blob: 984d350551567d1c7a299f76fd5b3739b7633ddd [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
*
* Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
* Copyright (C) 2010 ST-Ericsson SA
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/highmem.h>
#include <linux/log2.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/pm.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/mmc/sd.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/amba/bus.h>
#include <linux/clk.h>
#include <linux/scatterlist.h>
#include <linux/of.h>
#include <linux/regulator/consumer.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/amba/mmci.h>
#include <linux/pm_runtime.h>
#include <linux/types.h>
#include <linux/pinctrl/consumer.h>
#include <linux/reset.h>
#include <linux/gpio/consumer.h>
#include <asm/div64.h>
#include <asm/io.h>
#include "mmci.h"
#define DRIVER_NAME "mmci-pl18x"
static void mmci_variant_init(struct mmci_host *host);
static void ux500_variant_init(struct mmci_host *host);
static void ux500v2_variant_init(struct mmci_host *host);
static unsigned int fmax = 515633;
static struct variant_data variant_arm = {
.fifosize = 16 * 4,
.fifohalfsize = 8 * 4,
.cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
.cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
.cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
.cmdreg_srsp = MCI_CPSM_RESPONSE,
.datalength_bits = 16,
.datactrl_blocksz = 11,
.pwrreg_powerup = MCI_PWR_UP,
.f_max = 100000000,
.reversed_irq_handling = true,
.mmcimask1 = true,
.irq_pio_mask = MCI_IRQ_PIO_MASK,
.start_err = MCI_STARTBITERR,
.opendrain = MCI_ROD,
.init = mmci_variant_init,
};
static struct variant_data variant_arm_extended_fifo = {
.fifosize = 128 * 4,
.fifohalfsize = 64 * 4,
.cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
.cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
.cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
.cmdreg_srsp = MCI_CPSM_RESPONSE,
.datalength_bits = 16,
.datactrl_blocksz = 11,
.pwrreg_powerup = MCI_PWR_UP,
.f_max = 100000000,
.mmcimask1 = true,
.irq_pio_mask = MCI_IRQ_PIO_MASK,
.start_err = MCI_STARTBITERR,
.opendrain = MCI_ROD,
.init = mmci_variant_init,
};
static struct variant_data variant_arm_extended_fifo_hwfc = {
.fifosize = 128 * 4,
.fifohalfsize = 64 * 4,
.clkreg_enable = MCI_ARM_HWFCEN,
.cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
.cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
.cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
.cmdreg_srsp = MCI_CPSM_RESPONSE,
.datalength_bits = 16,
.datactrl_blocksz = 11,
.pwrreg_powerup = MCI_PWR_UP,
.f_max = 100000000,
.mmcimask1 = true,
.irq_pio_mask = MCI_IRQ_PIO_MASK,
.start_err = MCI_STARTBITERR,
.opendrain = MCI_ROD,
.init = mmci_variant_init,
};
static struct variant_data variant_u300 = {
.fifosize = 16 * 4,
.fifohalfsize = 8 * 4,
.clkreg_enable = MCI_ST_U300_HWFCEN,
.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
.cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
.cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
.cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
.cmdreg_srsp = MCI_CPSM_RESPONSE,
.datalength_bits = 16,
.datactrl_blocksz = 11,
.datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
.st_sdio = true,
.pwrreg_powerup = MCI_PWR_ON,
.f_max = 100000000,
.signal_direction = true,
.pwrreg_clkgate = true,
.pwrreg_nopower = true,
.mmcimask1 = true,
.irq_pio_mask = MCI_IRQ_PIO_MASK,
.start_err = MCI_STARTBITERR,
.opendrain = MCI_OD,
.init = mmci_variant_init,
};
static struct variant_data variant_nomadik = {
.fifosize = 16 * 4,
.fifohalfsize = 8 * 4,
.clkreg = MCI_CLK_ENABLE,
.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
.cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
.cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
.cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
.cmdreg_srsp = MCI_CPSM_RESPONSE,
.datalength_bits = 24,
.datactrl_blocksz = 11,
.datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
.st_sdio = true,
.st_clkdiv = true,
.pwrreg_powerup = MCI_PWR_ON,
.f_max = 100000000,
.signal_direction = true,
.pwrreg_clkgate = true,
.pwrreg_nopower = true,
.mmcimask1 = true,
.irq_pio_mask = MCI_IRQ_PIO_MASK,
.start_err = MCI_STARTBITERR,
.opendrain = MCI_OD,
.init = mmci_variant_init,
};
static struct variant_data variant_ux500 = {
.fifosize = 30 * 4,
.fifohalfsize = 8 * 4,
.clkreg = MCI_CLK_ENABLE,
.clkreg_enable = MCI_ST_UX500_HWFCEN,
.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
.clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
.cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
.cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
.cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
.cmdreg_srsp = MCI_CPSM_RESPONSE,
.datalength_bits = 24,
.datactrl_blocksz = 11,
.datactrl_any_blocksz = true,
.dma_power_of_2 = true,
.datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
.st_sdio = true,
.st_clkdiv = true,
.pwrreg_powerup = MCI_PWR_ON,
.f_max = 100000000,
.signal_direction = true,
.pwrreg_clkgate = true,
.busy_detect = true,
.busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
.busy_detect_flag = MCI_ST_CARDBUSY,
.busy_detect_mask = MCI_ST_BUSYENDMASK,
.pwrreg_nopower = true,
.mmcimask1 = true,
.irq_pio_mask = MCI_IRQ_PIO_MASK,
.start_err = MCI_STARTBITERR,
.opendrain = MCI_OD,
.init = ux500_variant_init,
};
static struct variant_data variant_ux500v2 = {
.fifosize = 30 * 4,
.fifohalfsize = 8 * 4,
.clkreg = MCI_CLK_ENABLE,
.clkreg_enable = MCI_ST_UX500_HWFCEN,
.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
.clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
.cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
.cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
.cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
.cmdreg_srsp = MCI_CPSM_RESPONSE,
.datactrl_mask_ddrmode = MCI_DPSM_ST_DDRMODE,
.datalength_bits = 24,
.datactrl_blocksz = 11,
.datactrl_any_blocksz = true,
.dma_power_of_2 = true,
.datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
.st_sdio = true,
.st_clkdiv = true,
.pwrreg_powerup = MCI_PWR_ON,
.f_max = 100000000,
.signal_direction = true,
.pwrreg_clkgate = true,
.busy_detect = true,
.busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
.busy_detect_flag = MCI_ST_CARDBUSY,
.busy_detect_mask = MCI_ST_BUSYENDMASK,
.pwrreg_nopower = true,
.mmcimask1 = true,
.irq_pio_mask = MCI_IRQ_PIO_MASK,
.start_err = MCI_STARTBITERR,
.opendrain = MCI_OD,
.init = ux500v2_variant_init,
};
static struct variant_data variant_stm32 = {
.fifosize = 32 * 4,
.fifohalfsize = 8 * 4,
.clkreg = MCI_CLK_ENABLE,
.clkreg_enable = MCI_ST_UX500_HWFCEN,
.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
.clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
.cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
.cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
.cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
.cmdreg_srsp = MCI_CPSM_RESPONSE,
.irq_pio_mask = MCI_IRQ_PIO_MASK,
.datalength_bits = 24,
.datactrl_blocksz = 11,
.datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
.st_sdio = true,
.st_clkdiv = true,
.pwrreg_powerup = MCI_PWR_ON,
.f_max = 48000000,
.pwrreg_clkgate = true,
.pwrreg_nopower = true,
.init = mmci_variant_init,
};
static struct variant_data variant_stm32_sdmmc = {
.fifosize = 16 * 4,
.fifohalfsize = 8 * 4,
.f_max = 208000000,
.stm32_clkdiv = true,
.cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE,
.cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC,
.cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC,
.cmdreg_srsp = MCI_CPSM_STM32_SRSP,
.cmdreg_stop = MCI_CPSM_STM32_CMDSTOP,
.data_cmd_enable = MCI_CPSM_STM32_CMDTRANS,
.irq_pio_mask = MCI_IRQ_PIO_STM32_MASK,
.datactrl_first = true,
.datacnt_useless = true,
.datalength_bits = 25,
.datactrl_blocksz = 14,
.datactrl_any_blocksz = true,
.datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
.stm32_idmabsize_mask = GENMASK(12, 5),
.busy_timeout = true,
.busy_detect = true,
.busy_detect_flag = MCI_STM32_BUSYD0,
.busy_detect_mask = MCI_STM32_BUSYD0ENDMASK,
.init = sdmmc_variant_init,
};
static struct variant_data variant_stm32_sdmmcv2 = {
.fifosize = 16 * 4,
.fifohalfsize = 8 * 4,
.f_max = 208000000,
.stm32_clkdiv = true,
.cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE,
.cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC,
.cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC,
.cmdreg_srsp = MCI_CPSM_STM32_SRSP,
.cmdreg_stop = MCI_CPSM_STM32_CMDSTOP,
.data_cmd_enable = MCI_CPSM_STM32_CMDTRANS,
.irq_pio_mask = MCI_IRQ_PIO_STM32_MASK,
.datactrl_first = true,
.datacnt_useless = true,
.datalength_bits = 25,
.datactrl_blocksz = 14,
.datactrl_any_blocksz = true,
.datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
.stm32_idmabsize_mask = GENMASK(16, 5),
.dma_lli = true,
.busy_timeout = true,
.busy_detect = true,
.busy_detect_flag = MCI_STM32_BUSYD0,
.busy_detect_mask = MCI_STM32_BUSYD0ENDMASK,
.init = sdmmc_variant_init,
};
static struct variant_data variant_qcom = {
.fifosize = 16 * 4,
.fifohalfsize = 8 * 4,
.clkreg = MCI_CLK_ENABLE,
.clkreg_enable = MCI_QCOM_CLK_FLOWENA |
MCI_QCOM_CLK_SELECT_IN_FBCLK,
.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
.datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
.cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
.cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
.cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
.cmdreg_srsp = MCI_CPSM_RESPONSE,
.data_cmd_enable = MCI_CPSM_QCOM_DATCMD,
.datalength_bits = 24,
.datactrl_blocksz = 11,
.datactrl_any_blocksz = true,
.pwrreg_powerup = MCI_PWR_UP,
.f_max = 208000000,
.explicit_mclk_control = true,
.qcom_fifo = true,
.qcom_dml = true,
.mmcimask1 = true,
.irq_pio_mask = MCI_IRQ_PIO_MASK,
.start_err = MCI_STARTBITERR,
.opendrain = MCI_ROD,
.init = qcom_variant_init,
};
/* Busy detection for the ST Micro variant */
static int mmci_card_busy(struct mmc_host *mmc)
{
struct mmci_host *host = mmc_priv(mmc);
unsigned long flags;
int busy = 0;
spin_lock_irqsave(&host->lock, flags);
if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
busy = 1;
spin_unlock_irqrestore(&host->lock, flags);
return busy;
}
static void mmci_reg_delay(struct mmci_host *host)
{
/*
* According to the spec, at least three feedback clock cycles
* of max 52 MHz must pass between two writes to the MMCICLOCK reg.
* Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
* Worst delay time during card init is at 100 kHz => 30 us.
* Worst delay time when up and running is at 25 MHz => 120 ns.
*/
if (host->cclk < 25000000)
udelay(30);
else
ndelay(120);
}
/*
* This must be called with host->lock held
*/
void mmci_write_clkreg(struct mmci_host *host, u32 clk)
{
if (host->clk_reg != clk) {
host->clk_reg = clk;
writel(clk, host->base + MMCICLOCK);
}
}
/*
* This must be called with host->lock held
*/
void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
{
if (host->pwr_reg != pwr) {
host->pwr_reg = pwr;
writel(pwr, host->base + MMCIPOWER);
}
}
/*
* This must be called with host->lock held
*/
static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
{
/* Keep busy mode in DPSM if enabled */
datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
if (host->datactrl_reg != datactrl) {
host->datactrl_reg = datactrl;
writel(datactrl, host->base + MMCIDATACTRL);
}
}
/*
* This must be called with host->lock held
*/
static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
{
struct variant_data *variant = host->variant;
u32 clk = variant->clkreg;
/* Make sure cclk reflects the current calculated clock */
host->cclk = 0;
if (desired) {
if (variant->explicit_mclk_control) {
host->cclk = host->mclk;
} else if (desired >= host->mclk) {
clk = MCI_CLK_BYPASS;
if (variant->st_clkdiv)
clk |= MCI_ST_UX500_NEG_EDGE;
host->cclk = host->mclk;
} else if (variant->st_clkdiv) {
/*
* DB8500 TRM says f = mclk / (clkdiv + 2)
* => clkdiv = (mclk / f) - 2
* Round the divider up so we don't exceed the max
* frequency
*/
clk = DIV_ROUND_UP(host->mclk, desired) - 2;
if (clk >= 256)
clk = 255;
host->cclk = host->mclk / (clk + 2);
} else {
/*
* PL180 TRM says f = mclk / (2 * (clkdiv + 1))
* => clkdiv = mclk / (2 * f) - 1
*/
clk = host->mclk / (2 * desired) - 1;
if (clk >= 256)
clk = 255;
host->cclk = host->mclk / (2 * (clk + 1));
}
clk |= variant->clkreg_enable;
clk |= MCI_CLK_ENABLE;
/* This hasn't proven to be worthwhile */
/* clk |= MCI_CLK_PWRSAVE; */
}
/* Set actual clock for debug */
host->mmc->actual_clock = host->cclk;
if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
clk |= MCI_4BIT_BUS;
if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
clk |= variant->clkreg_8bit_bus_enable;
if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
clk |= variant->clkreg_neg_edge_enable;
mmci_write_clkreg(host, clk);
}
static void mmci_dma_release(struct mmci_host *host)
{
if (host->ops && host->ops->dma_release)
host->ops->dma_release(host);
host->use_dma = false;
}
static void mmci_dma_setup(struct mmci_host *host)
{
if (!host->ops || !host->ops->dma_setup)
return;
if (host->ops->dma_setup(host))
return;
/* initialize pre request cookie */
host->next_cookie = 1;
host->use_dma = true;
}
/*
* Validate mmc prerequisites
*/
static int mmci_validate_data(struct mmci_host *host,
struct mmc_data *data)
{
struct variant_data *variant = host->variant;
if (!data)
return 0;
if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) {
dev_err(mmc_dev(host->mmc),
"unsupported block size (%d bytes)\n", data->blksz);
return -EINVAL;
}
if (host->ops && host->ops->validate_data)
return host->ops->validate_data(host, data);
return 0;
}
static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
{
int err;
if (!host->ops || !host->ops->prep_data)
return 0;
err = host->ops->prep_data(host, data, next);
if (next && !err)
data->host_cookie = ++host->next_cookie < 0 ?
1 : host->next_cookie;
return err;
}
static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
int err)
{
if (host->ops && host->ops->unprep_data)
host->ops->unprep_data(host, data, err);
data->host_cookie = 0;
}
static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
{
WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
if (host->ops && host->ops->get_next_data)
host->ops->get_next_data(host, data);
}
static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
{
struct mmc_data *data = host->data;
int ret;
if (!host->use_dma)
return -EINVAL;
ret = mmci_prep_data(host, data, false);
if (ret)
return ret;
if (!host->ops || !host->ops->dma_start)
return -EINVAL;
/* Okay, go for it. */
dev_vdbg(mmc_dev(host->mmc),
"Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
data->sg_len, data->blksz, data->blocks, data->flags);
ret = host->ops->dma_start(host, &datactrl);
if (ret)
return ret;
/* Trigger the DMA transfer */
mmci_write_datactrlreg(host, datactrl);
/*
* Let the MMCI say when the data is ended and it's time
* to fire next DMA request. When that happens, MMCI will
* call mmci_data_end()
*/
writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
host->base + MMCIMASK0);
return 0;
}
static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
{
if (!host->use_dma)
return;
if (host->ops && host->ops->dma_finalize)
host->ops->dma_finalize(host, data);
}
static void mmci_dma_error(struct mmci_host *host)
{
if (!host->use_dma)
return;
if (host->ops && host->ops->dma_error)
host->ops->dma_error(host);
}
static void
mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
{
writel(0, host->base + MMCICOMMAND);
BUG_ON(host->data);
host->mrq = NULL;
host->cmd = NULL;
mmc_request_done(host->mmc, mrq);
}
static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
{
void __iomem *base = host->base;
struct variant_data *variant = host->variant;
if (host->singleirq) {
unsigned int mask0 = readl(base + MMCIMASK0);
mask0 &= ~variant->irq_pio_mask;
mask0 |= mask;
writel(mask0, base + MMCIMASK0);
}
if (variant->mmcimask1)
writel(mask, base + MMCIMASK1);
host->mask1_reg = mask;
}
static void mmci_stop_data(struct mmci_host *host)
{
mmci_write_datactrlreg(host, 0);
mmci_set_mask1(host, 0);
host->data = NULL;
}
static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
{
unsigned int flags = SG_MITER_ATOMIC;
if (data->flags & MMC_DATA_READ)
flags |= SG_MITER_TO_SG;
else
flags |= SG_MITER_FROM_SG;
sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
}
static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
{
return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
}
static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
{
return MCI_DPSM_ENABLE | (host->data->blksz << 16);
}
static bool ux500_busy_complete(struct mmci_host *host, u32 status, u32 err_msk)
{
void __iomem *base = host->base;
/*
* Before unmasking for the busy end IRQ, confirm that the
* command was sent successfully. To keep track of having a
* command in-progress, waiting for busy signaling to end,
* store the status in host->busy_status.
*
* Note that, the card may need a couple of clock cycles before
* it starts signaling busy on DAT0, hence re-read the
* MMCISTATUS register here, to allow the busy bit to be set.
* Potentially we may even need to poll the register for a
* while, to allow it to be set, but tests indicates that it
* isn't needed.
*/
if (!host->busy_status && !(status & err_msk) &&
(readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
writel(readl(base + MMCIMASK0) |
host->variant->busy_detect_mask,
base + MMCIMASK0);
host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
return false;
}
/*
* If there is a command in-progress that has been successfully
* sent, then bail out if busy status is set and wait for the
* busy end IRQ.
*
* Note that, the HW triggers an IRQ on both edges while
* monitoring DAT0 for busy completion, but there is only one
* status bit in MMCISTATUS for the busy state. Therefore
* both the start and the end interrupts needs to be cleared,
* one after the other. So, clear the busy start IRQ here.
*/
if (host->busy_status &&
(status & host->variant->busy_detect_flag)) {
writel(host->variant->busy_detect_mask, base + MMCICLEAR);
return false;
}
/*
* If there is a command in-progress that has been successfully
* sent and the busy bit isn't set, it means we have received
* the busy end IRQ. Clear and mask the IRQ, then continue to
* process the command.
*/
if (host->busy_status) {
writel(host->variant->busy_detect_mask, base + MMCICLEAR);
writel(readl(base + MMCIMASK0) &
~host->variant->busy_detect_mask, base + MMCIMASK0);
host->busy_status = 0;
}
return true;
}
/*
* All the DMA operation mode stuff goes inside this ifdef.
* This assumes that you have a generic DMA device interface,
* no custom DMA interfaces are supported.
*/
#ifdef CONFIG_DMA_ENGINE
struct mmci_dmae_next {
struct dma_async_tx_descriptor *desc;
struct dma_chan *chan;
};
struct mmci_dmae_priv {
struct dma_chan *cur;
struct dma_chan *rx_channel;
struct dma_chan *tx_channel;
struct dma_async_tx_descriptor *desc_current;
struct mmci_dmae_next next_data;
};
int mmci_dmae_setup(struct mmci_host *host)
{
const char *rxname, *txname;
struct mmci_dmae_priv *dmae;
dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
if (!dmae)
return -ENOMEM;
host->dma_priv = dmae;
dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx");
if (IS_ERR(dmae->rx_channel)) {
int ret = PTR_ERR(dmae->rx_channel);
dmae->rx_channel = NULL;
return ret;
}
dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx");
if (IS_ERR(dmae->tx_channel)) {
if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER)
dev_warn(mmc_dev(host->mmc),
"Deferred probe for TX channel ignored\n");
dmae->tx_channel = NULL;
}
/*
* If only an RX channel is specified, the driver will
* attempt to use it bidirectionally, however if it is
* is specified but cannot be located, DMA will be disabled.
*/
if (dmae->rx_channel && !dmae->tx_channel)
dmae->tx_channel = dmae->rx_channel;
if (dmae->rx_channel)
rxname = dma_chan_name(dmae->rx_channel);
else
rxname = "none";
if (dmae->tx_channel)
txname = dma_chan_name(dmae->tx_channel);
else
txname = "none";
dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
rxname, txname);
/*
* Limit the maximum segment size in any SG entry according to
* the parameters of the DMA engine device.
*/
if (dmae->tx_channel) {
struct device *dev = dmae->tx_channel->device->dev;
unsigned int max_seg_size = dma_get_max_seg_size(dev);
if (max_seg_size < host->mmc->max_seg_size)
host->mmc->max_seg_size = max_seg_size;
}
if (dmae->rx_channel) {
struct device *dev = dmae->rx_channel->device->dev;
unsigned int max_seg_size = dma_get_max_seg_size(dev);
if (max_seg_size < host->mmc->max_seg_size)
host->mmc->max_seg_size = max_seg_size;
}
if (!dmae->tx_channel || !dmae->rx_channel) {
mmci_dmae_release(host);
return -EINVAL;
}
return 0;
}
/*
* This is used in or so inline it
* so it can be discarded.
*/
void mmci_dmae_release(struct mmci_host *host)
{
struct mmci_dmae_priv *dmae = host->dma_priv;
if (dmae->rx_channel)
dma_release_channel(dmae->rx_channel);
if (dmae->tx_channel)
dma_release_channel(dmae->tx_channel);
dmae->rx_channel = dmae->tx_channel = NULL;
}
static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
{
struct mmci_dmae_priv *dmae = host->dma_priv;
struct dma_chan *chan;
if (data->flags & MMC_DATA_READ)
chan = dmae->rx_channel;
else
chan = dmae->tx_channel;
dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
mmc_get_dma_dir(data));
}
void mmci_dmae_error(struct mmci_host *host)
{
struct mmci_dmae_priv *dmae = host->dma_priv;
if (!dma_inprogress(host))
return;
dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
dmaengine_terminate_all(dmae->cur);
host->dma_in_progress = false;
dmae->cur = NULL;
dmae->desc_current = NULL;
host->data->host_cookie = 0;
mmci_dma_unmap(host, host->data);
}
void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
{
struct mmci_dmae_priv *dmae = host->dma_priv;
u32 status;
int i;
if (!dma_inprogress(host))
return;
/* Wait up to 1ms for the DMA to complete */
for (i = 0; ; i++) {
status = readl(host->base + MMCISTATUS);
if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
break;
udelay(10);
}
/*
* Check to see whether we still have some data left in the FIFO -
* this catches DMA controllers which are unable to monitor the
* DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
* contiguous buffers. On TX, we'll get a FIFO underrun error.
*/
if (status & MCI_RXDATAAVLBLMASK) {
mmci_dma_error(host);
if (!data->error)
data->error = -EIO;
} else if (!data->host_cookie) {
mmci_dma_unmap(host, data);
}
/*
* Use of DMA with scatter-gather is impossible.
* Give up with DMA and switch back to PIO mode.
*/
if (status & MCI_RXDATAAVLBLMASK) {
dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
mmci_dma_release(host);
}
host->dma_in_progress = false;
dmae->cur = NULL;
dmae->desc_current = NULL;
}
/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
struct dma_chan **dma_chan,
struct dma_async_tx_descriptor **dma_desc)
{
struct mmci_dmae_priv *dmae = host->dma_priv;
struct variant_data *variant = host->variant;
struct dma_slave_config conf = {
.src_addr = host->phybase + MMCIFIFO,
.dst_addr = host->phybase + MMCIFIFO,
.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
.device_fc = false,
};
struct dma_chan *chan;
struct dma_device *device;
struct dma_async_tx_descriptor *desc;
int nr_sg;
unsigned long flags = DMA_CTRL_ACK;
if (data->flags & MMC_DATA_READ) {
conf.direction = DMA_DEV_TO_MEM;
chan = dmae->rx_channel;
} else {
conf.direction = DMA_MEM_TO_DEV;
chan = dmae->tx_channel;
}
/* If there's no DMA channel, fall back to PIO */
if (!chan)
return -EINVAL;
/* If less than or equal to the fifo size, don't bother with DMA */
if (data->blksz * data->blocks <= variant->fifosize)
return -EINVAL;
/*
* This is necessary to get SDIO working on the Ux500. We do not yet
* know if this is a bug in:
* - The Ux500 DMA controller (DMA40)
* - The MMCI DMA interface on the Ux500
* some power of two blocks (such as 64 bytes) are sent regularly
* during SDIO traffic and those work fine so for these we enable DMA
* transfers.
*/
if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz))
return -EINVAL;
device = chan->device;
nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
mmc_get_dma_dir(data));
if (nr_sg == 0)
return -EINVAL;
if (host->variant->qcom_dml)
flags |= DMA_PREP_INTERRUPT;
dmaengine_slave_config(chan, &conf);
desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
conf.direction, flags);
if (!desc)
goto unmap_exit;
*dma_chan = chan;
*dma_desc = desc;
return 0;
unmap_exit:
dma_unmap_sg(device->dev, data->sg, data->sg_len,
mmc_get_dma_dir(data));
return -ENOMEM;
}
int mmci_dmae_prep_data(struct mmci_host *host,
struct mmc_data *data,
bool next)
{
struct mmci_dmae_priv *dmae = host->dma_priv;
struct mmci_dmae_next *nd = &dmae->next_data;
if (!host->use_dma)
return -EINVAL;
if (next)
return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
/* Check if next job is already prepared. */
if (dmae->cur && dmae->desc_current)
return 0;
/* No job were prepared thus do it now. */
return _mmci_dmae_prep_data(host, data, &dmae->cur,
&dmae->desc_current);
}
int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
{
struct mmci_dmae_priv *dmae = host->dma_priv;
int ret;
host->dma_in_progress = true;
ret = dma_submit_error(dmaengine_submit(dmae->desc_current));
if (ret < 0) {
host->dma_in_progress = false;
return ret;
}
dma_async_issue_pending(dmae->cur);
*datactrl |= MCI_DPSM_DMAENABLE;
return 0;
}
void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
{
struct mmci_dmae_priv *dmae = host->dma_priv;
struct mmci_dmae_next *next = &dmae->next_data;
if (!host->use_dma)
return;
WARN_ON(!data->host_cookie && (next->desc || next->chan));
dmae->desc_current = next->desc;
dmae->cur = next->chan;
next->desc = NULL;
next->chan = NULL;
}
void mmci_dmae_unprep_data(struct mmci_host *host,
struct mmc_data *data, int err)
{
struct mmci_dmae_priv *dmae = host->dma_priv;
if (!host->use_dma)
return;
mmci_dma_unmap(host, data);
if (err) {
struct mmci_dmae_next *next = &dmae->next_data;
struct dma_chan *chan;
if (data->flags & MMC_DATA_READ)
chan = dmae->rx_channel;
else
chan = dmae->tx_channel;
dmaengine_terminate_all(chan);
if (dmae->desc_current == next->desc)
dmae->desc_current = NULL;
if (dmae->cur == next->chan) {
host->dma_in_progress = false;
dmae->cur = NULL;
}
next->desc = NULL;
next->chan = NULL;
}
}
static struct mmci_host_ops mmci_variant_ops = {
.prep_data = mmci_dmae_prep_data,
.unprep_data = mmci_dmae_unprep_data,
.get_datactrl_cfg = mmci_get_dctrl_cfg,
.get_next_data = mmci_dmae_get_next_data,
.dma_setup = mmci_dmae_setup,
.dma_release = mmci_dmae_release,
.dma_start = mmci_dmae_start,
.dma_finalize = mmci_dmae_finalize,
.dma_error = mmci_dmae_error,
};
#else
static struct mmci_host_ops mmci_variant_ops = {
.get_datactrl_cfg = mmci_get_dctrl_cfg,
};
#endif
static void mmci_variant_init(struct mmci_host *host)
{
host->ops = &mmci_variant_ops;
}
static void ux500_variant_init(struct mmci_host *host)
{
host->ops = &mmci_variant_ops;
host->ops->busy_complete = ux500_busy_complete;
}
static void ux500v2_variant_init(struct mmci_host *host)
{
host->ops = &mmci_variant_ops;
host->ops->busy_complete = ux500_busy_complete;
host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
}
static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct mmci_host *host = mmc_priv(mmc);
struct mmc_data *data = mrq->data;
if (!data)
return;
WARN_ON(data->host_cookie);
if (mmci_validate_data(host, data))
return;
mmci_prep_data(host, data, true);
}
static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
int err)
{
struct mmci_host *host = mmc_priv(mmc);
struct mmc_data *data = mrq->data;
if (!data || !data->host_cookie)
return;
mmci_unprep_data(host, data, err);
}
static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
{
struct variant_data *variant = host->variant;
unsigned int datactrl, timeout, irqmask;
unsigned long long clks;
void __iomem *base;
dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
data->blksz, data->blocks, data->flags);
host->data = data;
host->size = data->blksz * data->blocks;
data->bytes_xfered = 0;
clks = (unsigned long long)data->timeout_ns * host->cclk;
do_div(clks, NSEC_PER_SEC);
timeout = data->timeout_clks + (unsigned int)clks;
base = host->base;
writel(timeout, base + MMCIDATATIMER);
writel(host->size, base + MMCIDATALENGTH);
datactrl = host->ops->get_datactrl_cfg(host);
datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
u32 clk;
datactrl |= variant->datactrl_mask_sdio;
/*
* The ST Micro variant for SDIO small write transfers
* needs to have clock H/W flow control disabled,
* otherwise the transfer will not start. The threshold
* depends on the rate of MCLK.
*/
if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
(host->size < 8 ||
(host->size <= 8 && host->mclk > 50000000)))
clk = host->clk_reg & ~variant->clkreg_enable;
else
clk = host->clk_reg | variant->clkreg_enable;
mmci_write_clkreg(host, clk);
}
if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
datactrl |= variant->datactrl_mask_ddrmode;
/*
* Attempt to use DMA operation mode, if this
* should fail, fall back to PIO mode
*/
if (!mmci_dma_start(host, datactrl))
return;
/* IRQ mode, map the SG list for CPU reading/writing */
mmci_init_sg(host, data);
if (data->flags & MMC_DATA_READ) {
irqmask = MCI_RXFIFOHALFFULLMASK;
/*
* If we have less than the fifo 'half-full' threshold to
* transfer, trigger a PIO interrupt as soon as any data
* is available.
*/
if (host->size < variant->fifohalfsize)
irqmask |= MCI_RXDATAAVLBLMASK;
} else {
/*
* We don't actually need to include "FIFO empty" here
* since its implicit in "FIFO half empty".
*/
irqmask = MCI_TXFIFOHALFEMPTYMASK;
}
mmci_write_datactrlreg(host, datactrl);
writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
mmci_set_mask1(host, irqmask);
}
static void
mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
{
void __iomem *base = host->base;
unsigned long long clks;
dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
cmd->opcode, cmd->arg, cmd->flags);
if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
writel(0, base + MMCICOMMAND);
mmci_reg_delay(host);
}
if (host->variant->cmdreg_stop &&
cmd->opcode == MMC_STOP_TRANSMISSION)
c |= host->variant->cmdreg_stop;
c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136)
c |= host->variant->cmdreg_lrsp_crc;
else if (cmd->flags & MMC_RSP_CRC)
c |= host->variant->cmdreg_srsp_crc;
else
c |= host->variant->cmdreg_srsp;
}
if (host->variant->busy_timeout && cmd->flags & MMC_RSP_BUSY) {
if (!cmd->busy_timeout)
cmd->busy_timeout = 10 * MSEC_PER_SEC;
if (cmd->busy_timeout > host->mmc->max_busy_timeout)
clks = (unsigned long long)host->mmc->max_busy_timeout * host->cclk;
else
clks = (unsigned long long)cmd->busy_timeout * host->cclk;
do_div(clks, MSEC_PER_SEC);
writel_relaxed(clks, host->base + MMCIDATATIMER);
}
if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE)
host->ops->pre_sig_volt_switch(host);
if (/*interrupt*/0)
c |= MCI_CPSM_INTERRUPT;
if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
c |= host->variant->data_cmd_enable;
host->cmd = cmd;
writel(cmd->arg, base + MMCIARGUMENT);
writel(c, base + MMCICOMMAND);
}
static void mmci_stop_command(struct mmci_host *host)
{
host->stop_abort.error = 0;
mmci_start_command(host, &host->stop_abort, 0);
}
static void
mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
unsigned int status)
{
unsigned int status_err;
/* Make sure we have data to handle */
if (!data)
return;
/* First check for errors */
status_err = status & (host->variant->start_err |
MCI_DATACRCFAIL | MCI_DATATIMEOUT |
MCI_TXUNDERRUN | MCI_RXOVERRUN);
if (status_err) {
u32 remain, success;
/* Terminate the DMA transfer */
mmci_dma_error(host);
/*
* Calculate how far we are into the transfer. Note that
* the data counter gives the number of bytes transferred
* on the MMC bus, not on the host side. On reads, this
* can be as much as a FIFO-worth of data ahead. This
* matters for FIFO overruns only.
*/
if (!host->variant->datacnt_useless) {
remain = readl(host->base + MMCIDATACNT);
success = data->blksz * data->blocks - remain;
} else {
success = 0;
}
dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
status_err, success);
if (status_err & MCI_DATACRCFAIL) {
/* Last block was not successful */
success -= 1;
data->error = -EILSEQ;
} else if (status_err & MCI_DATATIMEOUT) {
data->error = -ETIMEDOUT;
} else if (status_err & MCI_STARTBITERR) {
data->error = -ECOMM;
} else if (status_err & MCI_TXUNDERRUN) {
data->error = -EIO;
} else if (status_err & MCI_RXOVERRUN) {
if (success > host->variant->fifosize)
success -= host->variant->fifosize;
else
success = 0;
data->error = -EIO;
}
data->bytes_xfered = round_down(success, data->blksz);
}
if (status & MCI_DATABLOCKEND)
dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
if (status & MCI_DATAEND || data->error) {
mmci_dma_finalize(host, data);
mmci_stop_data(host);
if (!data->error)
/* The error clause is handled above, success! */
data->bytes_xfered = data->blksz * data->blocks;
if (!data->stop) {
if (host->variant->cmdreg_stop && data->error)
mmci_stop_command(host);
else
mmci_request_end(host, data->mrq);
} else if (host->mrq->sbc && !data->error) {
mmci_request_end(host, data->mrq);
} else {
mmci_start_command(host, data->stop, 0);
}
}
}
static void
mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
unsigned int status)
{
u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
void __iomem *base = host->base;
bool sbc, busy_resp;
if (!cmd)
return;
sbc = (cmd == host->mrq->sbc);
busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
/*
* We need to be one of these interrupts to be considered worth
* handling. Note that we tag on any latent IRQs postponed
* due to waiting for busy status.
*/
if (host->variant->busy_timeout && busy_resp)
err_msk |= MCI_DATATIMEOUT;
if (!((status | host->busy_status) &
(err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
return;
/* Handle busy detection on DAT0 if the variant supports it. */
if (busy_resp && host->variant->busy_detect)
if (!host->ops->busy_complete(host, status, err_msk))
return;
host->cmd = NULL;
if (status & MCI_CMDTIMEOUT) {
cmd->error = -ETIMEDOUT;
} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
cmd->error = -EILSEQ;
} else if (host->variant->busy_timeout && busy_resp &&
status & MCI_DATATIMEOUT) {
cmd->error = -ETIMEDOUT;
host->irq_action = IRQ_WAKE_THREAD;
} else {
cmd->resp[0] = readl(base + MMCIRESPONSE0);
cmd->resp[1] = readl(base + MMCIRESPONSE1);
cmd->resp[2] = readl(base + MMCIRESPONSE2);
cmd->resp[3] = readl(base + MMCIRESPONSE3);
}
if ((!sbc && !cmd->data) || cmd->error) {
if (host->data) {
/* Terminate the DMA transfer */
mmci_dma_error(host);
mmci_stop_data(host);
if (host->variant->cmdreg_stop && cmd->error) {
mmci_stop_command(host);
return;
}
}
if (host->irq_action != IRQ_WAKE_THREAD)
mmci_request_end(host, host->mrq);
} else if (sbc) {
mmci_start_command(host, host->mrq->cmd, 0);
} else if (!host->variant->datactrl_first &&
!(cmd->data->flags & MMC_DATA_READ)) {
mmci_start_data(host, cmd->data);
}
}
static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
{
return remain - (readl(host->base + MMCIFIFOCNT) << 2);
}
static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
{
/*
* on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
* from the fifo range should be used
*/
if (status & MCI_RXFIFOHALFFULL)
return host->variant->fifohalfsize;
else if (status & MCI_RXDATAAVLBL)
return 4;
return 0;
}
static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
{
void __iomem *base = host->base;
char *ptr = buffer;
u32 status = readl(host->base + MMCISTATUS);
int host_remain = host->size;
do {
int count = host->get_rx_fifocnt(host, status, host_remain);
if (count > remain)
count = remain;
if (count <= 0)
break;
/*
* SDIO especially may want to send something that is
* not divisible by 4 (as opposed to card sectors
* etc). Therefore make sure to always read the last bytes
* while only doing full 32-bit reads towards the FIFO.
*/
if (unlikely(count & 0x3)) {
if (count < 4) {
unsigned char buf[4];
ioread32_rep(base + MMCIFIFO, buf, 1);
memcpy(ptr, buf, count);
} else {
ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
count &= ~0x3;
}
} else {
ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
}
ptr += count;
remain -= count;
host_remain -= count;
if (remain == 0)
break;
status = readl(base + MMCISTATUS);
} while (status & MCI_RXDATAAVLBL);
return ptr - buffer;
}
static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
{
struct variant_data *variant = host->variant;
void __iomem *base = host->base;
char *ptr = buffer;
do {
unsigned int count, maxcnt;
maxcnt = status & MCI_TXFIFOEMPTY ?
variant->fifosize : variant->fifohalfsize;
count = min(remain, maxcnt);
/*
* SDIO especially may want to send something that is
* not divisible by 4 (as opposed to card sectors
* etc), and the FIFO only accept full 32-bit writes.
* So compensate by adding +3 on the count, a single
* byte become a 32bit write, 7 bytes will be two
* 32bit writes etc.
*/
iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
ptr += count;
remain -= count;
if (remain == 0)
break;
status = readl(base + MMCISTATUS);
} while (status & MCI_TXFIFOHALFEMPTY);
return ptr - buffer;
}
/*
* PIO data transfer IRQ handler.
*/
static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
{
struct mmci_host *host = dev_id;
struct sg_mapping_iter *sg_miter = &host->sg_miter;
struct variant_data *variant = host->variant;
void __iomem *base = host->base;
u32 status;
status = readl(base + MMCISTATUS);
dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
do {
unsigned int remain, len;
char *buffer;
/*
* For write, we only need to test the half-empty flag
* here - if the FIFO is completely empty, then by
* definition it is more than half empty.
*
* For read, check for data available.
*/
if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
break;
if (!sg_miter_next(sg_miter))
break;
buffer = sg_miter->addr;
remain = sg_miter->length;
len = 0;
if (status & MCI_RXACTIVE)
len = mmci_pio_read(host, buffer, remain);
if (status & MCI_TXACTIVE)
len = mmci_pio_write(host, buffer, remain, status);
sg_miter->consumed = len;
host->size -= len;
remain -= len;
if (remain)
break;
status = readl(base + MMCISTATUS);
} while (1);
sg_miter_stop(sg_miter);
/*
* If we have less than the fifo 'half-full' threshold to transfer,
* trigger a PIO interrupt as soon as any data is available.
*/
if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
/*
* If we run out of data, disable the data IRQs; this
* prevents a race where the FIFO becomes empty before
* the chip itself has disabled the data path, and
* stops us racing with our data end IRQ.
*/
if (host->size == 0) {
mmci_set_mask1(host, 0);
writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
}
return IRQ_HANDLED;
}
/*
* Handle completion of command and data transfers.
*/
static irqreturn_t mmci_irq(int irq, void *dev_id)
{
struct mmci_host *host = dev_id;
u32 status;
spin_lock(&host->lock);
host->irq_action = IRQ_HANDLED;
do {
status = readl(host->base + MMCISTATUS);
if (host->singleirq) {
if (status & host->mask1_reg)
mmci_pio_irq(irq, dev_id);
status &= ~host->variant->irq_pio_mask;
}
/*
* Busy detection is managed by mmci_cmd_irq(), including to
* clear the corresponding IRQ.
*/
status &= readl(host->base + MMCIMASK0);
if (host->variant->busy_detect)
writel(status & ~host->variant->busy_detect_mask,
host->base + MMCICLEAR);
else
writel(status, host->base + MMCICLEAR);
dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
if (host->variant->reversed_irq_handling) {
mmci_data_irq(host, host->data, status);
mmci_cmd_irq(host, host->cmd, status);
} else {
mmci_cmd_irq(host, host->cmd, status);
mmci_data_irq(host, host->data, status);
}
/*
* Busy detection has been handled by mmci_cmd_irq() above.
* Clear the status bit to prevent polling in IRQ context.
*/
if (host->variant->busy_detect_flag)
status &= ~host->variant->busy_detect_flag;
} while (status);
spin_unlock(&host->lock);
return host->irq_action;
}
/*
* mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
*
* A reset is needed for some variants, where a datatimeout for a R1B request
* causes the DPSM to stay busy (non-functional).
*/
static irqreturn_t mmci_irq_thread(int irq, void *dev_id)
{
struct mmci_host *host = dev_id;
unsigned long flags;
if (host->rst) {
reset_control_assert(host->rst);
udelay(2);
reset_control_deassert(host->rst);
}
spin_lock_irqsave(&host->lock, flags);
writel(host->clk_reg, host->base + MMCICLOCK);
writel(host->pwr_reg, host->base + MMCIPOWER);
writel(MCI_IRQENABLE | host->variant->start_err,
host->base + MMCIMASK0);
host->irq_action = IRQ_HANDLED;
mmci_request_end(host, host->mrq);
spin_unlock_irqrestore(&host->lock, flags);
return host->irq_action;
}
static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct mmci_host *host = mmc_priv(mmc);
unsigned long flags;
WARN_ON(host->mrq != NULL);
mrq->cmd->error = mmci_validate_data(host, mrq->data);
if (mrq->cmd->error) {
mmc_request_done(mmc, mrq);
return;
}
spin_lock_irqsave(&host->lock, flags);
host->mrq = mrq;
if (mrq->data)
mmci_get_next_data(host, mrq->data);
if (mrq->data &&
(host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
mmci_start_data(host, mrq->data);
if (mrq->sbc)
mmci_start_command(host, mrq->sbc, 0);
else
mmci_start_command(host, mrq->cmd, 0);
spin_unlock_irqrestore(&host->lock, flags);
}
static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
{
struct mmci_host *host = mmc_priv(mmc);
u32 max_busy_timeout = 0;
if (!host->variant->busy_detect)
return;
if (host->variant->busy_timeout && mmc->actual_clock)
max_busy_timeout = ~0UL / (mmc->actual_clock / MSEC_PER_SEC);
mmc->max_busy_timeout = max_busy_timeout;
}
static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct mmci_host *host = mmc_priv(mmc);
struct variant_data *variant = host->variant;
u32 pwr = 0;
unsigned long flags;
int ret;
if (host->plat->ios_handler &&
host->plat->ios_handler(mmc_dev(mmc), ios))
dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
switch (ios->power_mode) {
case MMC_POWER_OFF:
if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
regulator_disable(mmc->supply.vqmmc);
host->vqmmc_enabled = false;
}
break;
case MMC_POWER_UP:
if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
/*
* The ST Micro variant doesn't have the PL180s MCI_PWR_UP
* and instead uses MCI_PWR_ON so apply whatever value is
* configured in the variant data.
*/
pwr |= variant->pwrreg_powerup;
break;
case MMC_POWER_ON:
if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
ret = regulator_enable(mmc->supply.vqmmc);
if (ret < 0)
dev_err(mmc_dev(mmc),
"failed to enable vqmmc regulator\n");
else
host->vqmmc_enabled = true;
}
pwr |= MCI_PWR_ON;
break;
}
if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
/*
* The ST Micro variant has some additional bits
* indicating signal direction for the signals in
* the SD/MMC bus and feedback-clock usage.
*/
pwr |= host->pwr_reg_add;
if (ios->bus_width == MMC_BUS_WIDTH_4)
pwr &= ~MCI_ST_DATA74DIREN;
else if (ios->bus_width == MMC_BUS_WIDTH_1)
pwr &= (~MCI_ST_DATA74DIREN &
~MCI_ST_DATA31DIREN &
~MCI_ST_DATA2DIREN);
}
if (variant->opendrain) {
if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
pwr |= variant->opendrain;
} else {
/*
* If the variant cannot configure the pads by its own, then we
* expect the pinctrl to be able to do that for us
*/
if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
pinctrl_select_state(host->pinctrl, host->pins_opendrain);
else
pinctrl_select_default_state(mmc_dev(mmc));
}
/*
* If clock = 0 and the variant requires the MMCIPOWER to be used for
* gating the clock, the MCI_PWR_ON bit is cleared.
*/
if (!ios->clock && variant->pwrreg_clkgate)
pwr &= ~MCI_PWR_ON;
if (host->variant->explicit_mclk_control &&
ios->clock != host->clock_cache) {
ret = clk_set_rate(host->clk, ios->clock);
if (ret < 0)
dev_err(mmc_dev(host->mmc),
"Error setting clock rate (%d)\n", ret);
else
host->mclk = clk_get_rate(host->clk);
}
host->clock_cache = ios->clock;
spin_lock_irqsave(&host->lock, flags);
if (host->ops && host->ops->set_clkreg)
host->ops->set_clkreg(host, ios->clock);
else
mmci_set_clkreg(host, ios->clock);
mmci_set_max_busy_timeout(mmc);
if (host->ops && host->ops->set_pwrreg)
host->ops->set_pwrreg(host, pwr);
else
mmci_write_pwrreg(host, pwr);
mmci_reg_delay(host);
spin_unlock_irqrestore(&host->lock, flags);
}
static int mmci_get_cd(struct mmc_host *mmc)
{
struct mmci_host *host = mmc_priv(mmc);
struct mmci_platform_data *plat = host->plat;
unsigned int status = mmc_gpio_get_cd(mmc);
if (status == -ENOSYS) {
if (!plat->status)
return 1; /* Assume always present */
status = plat->status(mmc_dev(host->mmc));
}
return status;
}
static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct mmci_host *host = mmc_priv(mmc);
int ret;
ret = mmc_regulator_set_vqmmc(mmc, ios);
if (!ret && host->ops && host->ops->post_sig_volt_switch)
ret = host->ops->post_sig_volt_switch(host, ios);
else if (ret)
ret = 0;
if (ret < 0)
dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
return ret;
}
static struct mmc_host_ops mmci_ops = {
.request = mmci_request,
.pre_req = mmci_pre_request,
.post_req = mmci_post_request,
.set_ios = mmci_set_ios,
.get_ro = mmc_gpio_get_ro,
.get_cd = mmci_get_cd,
.start_signal_voltage_switch = mmci_sig_volt_switch,
};
static void mmci_probe_level_translator(struct mmc_host *mmc)
{
struct device *dev = mmc_dev(mmc);
struct mmci_host *host = mmc_priv(mmc);
struct gpio_desc *cmd_gpio;
struct gpio_desc *ck_gpio;
struct gpio_desc *ckin_gpio;
int clk_hi, clk_lo;
/*
* Assume the level translator is present if st,use-ckin is set.
* This is to cater for DTs which do not implement this test.
*/
host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
cmd_gpio = gpiod_get(dev, "st,cmd", GPIOD_OUT_HIGH);
if (IS_ERR(cmd_gpio))
goto exit_cmd;
ck_gpio = gpiod_get(dev, "st,ck", GPIOD_OUT_HIGH);
if (IS_ERR(ck_gpio))
goto exit_ck;
ckin_gpio = gpiod_get(dev, "st,ckin", GPIOD_IN);
if (IS_ERR(ckin_gpio))
goto exit_ckin;
/* All GPIOs are valid, test whether level translator works */
/* Sample CKIN */
clk_hi = !!gpiod_get_value(ckin_gpio);
/* Set CK low */
gpiod_set_value(ck_gpio, 0);
/* Sample CKIN */
clk_lo = !!gpiod_get_value(ckin_gpio);
/* Tristate all */
gpiod_direction_input(cmd_gpio);
gpiod_direction_input(ck_gpio);
/* Level translator is present if CK signal is propagated to CKIN */
if (!clk_hi || clk_lo) {
host->clk_reg_add &= ~MCI_STM32_CLK_SELCKIN;
dev_warn(dev,
"Level translator inoperable, CK signal not detected on CKIN, disabling.\n");
}
gpiod_put(ckin_gpio);
exit_ckin:
gpiod_put(ck_gpio);
exit_ck:
gpiod_put(cmd_gpio);
exit_cmd:
pinctrl_select_default_state(dev);
}
static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
{
struct mmci_host *host = mmc_priv(mmc);
int ret = mmc_of_parse(mmc);
if (ret)
return ret;
if (of_get_property(np, "st,sig-dir-dat0", NULL))
host->pwr_reg_add |= MCI_ST_DATA0DIREN;
if (of_get_property(np, "st,sig-dir-dat2", NULL))
host->pwr_reg_add |= MCI_ST_DATA2DIREN;
if (of_get_property(np, "st,sig-dir-dat31", NULL))
host->pwr_reg_add |= MCI_ST_DATA31DIREN;
if (of_get_property(np, "st,sig-dir-dat74", NULL))
host->pwr_reg_add |= MCI_ST_DATA74DIREN;
if (of_get_property(np, "st,sig-dir-cmd", NULL))
host->pwr_reg_add |= MCI_ST_CMDDIREN;
if (of_get_property(np, "st,sig-pin-fbclk", NULL))
host->pwr_reg_add |= MCI_ST_FBCLKEN;
if (of_get_property(np, "st,sig-dir", NULL))
host->pwr_reg_add |= MCI_STM32_DIRPOL;
if (of_get_property(np, "st,neg-edge", NULL))
host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
if (of_get_property(np, "st,use-ckin", NULL))
mmci_probe_level_translator(mmc);
if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
mmc->caps |= MMC_CAP_SD_HIGHSPEED;
return 0;
}
static int mmci_probe(struct amba_device *dev,
const struct amba_id *id)
{
struct mmci_platform_data *plat = dev->dev.platform_data;
struct device_node *np = dev->dev.of_node;
struct variant_data *variant = id->data;
struct mmci_host *host;
struct mmc_host *mmc;
int ret;
/* Must have platform data or Device Tree. */
if (!plat && !np) {
dev_err(&dev->dev, "No plat data or DT found\n");
return -EINVAL;
}
if (!plat) {
plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
if (!plat)
return -ENOMEM;
}
mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
if (!mmc)
return -ENOMEM;
host = mmc_priv(mmc);
host->mmc = mmc;
host->mmc_ops = &mmci_ops;
mmc->ops = &mmci_ops;
ret = mmci_of_parse(np, mmc);
if (ret)
goto host_free;
/*
* Some variant (STM32) doesn't have opendrain bit, nevertheless
* pins can be set accordingly using pinctrl
*/
if (!variant->opendrain) {
host->pinctrl = devm_pinctrl_get(&dev->dev);
if (IS_ERR(host->pinctrl)) {
dev_err(&dev->dev, "failed to get pinctrl");
ret = PTR_ERR(host->pinctrl);
goto host_free;
}
host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
MMCI_PINCTRL_STATE_OPENDRAIN);
if (IS_ERR(host->pins_opendrain)) {
dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
ret = PTR_ERR(host->pins_opendrain);
goto host_free;
}
}
host->hw_designer = amba_manf(dev);
host->hw_revision = amba_rev(dev);
dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
host->clk = devm_clk_get(&dev->dev, NULL);
if (IS_ERR(host->clk)) {
ret = PTR_ERR(host->clk);
goto host_free;
}
ret = clk_prepare_enable(host->clk);
if (ret)
goto host_free;
if (variant->qcom_fifo)
host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
else
host->get_rx_fifocnt = mmci_get_rx_fifocnt;
host->plat = plat;
host->variant = variant;
host->mclk = clk_get_rate(host->clk);
/*
* According to the spec, mclk is max 100 MHz,
* so we try to adjust the clock down to this,
* (if possible).
*/
if (host->mclk > variant->f_max) {
ret = clk_set_rate(host->clk, variant->f_max);
if (ret < 0)
goto clk_disable;
host->mclk = clk_get_rate(host->clk);
dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
host->mclk);
}
host->phybase = dev->res.start;
host->base = devm_ioremap_resource(&dev->dev, &dev->res);
if (IS_ERR(host->base)) {
ret = PTR_ERR(host->base);
goto clk_disable;
}
if (variant->init)
variant->init(host);
/*
* The ARM and ST versions of the block have slightly different
* clock divider equations which means that the minimum divider
* differs too.
* on Qualcomm like controllers get the nearest minimum clock to 100Khz
*/
if (variant->st_clkdiv)
mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
else if (variant->stm32_clkdiv)
mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
else if (variant->explicit_mclk_control)
mmc->f_min = clk_round_rate(host->clk, 100000);
else
mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
/*
* If no maximum operating frequency is supplied, fall back to use
* the module parameter, which has a (low) default value in case it
* is not specified. Either value must not exceed the clock rate into
* the block, of course.
*/
if (mmc->f_max)
mmc->f_max = variant->explicit_mclk_control ?
min(variant->f_max, mmc->f_max) :
min(host->mclk, mmc->f_max);
else
mmc->f_max = variant->explicit_mclk_control ?
fmax : min(host->mclk, fmax);
dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
if (IS_ERR(host->rst)) {
ret = PTR_ERR(host->rst);
goto clk_disable;
}
/* Get regulators and the supported OCR mask */
ret = mmc_regulator_get_supply(mmc);
if (ret)
goto clk_disable;
if (!mmc->ocr_avail)
mmc->ocr_avail = plat->ocr_mask;
else if (plat->ocr_mask)
dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
/* We support these capabilities. */
mmc->caps |= MMC_CAP_CMD23;
/*
* Enable busy detection.
*/
if (variant->busy_detect) {
mmci_ops.card_busy = mmci_card_busy;
/*
* Not all variants have a flag to enable busy detection
* in the DPSM, but if they do, set it here.
*/
if (variant->busy_dpsm_flag)
mmci_write_datactrlreg(host,
host->variant->busy_dpsm_flag);
mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
}
/* Variants with mandatory busy timeout in HW needs R1B responses. */
if (variant->busy_timeout)
mmc->caps |= MMC_CAP_NEED_RSP_BUSY;
/* Prepare a CMD12 - needed to clear the DPSM on some variants. */
host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
host->stop_abort.arg = 0;
host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
/* We support these PM capabilities. */
mmc->pm_caps |= MMC_PM_KEEP_POWER;
/*
* We can do SGIO
*/
mmc->max_segs = NR_SG;
/*
* Since only a certain number of bits are valid in the data length
* register, we must ensure that we don't exceed 2^num-1 bytes in a
* single request.
*/
mmc->max_req_size = (1 << variant->datalength_bits) - 1;
/*
* Set the maximum segment size. Since we aren't doing DMA
* (yet) we are only limited by the data length register.
*/
mmc->max_seg_size = mmc->max_req_size;
/*
* Block size can be up to 2048 bytes, but must be a power of two.
*/
mmc->max_blk_size = 1 << variant->datactrl_blocksz;
/*
* Limit the number of blocks transferred so that we don't overflow
* the maximum request size.
*/
mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
spin_lock_init(&host->lock);
writel(0, host->base + MMCIMASK0);
if (variant->mmcimask1)
writel(0, host->base + MMCIMASK1);
writel(0xfff, host->base + MMCICLEAR);
/*
* If:
* - not using DT but using a descriptor table, or
* - using a table of descriptors ALONGSIDE DT, or
* look up these descriptors named "cd" and "wp" right here, fail
* silently of these do not exist
*/
if (!np) {
ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
if (ret == -EPROBE_DEFER)
goto clk_disable;
ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
if (ret == -EPROBE_DEFER)
goto clk_disable;
}
ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq,
mmci_irq_thread, IRQF_SHARED,
DRIVER_NAME " (cmd)", host);
if (ret)
goto clk_disable;
if (!dev->irq[1])
host->singleirq = true;
else {
ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
IRQF_SHARED, DRIVER_NAME " (pio)", host);
if (ret)
goto clk_disable;
}
writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
amba_set_drvdata(dev, mmc);
dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
amba_rev(dev), (unsigned long long)dev->res.start,
dev->irq[0], dev->irq[1]);
mmci_dma_setup(host);
pm_runtime_set_autosuspend_delay(&dev->dev, 50);
pm_runtime_use_autosuspend(&dev->dev);
mmc_add_host(mmc);
pm_runtime_put(&dev->dev);
return 0;
clk_disable:
clk_disable_unprepare(host->clk);
host_free:
mmc_free_host(mmc);
return ret;
}
static void mmci_remove(struct amba_device *dev)
{
struct mmc_host *mmc = amba_get_drvdata(dev);
if (mmc) {
struct mmci_host *host = mmc_priv(mmc);
struct variant_data *variant = host->variant;
/*
* Undo pm_runtime_put() in probe. We use the _sync
* version here so that we can access the primecell.
*/
pm_runtime_get_sync(&dev->dev);
mmc_remove_host(mmc);
writel(0, host->base + MMCIMASK0);
if (variant->mmcimask1)
writel(0, host->base + MMCIMASK1);
writel(0, host->base + MMCICOMMAND);
writel(0, host->base + MMCIDATACTRL);
mmci_dma_release(host);
clk_disable_unprepare(host->clk);
mmc_free_host(mmc);
}
}
#ifdef CONFIG_PM
static void mmci_save(struct mmci_host *host)
{
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
writel(0, host->base + MMCIMASK0);
if (host->variant->pwrreg_nopower) {
writel(0, host->base + MMCIDATACTRL);
writel(0, host->base + MMCIPOWER);
writel(0, host->base + MMCICLOCK);
}
mmci_reg_delay(host);
spin_unlock_irqrestore(&host->lock, flags);
}
static void mmci_restore(struct mmci_host *host)
{
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
if (host->variant->pwrreg_nopower) {
writel(host->clk_reg, host->base + MMCICLOCK);
writel(host->datactrl_reg, host->base + MMCIDATACTRL);
writel(host->pwr_reg, host->base + MMCIPOWER);
}
writel(MCI_IRQENABLE | host->variant->start_err,
host->base + MMCIMASK0);
mmci_reg_delay(host);
spin_unlock_irqrestore(&host->lock, flags);
}
static int mmci_runtime_suspend(struct device *dev)
{
struct amba_device *adev = to_amba_device(dev);
struct mmc_host *mmc = amba_get_drvdata(adev);
if (mmc) {
struct mmci_host *host = mmc_priv(mmc);
pinctrl_pm_select_sleep_state(dev);
mmci_save(host);
clk_disable_unprepare(host->clk);
}
return 0;
}
static int mmci_runtime_resume(struct device *dev)
{
struct amba_device *adev = to_amba_device(dev);
struct mmc_host *mmc = amba_get_drvdata(adev);
if (mmc) {
struct mmci_host *host = mmc_priv(mmc);
clk_prepare_enable(host->clk);
mmci_restore(host);
pinctrl_select_default_state(dev);
}
return 0;
}
#endif
static const struct dev_pm_ops mmci_dev_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
};
static const struct amba_id mmci_ids[] = {
{
.id = 0x00041180,
.mask = 0xff0fffff,
.data = &variant_arm,
},
{
.id = 0x01041180,
.mask = 0xff0fffff,
.data = &variant_arm_extended_fifo,
},
{
.id = 0x02041180,
.mask = 0xff0fffff,
.data = &variant_arm_extended_fifo_hwfc,
},
{
.id = 0x00041181,
.mask = 0x000fffff,
.data = &variant_arm,
},
/* ST Micro variants */
{
.id = 0x00180180,
.mask = 0x00ffffff,
.data = &variant_u300,
},
{
.id = 0x10180180,
.mask = 0xf0ffffff,
.data = &variant_nomadik,
},
{
.id = 0x00280180,
.mask = 0x00ffffff,
.data = &variant_nomadik,
},
{
.id = 0x00480180,
.mask = 0xf0ffffff,
.data = &variant_ux500,
},
{
.id = 0x10480180,
.mask = 0xf0ffffff,
.data = &variant_ux500v2,
},
{
.id = 0x00880180,
.mask = 0x00ffffff,
.data = &variant_stm32,
},
{
.id = 0x10153180,
.mask = 0xf0ffffff,
.data = &variant_stm32_sdmmc,
},
{
.id = 0x00253180,
.mask = 0xf0ffffff,
.data = &variant_stm32_sdmmcv2,
},
/* Qualcomm variants */
{
.id = 0x00051180,
.mask = 0x000fffff,
.data = &variant_qcom,
},
{ 0, 0 },
};
MODULE_DEVICE_TABLE(amba, mmci_ids);
static struct amba_driver mmci_driver = {
.drv = {
.name = DRIVER_NAME,
.pm = &mmci_dev_pm_ops,
},
.probe = mmci_probe,
.remove = mmci_remove,
.id_table = mmci_ids,
};
module_amba_driver(mmci_driver);
module_param(fmax, uint, 0444);
MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
MODULE_LICENSE("GPL");