clear LOCK, Set START, save everything else |
| */ |
| value = (value & ~0x02) | 0x01; |
| write_byte(client, 0x40, value & 0xff); |
| |
| } |
| |
| static int |
| asc7621_probe(struct i2c_client *client, const struct i2c_device_id *id) |
| { |
| struct asc7621_data *data; |
| int i, err; |
| |
| if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) |
| return -EIO; |
| |
| data = devm_kzalloc(&client->dev, sizeof(struct asc7621_data), |
| GFP_KERNEL); |
| if (data == NULL) |
| return -ENOMEM; |
| |
| i2c_set_clientdata(client, data); |
| mutex_init(&data->update_lock); |
| |
| /* Initialize the asc7621 chip */ |
| asc7621_init_client(client); |
| |
| /* Create the sysfs entries */ |
| for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) { |
| err = |
| device_create_file(&client->dev, |
| &(asc7621_params[i].sda.dev_attr)); |
| if (err) |
| goto exit_remove; |
| } |
| |
| data->class_dev = hwmon_device_register(&client->dev); |
| if (IS_ERR(data->class_dev)) { |
| err = PTR_ERR(data->class_dev); |
| goto exit_remove; |
| } |
| |
| return 0; |
| |
| exit_remove: |
| for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) { |
| device_remove_file(&client->dev, |
| &(asc7621_params[i].sda.dev_attr)); |
| } |
| |
| return err; |
| } |
| |
| static int asc7621_detect(struct i2c_client *client, |
| struct i2c_board_info *info) |
| { |
| struct i2c_adapter *adapter = client->adapter; |
| int company, verstep, chip_index; |
| |
| if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) |
| return -ENODEV; |
| |
| for (chip_index = FIRST_CHIP; chip_index <= LAST_CHIP; chip_index++) { |
| |
| if (!valid_address_for_chip(chip_index, client->addr)) |
| continue; |
| |
| company = read_byte(client, |
| asc7621_chips[chip_index].company_reg); |
| verstep = read_byte(client, |
| asc7621_chips[chip_index].verstep_reg); |
| |
| if (company == asc7621_chips[chip_index].company_id && |
| verstep == asc7621_chips[chip_index].verstep_id) { |
| strlcpy(info->type, asc7621_chips[chip_index].name, |
| I2C_NAME_SIZE); |
| |
| dev_info(&adapter->dev, "Matched %s at 0x%02x\n", |
| asc7621_chips[chip_index].name, client->addr); |
| return 0; |
| } |
| } |
| |
| return -ENODEV; |
| } |
| |
| static int asc7621_remove(struct i2c_client *client) |
| { |
| struct asc7621_data *data = i2c_get_clientdata(client); |
| int i; |
| |
| hwmon_device_unregister(data->class_dev); |
| |
| for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) { |
| device_remove_file(&client->dev, |
| &(asc7621_params[i].sda.dev_attr)); |
| } |
| |
| return 0; |
| } |
| |
| static const struct i2c_device_id asc7621_id[] = { |
| {"asc7621", asc7621}, |
| {"asc7621a", asc7621a}, |
| {}, |
| }; |
| |
| MODULE_DEVICE_TABLE(i2c, asc7621_id); |
| |
| static struct i2c_driver asc7621_driver = { |
| .class = I2C_CLASS_HWMON, |
| .driver = { |
| .name = "asc7621", |
| }, |
| .probe = asc7621_probe, |
| .remove = asc7621_remove, |
| .id_table = asc7621_id, |
| .detect = asc7621_detect, |
| .address_list = normal_i2c, |
| }; |
| |
| static int __init sm_asc7621_init(void) |
| { |
| int i, j; |
| /* |
| * Collect all the registers needed into a single array. |
| * This way, if a register isn't actually used for anything, |
| * we don't retrieve it. |
| */ |
| |
| for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) { |
| for (j = 0; j < ARRAY_SIZE(asc7621_params[i].msb); j++) |
| asc7621_register_priorities[asc7621_params[i].msb[j]] = |
| asc7621_params[i].priority; |
| for (j = 0; j < ARRAY_SIZE(asc7621_params[i].lsb); j++) |
| asc7621_register_priorities[asc7621_params[i].lsb[j]] = |
| asc7621_params[i].priority; |
| } |
| return i2c_add_driver(&asc7621_driver); |
| } |
| |
| static void __exit sm_asc7621_exit(void) |
| { |
| i2c_del_driver(&asc7621_driver); |
| } |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("George Joseph"); |
| MODULE_DESCRIPTION("Andigilog aSC7621 and aSC7621a driver"); |
| |
| module_init(sm_asc7621_init); |
| module_exit(sm_asc7621_exit); |