| /* IEEE754 floating point arithmetic |
| * double precision: common utilities |
| */ |
| /* |
| * MIPS floating point support |
| * Copyright (C) 1994-2000 Algorithmics Ltd. |
| * |
| * ######################################################################## |
| * |
| * This program is free software; you can distribute it and/or modify it |
| * under the terms of the GNU General Public License (Version 2) as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write to the Free Software Foundation, Inc., |
| * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. |
| * |
| * ######################################################################## |
| */ |
| |
| #include <linux/compiler.h> |
| |
| #include "ieee754dp.h" |
| |
| int ieee754dp_class(union ieee754dp x) |
| { |
| COMPXDP; |
| EXPLODEXDP; |
| return xc; |
| } |
| |
| int ieee754dp_isnan(union ieee754dp x) |
| { |
| return ieee754dp_class(x) >= IEEE754_CLASS_SNAN; |
| } |
| |
| int ieee754dp_issnan(union ieee754dp x) |
| { |
| assert(ieee754dp_isnan(x)); |
| return ((DPMANT(x) & DP_MBIT(DP_MBITS-1)) == DP_MBIT(DP_MBITS-1)); |
| } |
| |
| |
| union ieee754dp __cold ieee754dp_xcpt(union ieee754dp r, const char *op, ...) |
| { |
| struct ieee754xctx ax; |
| if (!TSTX()) |
| return r; |
| |
| ax.op = op; |
| ax.rt = IEEE754_RT_DP; |
| ax.rv.dp = r; |
| va_start(ax.ap, op); |
| ieee754_xcpt(&ax); |
| va_end(ax.ap); |
| return ax.rv.dp; |
| } |
| |
| union ieee754dp __cold ieee754dp_nanxcpt(union ieee754dp r, const char *op, ...) |
| { |
| struct ieee754xctx ax; |
| |
| assert(ieee754dp_isnan(r)); |
| |
| if (!ieee754dp_issnan(r)) /* QNAN does not cause invalid op !! */ |
| return r; |
| |
| if (!SETANDTESTCX(IEEE754_INVALID_OPERATION)) { |
| /* not enabled convert to a quiet NaN */ |
| DPMANT(r) &= (~DP_MBIT(DP_MBITS-1)); |
| if (ieee754dp_isnan(r)) |
| return r; |
| else |
| return ieee754dp_indef(); |
| } |
| |
| ax.op = op; |
| ax.rt = 0; |
| ax.rv.dp = r; |
| va_start(ax.ap, op); |
| ieee754_xcpt(&ax); |
| va_end(ax.ap); |
| return ax.rv.dp; |
| } |
| |
| union ieee754dp ieee754dp_bestnan(union ieee754dp x, union ieee754dp y) |
| { |
| assert(ieee754dp_isnan(x)); |
| assert(ieee754dp_isnan(y)); |
| |
| if (DPMANT(x) > DPMANT(y)) |
| return x; |
| else |
| return y; |
| } |
| |
| |
| static u64 get_rounding(int sn, u64 xm) |
| { |
| /* inexact must round of 3 bits |
| */ |
| if (xm & (DP_MBIT(3) - 1)) { |
| switch (ieee754_csr.rm) { |
| case IEEE754_RZ: |
| break; |
| case IEEE754_RN: |
| xm += 0x3 + ((xm >> 3) & 1); |
| /* xm += (xm&0x8)?0x4:0x3 */ |
| break; |
| case IEEE754_RU: /* toward +Infinity */ |
| if (!sn) /* ?? */ |
| xm += 0x8; |
| break; |
| case IEEE754_RD: /* toward -Infinity */ |
| if (sn) /* ?? */ |
| xm += 0x8; |
| break; |
| } |
| } |
| return xm; |
| } |
| |
| |
| /* generate a normal/denormal number with over,under handling |
| * sn is sign |
| * xe is an unbiased exponent |
| * xm is 3bit extended precision value. |
| */ |
| union ieee754dp ieee754dp_format(int sn, int xe, u64 xm) |
| { |
| assert(xm); /* we don't gen exact zeros (probably should) */ |
| |
| assert((xm >> (DP_MBITS + 1 + 3)) == 0); /* no execess */ |
| assert(xm & (DP_HIDDEN_BIT << 3)); |
| |
| if (xe < DP_EMIN) { |
| /* strip lower bits */ |
| int es = DP_EMIN - xe; |
| |
| if (ieee754_csr.nod) { |
| SETCX(IEEE754_UNDERFLOW); |
| SETCX(IEEE754_INEXACT); |
| |
| switch(ieee754_csr.rm) { |
| case IEEE754_RN: |
| case IEEE754_RZ: |
| return ieee754dp_zero(sn); |
| case IEEE754_RU: /* toward +Infinity */ |
| if (sn == 0) |
| return ieee754dp_min(0); |
| else |
| return ieee754dp_zero(1); |
| case IEEE754_RD: /* toward -Infinity */ |
| if (sn == 0) |
| return ieee754dp_zero(0); |
| else |
| return ieee754dp_min(1); |
| } |
| } |
| |
| if (xe == DP_EMIN - 1 |
| && get_rounding(sn, xm) >> (DP_MBITS + 1 + 3)) |
| { |
| /* Not tiny after rounding */ |
| SETCX(IEEE754_INEXACT); |
| xm = get_rounding(sn, xm); |
| xm >>= 1; |
| /* Clear grs bits */ |
| xm &= ~(DP_MBIT(3) - 1); |
| xe++; |
| } |
| else { |
| /* sticky right shift es bits |
| */ |
| xm = XDPSRS(xm, es); |
| xe += es; |
| assert((xm & (DP_HIDDEN_BIT << 3)) == 0); |
| assert(xe == DP_EMIN); |
| } |
| } |
| if (xm & (DP_MBIT(3) - 1)) { |
| SETCX(IEEE754_INEXACT); |
| if ((xm & (DP_HIDDEN_BIT << 3)) == 0) { |
| SETCX(IEEE754_UNDERFLOW); |
| } |
| |
| /* inexact must round of 3 bits |
| */ |
| xm = get_rounding(sn, xm); |
| /* adjust exponent for rounding add overflowing |
| */ |
| if (xm >> (DP_MBITS + 3 + 1)) { |
| /* add causes mantissa overflow */ |
| xm >>= 1; |
| xe++; |
| } |
| } |
| /* strip grs bits */ |
| xm >>= 3; |
| |
| assert((xm >> (DP_MBITS + 1)) == 0); /* no execess */ |
| assert(xe >= DP_EMIN); |
| |
| if (xe > DP_EMAX) { |
| SETCX(IEEE754_OVERFLOW); |
| SETCX(IEEE754_INEXACT); |
| /* -O can be table indexed by (rm,sn) */ |
| switch (ieee754_csr.rm) { |
| case IEEE754_RN: |
| return ieee754dp_inf(sn); |
| case IEEE754_RZ: |
| return ieee754dp_max(sn); |
| case IEEE754_RU: /* toward +Infinity */ |
| if (sn == 0) |
| return ieee754dp_inf(0); |
| else |
| return ieee754dp_max(1); |
| case IEEE754_RD: /* toward -Infinity */ |
| if (sn == 0) |
| return ieee754dp_max(0); |
| else |
| return ieee754dp_inf(1); |
| } |
| } |
| /* gen norm/denorm/zero */ |
| |
| if ((xm & DP_HIDDEN_BIT) == 0) { |
| /* we underflow (tiny/zero) */ |
| assert(xe == DP_EMIN); |
| if (ieee754_csr.mx & IEEE754_UNDERFLOW) |
| SETCX(IEEE754_UNDERFLOW); |
| return builddp(sn, DP_EMIN - 1 + DP_EBIAS, xm); |
| } else { |
| assert((xm >> (DP_MBITS + 1)) == 0); /* no execess */ |
| assert(xm & DP_HIDDEN_BIT); |
| |
| return builddp(sn, xe + DP_EBIAS, xm & ~DP_HIDDEN_BIT); |
| } |
| } |