| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* Low-level parallel port routines for built-in port on SGI IP32 |
| * |
| * Author: Arnaud Giersch <arnaud.giersch@free.fr> |
| * |
| * Based on parport_pc.c by |
| * Phil Blundell, Tim Waugh, Jose Renau, David Campbell, |
| * Andrea Arcangeli, et al. |
| * |
| * Thanks to Ilya A. Volynets-Evenbakh for his help. |
| * |
| * Copyright (C) 2005, 2006 Arnaud Giersch. |
| */ |
| |
| /* Current status: |
| * |
| * Basic SPP and PS2 modes are supported. |
| * Support for parallel port IRQ is present. |
| * Hardware SPP (a.k.a. compatibility), EPP, and ECP modes are |
| * supported. |
| * SPP/ECP FIFO can be driven in PIO or DMA mode. PIO mode can work with |
| * or without interrupt support. |
| * |
| * Hardware ECP mode is not fully implemented (ecp_read_data and |
| * ecp_write_addr are actually missing). |
| * |
| * To do: |
| * |
| * Fully implement ECP mode. |
| * EPP and ECP mode need to be tested. I currently do not own any |
| * peripheral supporting these extended mode, and cannot test them. |
| * If DMA mode works well, decide if support for PIO FIFO modes should be |
| * dropped. |
| * Use the io{read,write} family functions when they become available in |
| * the linux-mips.org tree. Note: the MIPS specific functions readsb() |
| * and writesb() are to be translated by ioread8_rep() and iowrite8_rep() |
| * respectively. |
| */ |
| |
| /* The built-in parallel port on the SGI 02 workstation (a.k.a. IP32) is an |
| * IEEE 1284 parallel port driven by a Texas Instrument TL16PIR552PH chip[1]. |
| * This chip supports SPP, bidirectional, EPP and ECP modes. It has a 16 byte |
| * FIFO buffer and supports DMA transfers. |
| * |
| * [1] http://focus.ti.com/docs/prod/folders/print/tl16pir552.html |
| * |
| * Theoretically, we could simply use the parport_pc module. It is however |
| * not so simple. The parport_pc code assumes that the parallel port |
| * registers are port-mapped. On the O2, they are memory-mapped. |
| * Furthermore, each register is replicated on 256 consecutive addresses (as |
| * it is for the built-in serial ports on the same chip). |
| */ |
| |
| /*--- Some configuration defines ---------------------------------------*/ |
| |
| /* DEBUG_PARPORT_IP32 |
| * 0 disable debug |
| * 1 standard level: pr_debug1 is enabled |
| * 2 parport_ip32_dump_state is enabled |
| * >=3 verbose level: pr_debug is enabled |
| */ |
| #if !defined(DEBUG_PARPORT_IP32) |
| # define DEBUG_PARPORT_IP32 0 /* 0 (disabled) for production */ |
| #endif |
| |
| /*----------------------------------------------------------------------*/ |
| |
| /* Setup DEBUG macros. This is done before any includes, just in case we |
| * activate pr_debug() with DEBUG_PARPORT_IP32 >= 3. |
| */ |
| #if DEBUG_PARPORT_IP32 == 1 |
| # warning DEBUG_PARPORT_IP32 == 1 |
| #elif DEBUG_PARPORT_IP32 == 2 |
| # warning DEBUG_PARPORT_IP32 == 2 |
| #elif DEBUG_PARPORT_IP32 >= 3 |
| # warning DEBUG_PARPORT_IP32 >= 3 |
| # if !defined(DEBUG) |
| # define DEBUG /* enable pr_debug() in kernel.h */ |
| # endif |
| #endif |
| |
| #include <linux/completion.h> |
| #include <linux/delay.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/err.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/jiffies.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/parport.h> |
| #include <linux/sched/signal.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/stddef.h> |
| #include <linux/types.h> |
| #include <asm/io.h> |
| #include <asm/ip32/ip32_ints.h> |
| #include <asm/ip32/mace.h> |
| |
| /*--- Global variables -------------------------------------------------*/ |
| |
| /* Verbose probing on by default for debugging. */ |
| #if DEBUG_PARPORT_IP32 >= 1 |
| # define DEFAULT_VERBOSE_PROBING 1 |
| #else |
| # define DEFAULT_VERBOSE_PROBING 0 |
| #endif |
| |
| /* Default prefix for printk */ |
| #define PPIP32 "parport_ip32: " |
| |
| /* |
| * These are the module parameters: |
| * @features: bit mask of features to enable/disable |
| * (all enabled by default) |
| * @verbose_probing: log chit-chat during initialization |
| */ |
| #define PARPORT_IP32_ENABLE_IRQ (1U << 0) |
| #define PARPORT_IP32_ENABLE_DMA (1U << 1) |
| #define PARPORT_IP32_ENABLE_SPP (1U << 2) |
| #define PARPORT_IP32_ENABLE_EPP (1U << 3) |
| #define PARPORT_IP32_ENABLE_ECP (1U << 4) |
| static unsigned int features = ~0U; |
| static bool verbose_probing = DEFAULT_VERBOSE_PROBING; |
| |
| /* We do not support more than one port. */ |
| static struct parport *this_port; |
| |
| /* Timing constants for FIFO modes. */ |
| #define FIFO_NFAULT_TIMEOUT 100 /* milliseconds */ |
| #define FIFO_POLLING_INTERVAL 50 /* microseconds */ |
| |
| /*--- I/O register definitions -----------------------------------------*/ |
| |
| /** |
| * struct parport_ip32_regs - virtual addresses of parallel port registers |
| * @data: Data Register |
| * @dsr: Device Status Register |
| * @dcr: Device Control Register |
| * @eppAddr: EPP Address Register |
| * @eppData0: EPP Data Register 0 |
| * @eppData1: EPP Data Register 1 |
| * @eppData2: EPP Data Register 2 |
| * @eppData3: EPP Data Register 3 |
| * @ecpAFifo: ECP Address FIFO |
| * @fifo: General FIFO register. The same address is used for: |
| * - cFifo, the Parallel Port DATA FIFO |
| * - ecpDFifo, the ECP Data FIFO |
| * - tFifo, the ECP Test FIFO |
| * @cnfgA: Configuration Register A |
| * @cnfgB: Configuration Register B |
| * @ecr: Extended Control Register |
| */ |
| struct parport_ip32_regs { |
| void __iomem *data; |
| void __iomem *dsr; |
| void __iomem *dcr; |
| void __iomem *eppAddr; |
| void __iomem *eppData0; |
| void __iomem *eppData1; |
| void __iomem *eppData2; |
| void __iomem *eppData3; |
| void __iomem *ecpAFifo; |
| void __iomem *fifo; |
| void __iomem *cnfgA; |
| void __iomem *cnfgB; |
| void __iomem *ecr; |
| }; |
| |
| /* Device Status Register */ |
| #define DSR_nBUSY (1U << 7) /* PARPORT_STATUS_BUSY */ |
| #define DSR_nACK (1U << 6) /* PARPORT_STATUS_ACK */ |
| #define DSR_PERROR (1U << 5) /* PARPORT_STATUS_PAPEROUT */ |
| #define DSR_SELECT (1U << 4) /* PARPORT_STATUS_SELECT */ |
| #define DSR_nFAULT (1U << 3) /* PARPORT_STATUS_ERROR */ |
| #define DSR_nPRINT (1U << 2) /* specific to TL16PIR552 */ |
| /* #define DSR_reserved (1U << 1) */ |
| #define DSR_TIMEOUT (1U << 0) /* EPP timeout */ |
| |
| /* Device Control Register */ |
| /* #define DCR_reserved (1U << 7) | (1U << 6) */ |
| #define DCR_DIR (1U << 5) /* direction */ |
| #define DCR_IRQ (1U << 4) /* interrupt on nAck */ |
| #define DCR_SELECT (1U << 3) /* PARPORT_CONTROL_SELECT */ |
| #define DCR_nINIT (1U << 2) /* PARPORT_CONTROL_INIT */ |
| #define DCR_AUTOFD (1U << 1) /* PARPORT_CONTROL_AUTOFD */ |
| #define DCR_STROBE (1U << 0) /* PARPORT_CONTROL_STROBE */ |
| |
| /* ECP Configuration Register A */ |
| #define CNFGA_IRQ (1U << 7) |
| #define CNFGA_ID_MASK ((1U << 6) | (1U << 5) | (1U << 4)) |
| #define CNFGA_ID_SHIFT 4 |
| #define CNFGA_ID_16 (00U << CNFGA_ID_SHIFT) |
| #define CNFGA_ID_8 (01U << CNFGA_ID_SHIFT) |
| #define CNFGA_ID_32 (02U << CNFGA_ID_SHIFT) |
| /* #define CNFGA_reserved (1U << 3) */ |
| #define CNFGA_nBYTEINTRANS (1U << 2) |
| #define CNFGA_PWORDLEFT ((1U << 1) | (1U << 0)) |
| |
| /* ECP Configuration Register B */ |
| #define CNFGB_COMPRESS (1U << 7) |
| #define CNFGB_INTRVAL (1U << 6) |
| #define CNFGB_IRQ_MASK ((1U << 5) | (1U << 4) | (1U << 3)) |
| #define CNFGB_IRQ_SHIFT 3 |
| #define CNFGB_DMA_MASK ((1U << 2) | (1U << 1) | (1U << 0)) |
| #define CNFGB_DMA_SHIFT 0 |
| |
| /* Extended Control Register */ |
| #define ECR_MODE_MASK ((1U << 7) | (1U << 6) | (1U << 5)) |
| #define ECR_MODE_SHIFT 5 |
| #define ECR_MODE_SPP (00U << ECR_MODE_SHIFT) |
| #define ECR_MODE_PS2 (01U << ECR_MODE_SHIFT) |
| #define ECR_MODE_PPF (02U << ECR_MODE_SHIFT) |
| #define ECR_MODE_ECP (03U << ECR_MODE_SHIFT) |
| #define ECR_MODE_EPP (04U << ECR_MODE_SHIFT) |
| /* #define ECR_MODE_reserved (05U << ECR_MODE_SHIFT) */ |
| #define ECR_MODE_TST (06U << ECR_MODE_SHIFT) |
| #define ECR_MODE_CFG (07U << ECR_MODE_SHIFT) |
| #define ECR_nERRINTR (1U << 4) |
| #define ECR_DMAEN (1U << 3) |
| #define ECR_SERVINTR (1U << 2) |
| #define ECR_F_FULL (1U << 1) |
| #define ECR_F_EMPTY (1U << 0) |
| |
| /*--- Private data -----------------------------------------------------*/ |
| |
| /** |
| * enum parport_ip32_irq_mode - operation mode of interrupt handler |
| * @PARPORT_IP32_IRQ_FWD: forward interrupt to the upper parport layer |
| * @PARPORT_IP32_IRQ_HERE: interrupt is handled locally |
| */ |
| enum parport_ip32_irq_mode { PARPORT_IP32_IRQ_FWD, PARPORT_IP32_IRQ_HERE }; |
| |
| /** |
| * struct parport_ip32_private - private stuff for &struct parport |
| * @regs: register addresses |
| * @dcr_cache: cached contents of DCR |
| * @dcr_writable: bit mask of writable DCR bits |
| * @pword: number of bytes per PWord |
| * @fifo_depth: number of PWords that FIFO will hold |
| * @readIntrThreshold: minimum number of PWords we can read |
| * if we get an interrupt |
| * @writeIntrThreshold: minimum number of PWords we can write |
| * if we get an interrupt |
| * @irq_mode: operation mode of interrupt handler for this port |
| * @irq_complete: mutex used to wait for an interrupt to occur |
| */ |
| struct parport_ip32_private { |
| struct parport_ip32_regs regs; |
| unsigned int dcr_cache; |
| unsigned int dcr_writable; |
| unsigned int pword; |
| unsigned int fifo_depth; |
| unsigned int readIntrThreshold; |
| unsigned int writeIntrThreshold; |
| enum parport_ip32_irq_mode irq_mode; |
| struct completion irq_complete; |
| }; |
| |
| /*--- Debug code -------------------------------------------------------*/ |
| |
| /* |
| * pr_debug1 - print debug messages |
| * |
| * This is like pr_debug(), but is defined for %DEBUG_PARPORT_IP32 >= 1 |
| */ |
| #if DEBUG_PARPORT_IP32 >= 1 |
| # define pr_debug1(...) printk(KERN_DEBUG __VA_ARGS__) |
| #else /* DEBUG_PARPORT_IP32 < 1 */ |
| # define pr_debug1(...) do { } while (0) |
| #endif |
| |
| /* |
| * pr_trace, pr_trace1 - trace function calls |
| * @p: pointer to &struct parport |
| * @fmt: printk format string |
| * @...: parameters for format string |
| * |
| * Macros used to trace function calls. The given string is formatted after |
| * function name. pr_trace() uses pr_debug(), and pr_trace1() uses |
| * pr_debug1(). __pr_trace() is the low-level macro and is not to be used |
| * directly. |
| */ |
| #define __pr_trace(pr, p, fmt, ...) \ |
| pr("%s: %s" fmt "\n", \ |
| ({ const struct parport *__p = (p); \ |
| __p ? __p->name : "parport_ip32"; }), \ |
| __func__ , ##__VA_ARGS__) |
| #define pr_trace(p, fmt, ...) __pr_trace(pr_debug, p, fmt , ##__VA_ARGS__) |
| #define pr_trace1(p, fmt, ...) __pr_trace(pr_debug1, p, fmt , ##__VA_ARGS__) |
| |
| /* |
| * __pr_probe, pr_probe - print message if @verbose_probing is true |
| * @p: pointer to &struct parport |
| * @fmt: printk format string |
| * @...: parameters for format string |
| * |
| * For new lines, use pr_probe(). Use __pr_probe() for continued lines. |
| */ |
| #define __pr_probe(...) \ |
| do { if (verbose_probing) printk(__VA_ARGS__); } while (0) |
| #define pr_probe(p, fmt, ...) \ |
| __pr_probe(KERN_INFO PPIP32 "0x%lx: " fmt, (p)->base , ##__VA_ARGS__) |
| |
| /* |
| * parport_ip32_dump_state - print register status of parport |
| * @p: pointer to &struct parport |
| * @str: string to add in message |
| * @show_ecp_config: shall we dump ECP configuration registers too? |
| * |
| * This function is only here for debugging purpose, and should be used with |
| * care. Reading the parallel port registers may have undesired side effects. |
| * Especially if @show_ecp_config is true, the parallel port is resetted. |
| * This function is only defined if %DEBUG_PARPORT_IP32 >= 2. |
| */ |
| #if DEBUG_PARPORT_IP32 >= 2 |
| static void parport_ip32_dump_state(struct parport *p, char *str, |
| unsigned int show_ecp_config) |
| { |
| struct parport_ip32_private * const priv = p->physport->private_data; |
| unsigned int i; |
| |
| printk(KERN_DEBUG PPIP32 "%s: state (%s):\n", p->name, str); |
| { |
| static const char ecr_modes[8][4] = {"SPP", "PS2", "PPF", |
| "ECP", "EPP", "???", |
| "TST", "CFG"}; |
| unsigned int ecr = readb(priv->regs.ecr); |
| printk(KERN_DEBUG PPIP32 " ecr=0x%02x", ecr); |
| pr_cont(" %s", |
| ecr_modes[(ecr & ECR_MODE_MASK) >> ECR_MODE_SHIFT]); |
| if (ecr & ECR_nERRINTR) |
| pr_cont(",nErrIntrEn"); |
| if (ecr & ECR_DMAEN) |
| pr_cont(",dmaEn"); |
| if (ecr & ECR_SERVINTR) |
| pr_cont(",serviceIntr"); |
| if (ecr & ECR_F_FULL) |
| pr_cont(",f_full"); |
| if (ecr & ECR_F_EMPTY) |
| pr_cont(",f_empty"); |
| pr_cont("\n"); |
| } |
| if (show_ecp_config) { |
| unsigned int oecr, cnfgA, cnfgB; |
| oecr = readb(priv->regs.ecr); |
| writeb(ECR_MODE_PS2, priv->regs.ecr); |
| writeb(ECR_MODE_CFG, priv->regs.ecr); |
| cnfgA = readb(priv->regs.cnfgA); |
| cnfgB = readb(priv->regs.cnfgB); |
| writeb(ECR_MODE_PS2, priv->regs.ecr); |
| writeb(oecr, priv->regs.ecr); |
| printk(KERN_DEBUG PPIP32 " cnfgA=0x%02x", cnfgA); |
| pr_cont(" ISA-%s", (cnfgA & CNFGA_IRQ) ? "Level" : "Pulses"); |
| switch (cnfgA & CNFGA_ID_MASK) { |
| case CNFGA_ID_8: |
| pr_cont(",8 bits"); |
| break; |
| case CNFGA_ID_16: |
| pr_cont(",16 bits"); |
| break; |
| case CNFGA_ID_32: |
| pr_cont(",32 bits"); |
| break; |
| default: |
| pr_cont(",unknown ID"); |
| break; |
| } |
| if (!(cnfgA & CNFGA_nBYTEINTRANS)) |
| pr_cont(",ByteInTrans"); |
| if ((cnfgA & CNFGA_ID_MASK) != CNFGA_ID_8) |
| pr_cont(",%d byte%s left", |
| cnfgA & CNFGA_PWORDLEFT, |
| ((cnfgA & CNFGA_PWORDLEFT) > 1) ? "s" : ""); |
| pr_cont("\n"); |
| printk(KERN_DEBUG PPIP32 " cnfgB=0x%02x", cnfgB); |
| pr_cont(" irq=%u,dma=%u", |
| (cnfgB & CNFGB_IRQ_MASK) >> CNFGB_IRQ_SHIFT, |
| (cnfgB & CNFGB_DMA_MASK) >> CNFGB_DMA_SHIFT); |
| pr_cont(",intrValue=%d", !!(cnfgB & CNFGB_INTRVAL)); |
| if (cnfgB & CNFGB_COMPRESS) |
| pr_cont(",compress"); |
| pr_cont("\n"); |
| } |
| for (i = 0; i < 2; i++) { |
| unsigned int dcr = i ? priv->dcr_cache : readb(priv->regs.dcr); |
| printk(KERN_DEBUG PPIP32 " dcr(%s)=0x%02x", |
| i ? "soft" : "hard", dcr); |
| pr_cont(" %s", (dcr & DCR_DIR) ? "rev" : "fwd"); |
| if (dcr & DCR_IRQ) |
| pr_cont(",ackIntEn"); |
| if (!(dcr & DCR_SELECT)) |
| pr_cont(",nSelectIn"); |
| if (dcr & DCR_nINIT) |
| pr_cont(",nInit"); |
| if (!(dcr & DCR_AUTOFD)) |
| pr_cont(",nAutoFD"); |
| if (!(dcr & DCR_STROBE)) |
| pr_cont(",nStrobe"); |
| pr_cont("\n"); |
| } |
| #define sep (f++ ? ',' : ' ') |
| { |
| unsigned int f = 0; |
| unsigned int dsr = readb(priv->regs.dsr); |
| printk(KERN_DEBUG PPIP32 " dsr=0x%02x", dsr); |
| if (!(dsr & DSR_nBUSY)) |
| pr_cont("%cBusy", sep); |
| if (dsr & DSR_nACK) |
| pr_cont("%cnAck", sep); |
| if (dsr & DSR_PERROR) |
| pr_cont("%cPError", sep); |
| if (dsr & DSR_SELECT) |
| pr_cont("%cSelect", sep); |
| if (dsr & DSR_nFAULT) |
| pr_cont("%cnFault", sep); |
| if (!(dsr & DSR_nPRINT)) |
| pr_cont("%c(Print)", sep); |
| if (dsr & DSR_TIMEOUT) |
| pr_cont("%cTimeout", sep); |
| pr_cont("\n"); |
| } |
| #undef sep |
| } |
| #else /* DEBUG_PARPORT_IP32 < 2 */ |
| #define parport_ip32_dump_state(...) do { } while (0) |
| #endif |
| |
| /* |
| * CHECK_EXTRA_BITS - track and log extra bits |
| * @p: pointer to &struct parport |
| * @b: byte to inspect |
| * @m: bit mask of authorized bits |
| * |
| * This is used to track and log extra bits that should not be there in |
| * parport_ip32_write_control() and parport_ip32_frob_control(). It is only |
| * defined if %DEBUG_PARPORT_IP32 >= 1. |
| */ |
| #if DEBUG_PARPORT_IP32 >= 1 |
| #define CHECK_EXTRA_BITS(p, b, m) \ |
| do { \ |
| unsigned int __b = (b), __m = (m); \ |
| if (__b & ~__m) \ |
| pr_debug1(PPIP32 "%s: extra bits in %s(%s): " \ |
| "0x%02x/0x%02x\n", \ |
| (p)->name, __func__, #b, __b, __m); \ |
| } while (0) |
| #else /* DEBUG_PARPORT_IP32 < 1 */ |
| #define CHECK_EXTRA_BITS(...) do { } while (0) |
| #endif |
| |
| /*--- IP32 parallel port DMA operations --------------------------------*/ |
| |
| /** |
| * struct parport_ip32_dma_data - private data needed for DMA operation |
| * @dir: DMA direction (from or to device) |
| * @buf: buffer physical address |
| * @len: buffer length |
| * @next: address of next bytes to DMA transfer |
| * @left: number of bytes remaining |
| * @ctx: next context to write (0: context_a; 1: context_b) |
| * @irq_on: are the DMA IRQs currently enabled? |
| * @lock: spinlock to protect access to the structure |
| */ |
| struct parport_ip32_dma_data { |
| enum dma_data_direction dir; |
| dma_addr_t buf; |
| dma_addr_t next; |
| size_t len; |
| size_t left; |
| unsigned int ctx; |
| unsigned int irq_on; |
| spinlock_t lock; |
| }; |
| static struct parport_ip32_dma_data parport_ip32_dma; |
| |
| /** |
| * parport_ip32_dma_setup_context - setup next DMA context |
| * @limit: maximum data size for the context |
| * |
| * The alignment constraints must be verified in caller function, and the |
| * parameter @limit must be set accordingly. |
| */ |
| static void parport_ip32_dma_setup_context(unsigned int limit) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&parport_ip32_dma.lock, flags); |
| if (parport_ip32_dma.left > 0) { |
| /* Note: ctxreg is "volatile" here only because |
| * mace->perif.ctrl.parport.context_a and context_b are |
| * "volatile". */ |
| volatile u64 __iomem *ctxreg = (parport_ip32_dma.ctx == 0) ? |
| &mace->perif.ctrl.parport.context_a : |
| &mace->perif.ctrl.parport.context_b; |
| u64 count; |
| u64 ctxval; |
| if (parport_ip32_dma.left <= limit) { |
| count = parport_ip32_dma.left; |
| ctxval = MACEPAR_CONTEXT_LASTFLAG; |
| } else { |
| count = limit; |
| ctxval = 0; |
| } |
| |
| pr_trace(NULL, |
| "(%u): 0x%04x:0x%04x, %u -> %u%s", |
| limit, |
| (unsigned int)parport_ip32_dma.buf, |
| (unsigned int)parport_ip32_dma.next, |
| (unsigned int)count, |
| parport_ip32_dma.ctx, ctxval ? "*" : ""); |
| |
| ctxval |= parport_ip32_dma.next & |
| MACEPAR_CONTEXT_BASEADDR_MASK; |
| ctxval |= ((count - 1) << MACEPAR_CONTEXT_DATALEN_SHIFT) & |
| MACEPAR_CONTEXT_DATALEN_MASK; |
| writeq(ctxval, ctxreg); |
| parport_ip32_dma.next += count; |
| parport_ip32_dma.left -= count; |
| parport_ip32_dma.ctx ^= 1U; |
| } |
| /* If there is nothing more to send, disable IRQs to avoid to |
| * face an IRQ storm which can lock the machine. Disable them |
| * only once. */ |
| if (parport_ip32_dma.left == 0 && parport_ip32_dma.irq_on) { |
| pr_debug(PPIP32 "IRQ off (ctx)\n"); |
| disable_irq_nosync(MACEISA_PAR_CTXA_IRQ); |
| disable_irq_nosync(MACEISA_PAR_CTXB_IRQ); |
| parport_ip32_dma.irq_on = 0; |
| } |
| spin_unlock_irqrestore(&parport_ip32_dma.lock, flags); |
| } |
| |
| /** |
| * parport_ip32_dma_interrupt - DMA interrupt handler |
| * @irq: interrupt number |
| * @dev_id: unused |
| */ |
| static irqreturn_t parport_ip32_dma_interrupt(int irq, void *dev_id) |
| { |
| if (parport_ip32_dma.left) |
| pr_trace(NULL, "(%d): ctx=%d", irq, parport_ip32_dma.ctx); |
| parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND); |
| return IRQ_HANDLED; |
| } |
| |
| #if DEBUG_PARPORT_IP32 |
| static irqreturn_t parport_ip32_merr_interrupt(int irq, void *dev_id) |
| { |
| pr_trace1(NULL, "(%d)", irq); |
| return IRQ_HANDLED; |
| } |
| #endif |
| |
| /** |
| * parport_ip32_dma_start - begins a DMA transfer |
| * @p: partport to work on |
| * @dir: DMA direction: DMA_TO_DEVICE or DMA_FROM_DEVICE |
| * @addr: pointer to data buffer |
| * @count: buffer size |
| * |
| * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be |
| * correctly balanced. |
| */ |
| static int parport_ip32_dma_start(struct parport *p, |
| enum dma_data_direction dir, void *addr, size_t count) |
| { |
| unsigned int limit; |
| u64 ctrl; |
| |
| pr_trace(NULL, "(%d, %lu)", dir, (unsigned long)count); |
| |
| /* FIXME - add support for DMA_FROM_DEVICE. In this case, buffer must |
| * be 64 bytes aligned. */ |
| BUG_ON(dir != DMA_TO_DEVICE); |
| |
| /* Reset DMA controller */ |
| ctrl = MACEPAR_CTLSTAT_RESET; |
| writeq(ctrl, &mace->perif.ctrl.parport.cntlstat); |
| |
| /* DMA IRQs should normally be enabled */ |
| if (!parport_ip32_dma.irq_on) { |
| WARN_ON(1); |
| enable_irq(MACEISA_PAR_CTXA_IRQ); |
| enable_irq(MACEISA_PAR_CTXB_IRQ); |
| parport_ip32_dma.irq_on = 1; |
| } |
| |
| /* Prepare DMA pointers */ |
| parport_ip32_dma.dir = dir; |
| parport_ip32_dma.buf = dma_map_single(&p->bus_dev, addr, count, dir); |
| parport_ip32_dma.len = count; |
| parport_ip32_dma.next = parport_ip32_dma.buf; |
| parport_ip32_dma.left = parport_ip32_dma.len; |
| parport_ip32_dma.ctx = 0; |
| |
| /* Setup DMA direction and first two contexts */ |
| ctrl = (dir == DMA_TO_DEVICE) ? 0 : MACEPAR_CTLSTAT_DIRECTION; |
| writeq(ctrl, &mace->perif.ctrl.parport.cntlstat); |
| /* Single transfer should not cross a 4K page boundary */ |
| limit = MACEPAR_CONTEXT_DATA_BOUND - |
| (parport_ip32_dma.next & (MACEPAR_CONTEXT_DATA_BOUND - 1)); |
| parport_ip32_dma_setup_context(limit); |
| parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND); |
| |
| /* Real start of DMA transfer */ |
| ctrl |= MACEPAR_CTLSTAT_ENABLE; |
| writeq(ctrl, &mace->perif.ctrl.parport.cntlstat); |
| |
| return 0; |
| } |
| |
| /** |
| * parport_ip32_dma_stop - ends a running DMA transfer |
| * @p: partport to work on |
| * |
| * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be |
| * correctly balanced. |
| */ |
| static void parport_ip32_dma_stop(struct parport *p) |
| { |
| u64 ctx_a; |
| u64 ctx_b; |
| u64 ctrl; |
| u64 diag; |
| size_t res[2]; /* {[0] = res_a, [1] = res_b} */ |
| |
| pr_trace(NULL, "()"); |
| |
| /* Disable IRQs */ |
| spin_lock_irq(&parport_ip32_dma.lock); |
| if (parport_ip32_dma.irq_on) { |
| pr_debug(PPIP32 "IRQ off (stop)\n"); |
| disable_irq_nosync(MACEISA_PAR_CTXA_IRQ); |
| disable_irq_nosync(MACEISA_PAR_CTXB_IRQ); |
| parport_ip32_dma.irq_on = 0; |
| } |
| spin_unlock_irq(&parport_ip32_dma.lock); |
| /* Force IRQ synchronization, even if the IRQs were disabled |
| * elsewhere. */ |
| synchronize_irq(MACEISA_PAR_CTXA_IRQ); |
| synchronize_irq(MACEISA_PAR_CTXB_IRQ); |
| |
| /* Stop DMA transfer */ |
| ctrl = readq(&mace->perif.ctrl.parport.cntlstat); |
| ctrl &= ~MACEPAR_CTLSTAT_ENABLE; |
| writeq(ctrl, &mace->perif.ctrl.parport.cntlstat); |
| |
| /* Adjust residue (parport_ip32_dma.left) */ |
| ctx_a = readq(&mace->perif.ctrl.parport.context_a); |
| ctx_b = readq(&mace->perif.ctrl.parport.context_b); |
| ctrl = readq(&mace->perif.ctrl.parport.cntlstat); |
| diag = readq(&mace->perif.ctrl.parport.diagnostic); |
| res[0] = (ctrl & MACEPAR_CTLSTAT_CTXA_VALID) ? |
| 1 + ((ctx_a & MACEPAR_CONTEXT_DATALEN_MASK) >> |
| MACEPAR_CONTEXT_DATALEN_SHIFT) : |
| 0; |
| res[1] = (ctrl & MACEPAR_CTLSTAT_CTXB_VALID) ? |
| 1 + ((ctx_b & MACEPAR_CONTEXT_DATALEN_MASK) >> |
| MACEPAR_CONTEXT_DATALEN_SHIFT) : |
| 0; |
| if (diag & MACEPAR_DIAG_DMACTIVE) |
| res[(diag & MACEPAR_DIAG_CTXINUSE) != 0] = |
| 1 + ((diag & MACEPAR_DIAG_CTRMASK) >> |
| MACEPAR_DIAG_CTRSHIFT); |
| parport_ip32_dma.left += res[0] + res[1]; |
| |
| /* Reset DMA controller, and re-enable IRQs */ |
| ctrl = MACEPAR_CTLSTAT_RESET; |
| writeq(ctrl, &mace->perif.ctrl.parport.cntlstat); |
| pr_debug(PPIP32 "IRQ on (stop)\n"); |
| enable_irq(MACEISA_PAR_CTXA_IRQ); |
| enable_irq(MACEISA_PAR_CTXB_IRQ); |
| parport_ip32_dma.irq_on = 1; |
| |
| dma_unmap_single(&p->bus_dev, parport_ip32_dma.buf, |
| parport_ip32_dma.len, parport_ip32_dma.dir); |
| } |
| |
| /** |
| * parport_ip32_dma_get_residue - get residue from last DMA transfer |
| * |
| * Returns the number of bytes remaining from last DMA transfer. |
| */ |
| static inline size_t parport_ip32_dma_get_residue(void) |
| { |
| return parport_ip32_dma.left; |
| } |
| |
| /** |
| * parport_ip32_dma_register - initialize DMA engine |
| * |
| * Returns zero for success. |
| */ |
| static int parport_ip32_dma_register(void) |
| { |
| int err; |
| |
| spin_lock_init(&parport_ip32_dma.lock); |
| parport_ip32_dma.irq_on = 1; |
| |
| /* Reset DMA controller */ |
| writeq(MACEPAR_CTLSTAT_RESET, &mace->perif.ctrl.parport.cntlstat); |
| |
| /* Request IRQs */ |
| err = request_irq(MACEISA_PAR_CTXA_IRQ, parport_ip32_dma_interrupt, |
| 0, "parport_ip32", NULL); |
| if (err) |
| goto fail_a; |
| err = request_irq(MACEISA_PAR_CTXB_IRQ, parport_ip32_dma_interrupt, |
| 0, "parport_ip32", NULL); |
| if (err) |
| goto fail_b; |
| #if DEBUG_PARPORT_IP32 |
| /* FIXME - what is this IRQ for? */ |
| err = request_irq(MACEISA_PAR_MERR_IRQ, parport_ip32_merr_interrupt, |
| 0, "parport_ip32", NULL); |
| if (err) |
| goto fail_merr; |
| #endif |
| return 0; |
| |
| #if DEBUG_PARPORT_IP32 |
| fail_merr: |
| free_irq(MACEISA_PAR_CTXB_IRQ, NULL); |
| #endif |
| fail_b: |
| free_irq(MACEISA_PAR_CTXA_IRQ, NULL); |
| fail_a: |
| return err; |
| } |
| |
| /** |
| * parport_ip32_dma_unregister - release and free resources for DMA engine |
| */ |
| static void parport_ip32_dma_unregister(void) |
| { |
| #if DEBUG_PARPORT_IP32 |
| free_irq(MACEISA_PAR_MERR_IRQ, NULL); |
| #endif |
| free_irq(MACEISA_PAR_CTXB_IRQ, NULL); |
| free_irq(MACEISA_PAR_CTXA_IRQ, NULL); |
| } |
| |
| /*--- Interrupt handlers and associates --------------------------------*/ |
| |
| /** |
| * parport_ip32_wakeup - wakes up code waiting for an interrupt |
| * @p: pointer to &struct parport |
| */ |
| static inline void parport_ip32_wakeup(struct parport *p) |
| { |
| struct parport_ip32_private * const priv = p->physport->private_data; |
| complete(&priv->irq_complete); |
| } |
| |
| /** |
| * parport_ip32_interrupt - interrupt handler |
| * @irq: interrupt number |
| * @dev_id: pointer to &struct parport |
| * |
| * Caught interrupts are forwarded to the upper parport layer if IRQ_mode is |
| * %PARPORT_IP32_IRQ_FWD. |
| */ |
| static irqreturn_t parport_ip32_interrupt(int irq, void *dev_id) |
| { |
| struct parport * const p = dev_id; |
| struct parport_ip32_private * const priv = p->physport->private_data; |
| enum parport_ip32_irq_mode irq_mode = priv->irq_mode; |
| |
| switch (irq_mode) { |
| case PARPORT_IP32_IRQ_FWD: |
| return parport_irq_handler(irq, dev_id); |
| |
| case PARPORT_IP32_IRQ_HERE: |
| parport_ip32_wakeup(p); |
| break; |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /*--- Some utility function to manipulate ECR register -----------------*/ |
| |
| /** |
| * parport_ip32_read_econtrol - read contents of the ECR register |
| * @p: pointer to &struct parport |
| */ |
| static inline unsigned int parport_ip32_read_econtrol(struct parport *p) |
| { |
| struct parport_ip32_private * const priv = p->physport->private_data; |
| return readb(priv->regs.ecr); |
| } |
| |
| /** |
| * parport_ip32_write_econtrol - write new contents to the ECR register |
| * @p: pointer to &struct parport |
| * @c: new value to write |
| */ |
| static inline void parport_ip32_write_econtrol(struct parport *p, |
| unsigned int c) |
| { |
| struct parport_ip32_private * const priv = p->physport->private_data; |
| writeb(c, priv->regs.ecr); |
| } |
| |
| /** |
| * parport_ip32_frob_econtrol - change bits from the ECR register |
| * @p: pointer to &struct parport |
| * @mask: bit mask of bits to change |
| * @val: new value for changed bits |
| * |
| * Read from the ECR, mask out the bits in @mask, exclusive-or with the bits |
| * in @val, and write the result to the ECR. |
| */ |
| static inline void parport_ip32_frob_econtrol(struct parport *p, |
| unsigned int mask, |
| unsigned int val) |
| { |
| unsigned int c; |
| c = (parport_ip32_read_econtrol(p) & ~mask) ^ val; |
| parport_ip32_write_econtrol(p, c); |
| } |
| |
| /** |
| * parport_ip32_set_mode - change mode of ECP port |
| * @p: pointer to &struct parport |
| * @mode: new mode to write in ECR |
| * |
| * ECR is reset in a sane state (interrupts and DMA disabled), and placed in |
| * mode @mode. Go through PS2 mode if needed. |
| */ |
| static void parport_ip32_set_mode(struct parport *p, unsigned int mode) |
| { |
| unsigned int omode; |
| |
| mode &= ECR_MODE_MASK; |
| omode = parport_ip32_read_econtrol(p) & ECR_MODE_MASK; |
| |
| if (!(mode == ECR_MODE_SPP || mode == ECR_MODE_PS2 |
| || omode == ECR_MODE_SPP || omode == ECR_MODE_PS2)) { |
| /* We have to go through PS2 mode */ |
| unsigned int ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR; |
| parport_ip32_write_econtrol(p, ecr); |
| } |
| parport_ip32_write_econtrol(p, mode | ECR_nERRINTR | ECR_SERVINTR); |
| } |
| |
| /*--- Basic functions needed for parport -------------------------------*/ |
| |
| /** |
| * parport_ip32_read_data - return current contents of the DATA register |
| * @p: pointer to &struct parport |
| */ |
| static inline unsigned char parport_ip32_read_data(struct parport *p) |
| { |
| struct parport_ip32_private * const priv = p->physport->private_data; |
| return readb(priv->regs.data); |
| } |
| |
| /** |
| * parport_ip32_write_data - set new contents for the DATA register |
| * @p: pointer to &struct parport |
| * @d: new value to write |
| */ |
| static inline void parport_ip32_write_data(struct parport *p, unsigned char d) |
| { |
| struct parport_ip32_private * const priv = p->physport->private_data; |
| writeb(d, priv->regs.data); |
| } |
| |
| /** |
| * parport_ip32_read_status - return current contents of the DSR register |
| * @p: pointer to &struct parport |
| */ |
| static inline unsigned char parport_ip32_read_status(struct parport *p) |
| { |
| struct parport_ip32_private * const priv = p->physport->private_data; |
| return readb(priv->regs.dsr); |
| } |
| |
| /** |
| * __parport_ip32_read_control - return cached contents of the DCR register |
| * @p: pointer to &struct parport |
| */ |
| static inline unsigned int __parport_ip32_read_control(struct parport *p) |
| { |
| struct parport_ip32_private * const priv = p->physport->private_data; |
| return priv->dcr_cache; /* use soft copy */ |
| } |
| |
| /** |
| * __parport_ip32_write_control - set new contents for the DCR register |
| * @p: pointer to &struct parport |
| * @c: new value to write |
| */ |
| static inline void __parport_ip32_write_control(struct parport *p, |
| unsigned int c) |
| { |
| struct parport_ip32_private * const priv = p->physport->private_data; |
| CHECK_EXTRA_BITS(p, c, priv->dcr_writable); |
| c &= priv->dcr_writable; /* only writable bits */ |
| writeb(c, priv->regs.dcr); |
| priv->dcr_cache = c; /* update soft copy */ |
| } |
| |
| /** |
| * __parport_ip32_frob_control - change bits from the DCR register |
| * @p: pointer to &struct parport |
| * @mask: bit mask of bits to change |
| * @val: new value for changed bits |
| * |
| * This is equivalent to read from the DCR, mask out the bits in @mask, |
| * exclusive-or with the bits in @val, and write the result to the DCR. |
| * Actually, the cached contents of the DCR is used. |
| */ |
| static inline void __parport_ip32_frob_control(struct parport *p, |
| unsigned int mask, |
| unsigned int val) |
| { |
| unsigned int c; |
| c = (__parport_ip32_read_control(p) & ~mask) ^ val; |
| __parport_ip32_write_control(p, c); |
| } |
| |
| /** |
| * parport_ip32_read_control - return cached contents of the DCR register |
| * @p: pointer to &struct parport |
| * |
| * The return value is masked so as to only return the value of %DCR_STROBE, |
| * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT. |
| */ |
| static inline unsigned char parport_ip32_read_control(struct parport *p) |
| { |
| const unsigned int rm = |
| DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT; |
| return __parport_ip32_read_control(p) & rm; |
| } |
| |
| /** |
| * parport_ip32_write_control - set new contents for the DCR register |
| * @p: pointer to &struct parport |
| * @c: new value to write |
| * |
| * The value is masked so as to only change the value of %DCR_STROBE, |
| * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT. |
| */ |
| static inline void parport_ip32_write_control(struct parport *p, |
| unsigned char c) |
| { |
| const unsigned int wm = |
| DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT; |
| CHECK_EXTRA_BITS(p, c, wm); |
| __parport_ip32_frob_control(p, wm, c & wm); |
| } |
| |
| /** |
| * parport_ip32_frob_control - change bits from the DCR register |
| * @p: pointer to &struct parport |
| * @mask: bit mask of bits to change |
| * @val: new value for changed bits |
| * |
| * This differs from __parport_ip32_frob_control() in that it only allows to |
| * change the value of %DCR_STROBE, %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT. |
| */ |
| static inline unsigned char parport_ip32_frob_control(struct parport *p, |
| unsigned char mask, |
| unsigned char val) |
| { |
| const unsigned int wm = |
| DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT; |
| CHECK_EXTRA_BITS(p, mask, wm); |
| CHECK_EXTRA_BITS(p, val, wm); |
| __parport_ip32_frob_control(p, mask & wm, val & wm); |
| return parport_ip32_read_control(p); |
| } |
| |
| /** |
| * parport_ip32_disable_irq - disable interrupts on the rising edge of nACK |
| * @p: pointer to &struct parport |
| */ |
| static inline void parport_ip32_disable_irq(struct parport *p) |
| { |
| __parport_ip32_frob_control(p, DCR_IRQ, 0); |
| } |
| |
| /** |
| * parport_ip32_enable_irq - enable interrupts on the rising edge of nACK |
| * @p: pointer to &struct parport |
| */ |
| static inline void parport_ip32_enable_irq(struct parport *p) |
| { |
| __parport_ip32_frob_control(p, DCR_IRQ, DCR_IRQ); |
| } |
| |
| /** |
| * parport_ip32_data_forward - enable host-to-peripheral communications |
| * @p: pointer to &struct parport |
| * |
| * Enable the data line drivers, for 8-bit host-to-peripheral communications. |
| */ |
| static inline void parport_ip32_data_forward(struct parport *p) |
| { |
| __parport_ip32_frob_control(p, DCR_DIR, 0); |
| } |
| |
| /** |
| * parport_ip32_data_reverse - enable peripheral-to-host communications |
| * @p: pointer to &struct parport |
| * |
| * Place the data bus in a high impedance state, if @p->modes has the |
| * PARPORT_MODE_TRISTATE bit set. |
| */ |
| static inline void parport_ip32_data_reverse(struct parport *p) |
| { |
| __parport_ip32_frob_control(p, DCR_DIR, DCR_DIR); |
| } |
| |
| /** |
| * parport_ip32_init_state - for core parport code |
| * @dev: pointer to &struct pardevice |
| * @s: pointer to &struct parport_state to initialize |
| */ |
| static void parport_ip32_init_state(struct pardevice *dev, |
| struct parport_state *s) |
| { |
| s->u.ip32.dcr = DCR_SELECT | DCR_nINIT; |
| s->u.ip32.ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR; |
| } |
| |
| /** |
| * parport_ip32_save_state - for core parport code |
| * @p: pointer to &struct parport |
| * @s: pointer to &struct parport_state to save state to |
| */ |
| static void parport_ip32_save_state(struct parport *p, |
| struct parport_state *s) |
| { |
| s->u.ip32.dcr = __parport_ip32_read_control(p); |
| s->u.ip32.ecr = parport_ip32_read_econtrol(p); |
| } |
| |
| /** |
| * parport_ip32_restore_state - for core parport code |
| * @p: pointer to &struct parport |
| * @s: pointer to &struct parport_state to restore state from |
| */ |
| static void parport_ip32_restore_state(struct parport *p, |
| struct parport_state *s) |
| { |
| parport_ip32_set_mode(p, s->u.ip32.ecr & ECR_MODE_MASK); |
| parport_ip32_write_econtrol(p, s->u.ip32.ecr); |
| __parport_ip32_write_control(p, s->u.ip32.dcr); |
| } |
| |
| /*--- EPP mode functions -----------------------------------------------*/ |
| |
| /** |
| * parport_ip32_clear_epp_timeout - clear Timeout bit in EPP mode |
| * @p: pointer to &struct parport |
| * |
| * Returns 1 if the Timeout bit is clear, and 0 otherwise. |
| */ |
| static unsigned int parport_ip32_clear_epp_timeout(struct parport *p) |
| { |
| struct parport_ip32_private * const priv = p->physport->private_data; |
| unsigned int cleared; |
| |
| if (!(parport_ip32_read_status(p) & DSR_TIMEOUT)) |
| cleared = 1; |
| else { |
| unsigned int r; |
| /* To clear timeout some chips require double read */ |
| parport_ip32_read_status(p); |
| r = parport_ip32_read_status(p); |
| /* Some reset by writing 1 */ |
| writeb(r | DSR_TIMEOUT, priv->regs.dsr); |
| /* Others by writing 0 */ |
| writeb(r & ~DSR_TIMEOUT, priv->regs.dsr); |
| |
| r = parport_ip32_read_status(p); |
| cleared = !(r & DSR_TIMEOUT); |
| } |
| |
| pr_trace(p, "(): %s", cleared ? "cleared" : "failed"); |
| return cleared; |
| } |
| |
| /** |
| * parport_ip32_epp_read - generic EPP read function |
| * @eppreg: I/O register to read from |
| * @p: pointer to &struct parport |
| * @buf: buffer to store read data |
| * @len: length of buffer @buf |
| * @flags: may be PARPORT_EPP_FAST |
| */ |
| static size_t parport_ip32_epp_read(void __iomem *eppreg, |
| struct parport *p, void *buf, |
| size_t len, int flags) |
| { |
| struct parport_ip32_private * const priv = p->physport->private_data; |
| size_t got; |
| parport_ip32_set_mode(p, ECR_MODE_EPP); |
| parport_ip32_data_reverse(p); |
| parport_ip32_write_control(p, DCR_nINIT); |
| if ((flags & PARPORT_EPP_FAST) && (len > 1)) { |
| readsb(eppreg, buf, len); |
| if (readb(priv->regs.dsr) & DSR_TIMEOUT) { |
| parport_ip32_clear_epp_timeout(p); |
| return -EIO; |
| } |
| got = len; |
| } else { |
| u8 *bufp = buf; |
| for (got = 0; got < len; got++) { |
| *bufp++ = readb(eppreg); |
| if (readb(priv->regs.dsr) & DSR_TIMEOUT) { |
| parport_ip32_clear_epp_timeout(p); |
| break; |
| } |
| } |
| } |
| parport_ip32_data_forward(p); |
| parport_ip32_set_mode(p, ECR_MODE_PS2); |
| return got; |
| } |
| |
| /** |
| * parport_ip32_epp_write - generic EPP write function |
| * @eppreg: I/O register to write to |
| * @p: pointer to &struct parport |
| * @buf: buffer of data to write |
| * @len: length of buffer @buf |
| * @flags: may be PARPORT_EPP_FAST |
| */ |
| static size_t parport_ip32_epp_write(void __iomem *eppreg, |
| struct parport *p, const void *buf, |
| size_t len, int flags) |
| { |
| struct parport_ip32_private * const priv = p->physport->private_data; |
| size_t written; |
| parport_ip32_set_mode(p, ECR_MODE_EPP); |
| parport_ip32_data_forward(p); |
| parport_ip32_write_control(p, DCR_nINIT); |
| if ((flags & PARPORT_EPP_FAST) && (len > 1)) { |
| writesb(eppreg, buf, len); |
| if (readb(priv->regs.dsr) & DSR_TIMEOUT) { |
| parport_ip32_clear_epp_timeout(p); |
| return -EIO; |
| } |
| written = len; |
| } else { |
| const u8 *bufp = buf; |
| for (written = 0; written < len; written++) { |
| writeb(*bufp++, eppreg); |
| if (readb(priv->regs.dsr) & DSR_TIMEOUT) { |
| parport_ip32_clear_epp_timeout(p); |
| break; |
| } |
| } |
| } |
| parport_ip32_set_mode(p, ECR_MODE_PS2); |
| return written; |
| } |
| |
| /** |
| * parport_ip32_epp_read_data - read a block of data in EPP mode |
| * @p: pointer to &struct parport |
| * @buf: buffer to store read data |
| * @len: length of buffer @buf |
| * @flags: may be PARPORT_EPP_FAST |
| */ |
| static size_t parport_ip32_epp_read_data(struct parport *p, void *buf, |
| size_t len, int flags) |
| { |
| struct parport_ip32_private * const priv = p->physport->private_data; |
| return parport_ip32_epp_read(priv->regs.eppData0, p, buf, len, flags); |
| } |
| |
| /** |
| * parport_ip32_epp_write_data - write a block of data in EPP mode |
| * @p: pointer to &struct parport |
| * @buf: buffer of data to write |
| * @len: length of buffer @buf |
| * @flags: may be PARPORT_EPP_FAST |
| */ |
| static size_t parport_ip32_epp_write_data(struct parport *p, const void *buf, |
| size_t len, int flags) |
| { |
| struct parport_ip32_private * const priv = p->physport->private_data; |
| return parport_ip32_epp_write(priv->regs.eppData0, p, buf, len, flags); |
| } |
| |
| /** |
| * parport_ip32_epp_read_addr - read a block of addresses in EPP mode |
| * @p: pointer to &struct parport |
| * @buf: buffer to store read data |
| * @len: length of buffer @buf |
| * @flags: may be PARPORT_EPP_FAST |
| */ |
| static size_t parport_ip32_epp_read_addr(struct parport *p, void *buf, |
| size_t len, int flags) |
| { |
| struct parport_ip32_private * const priv = p->physport->private_data; |
| return parport_ip32_epp_read(priv->regs.eppAddr, p, buf, len, flags); |
| } |
| |
| /** |
| * parport_ip32_epp_write_addr - write a block of addresses in EPP mode |
| * @p: pointer to &struct parport |
| * @buf: buffer of data to write |
| * @len: length of buffer @buf |
| * @flags: may be PARPORT_EPP_FAST |
| */ |
| static size_t parport_ip32_epp_write_addr(struct parport *p, const void *buf, |
| size_t len, int flags) |
| { |
| struct parport_ip32_private * const priv = p->physport->private_data; |
| return parport_ip32_epp_write(priv->regs.eppAddr, p, buf, len, flags); |
| } |
| |
| /*--- ECP mode functions (FIFO) ----------------------------------------*/ |
| |
| /** |
| * parport_ip32_fifo_wait_break - check if the waiting function should return |
| * @p: pointer to &struct parport |
| * @expire: timeout expiring date, in jiffies |
| * |
| * parport_ip32_fifo_wait_break() checks if the waiting function should return |
| * immediately or not. The break conditions are: |
| * - expired timeout; |
| * - a pending signal; |
| * - nFault asserted low. |
| * This function also calls cond_resched(). |
| */ |
| static unsigned int parport_ip32_fifo_wait_break(struct parport *p, |
| unsigned long expire) |
| { |
| cond_resched(); |
| if (time_after(jiffies, expire)) { |
| pr_debug1(PPIP32 "%s: FIFO write timed out\n", p->name); |
| return 1; |
| } |
| if (signal_pending(current)) { |
| pr_debug1(PPIP32 "%s: Signal pending\n", p->name); |
| return 1; |
| } |
| if (!(parport_ip32_read_status(p) & DSR_nFAULT)) { |
| pr_debug1(PPIP32 "%s: nFault asserted low\n", p->name); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /** |
| * parport_ip32_fwp_wait_polling - wait for FIFO to empty (polling) |
| * @p: pointer to &struct parport |
| * |
| * Returns the number of bytes that can safely be written in the FIFO. A |
| * return value of zero means that the calling function should terminate as |
| * fast as possible. |
| */ |
| static unsigned int parport_ip32_fwp_wait_polling(struct parport *p) |
| { |
| struct parport_ip32_private * const priv = p->physport->private_data; |
| struct parport * const physport = p->physport; |
| unsigned long expire; |
| unsigned int count; |
| unsigned int ecr; |
| |
| expire = jiffies + physport->cad->timeout; |
| count = 0; |
| while (1) { |
| if (parport_ip32_fifo_wait_break(p, expire)) |
| break; |
| |
| /* Check FIFO state. We do nothing when the FIFO is nor full, |
| * nor empty. It appears that the FIFO full bit is not always |
| * reliable, the FIFO state is sometimes wrongly reported, and |
| * the chip gets confused if we give it another byte. */ |
| ecr = parport_ip32_read_econtrol(p); |
| if (ecr & ECR_F_EMPTY) { |
| /* FIFO is empty, fill it up */ |
| count = priv->fifo_depth; |
| break; |
| } |
| |
| /* Wait a moment... */ |
| udelay(FIFO_POLLING_INTERVAL); |
| } /* while (1) */ |
| |
| return count; |
| } |
| |
| /** |
| * parport_ip32_fwp_wait_interrupt - wait for FIFO to empty (interrupt-driven) |
| * @p: pointer to &struct parport |
| * |
| * Returns the number of bytes that can safely be written in the FIFO. A |
| * return value of zero means that the calling function should terminate as |
| * fast as possible. |
| */ |
| static unsigned int parport_ip32_fwp_wait_interrupt(struct parport *p) |
| { |
| static unsigned int lost_interrupt = 0; |
| struct parport_ip32_private * const priv = p->physport->private_data; |
| struct parport * const physport = p->physport; |
| unsigned long nfault_timeout; |
| unsigned long expire; |
| unsigned int count; |
| unsigned int ecr; |
| |
| nfault_timeout = min((unsigned long)physport->cad->timeout, |
| msecs_to_jiffies(FIFO_NFAULT_TIMEOUT)); |
| expire = jiffies + physport->cad->timeout; |
| count = 0; |
| while (1) { |
| if (parport_ip32_fifo_wait_break(p, expire)) |
| break; |
| |
| /* Initialize mutex used to take interrupts into account */ |
| reinit_completion(&priv->irq_complete); |
| |
| /* Enable serviceIntr */ |
| parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0); |
| |
| /* Enabling serviceIntr while the FIFO is empty does not |
| * always generate an interrupt, so check for emptiness |
| * now. */ |
| ecr = parport_ip32_read_econtrol(p); |
| if (!(ecr & ECR_F_EMPTY)) { |
| /* FIFO is not empty: wait for an interrupt or a |
| * timeout to occur */ |
| wait_for_completion_interruptible_timeout( |
| &priv->irq_complete, nfault_timeout); |
| ecr = parport_ip32_read_econtrol(p); |
| if ((ecr & ECR_F_EMPTY) && !(ecr & ECR_SERVINTR) |
| && !lost_interrupt) { |
| pr_warn(PPIP32 "%s: lost interrupt in %s\n", |
| p->name, __func__); |
| lost_interrupt = 1; |
| } |
| } |
| |
| /* Disable serviceIntr */ |
| parport_ip32_frob_econtrol(p, ECR_SERVINTR, ECR_SERVINTR); |
| |
| /* Check FIFO state */ |
| if (ecr & ECR_F_EMPTY) { |
| /* FIFO is empty, fill it up */ |
| count = priv->fifo_depth; |
| break; |
| } else if (ecr & ECR_SERVINTR) { |
| /* FIFO is not empty, but we know that can safely push |
| * writeIntrThreshold bytes into it */ |
| count = priv->writeIntrThreshold; |
| break; |
| } |
| /* FIFO is not empty, and we did not get any interrupt. |
| * Either it's time to check for nFault, or a signal is |
| * pending. This is verified in |
| * parport_ip32_fifo_wait_break(), so we continue the loop. */ |
| } /* while (1) */ |
| |
| return count; |
| } |
| |
| /** |
| * parport_ip32_fifo_write_block_pio - write a block of data (PIO mode) |
| * @p: pointer to &struct parport |
| * @buf: buffer of data to write |
| * @len: length of buffer @buf |
| * |
| * Uses PIO to write the contents of the buffer @buf into the parallel port |
| * FIFO. Returns the number of bytes that were actually written. It can work |
| * with or without the help of interrupts. The parallel port must be |
| * correctly initialized before calling parport_ip32_fifo_write_block_pio(). |
| */ |
| static size_t parport_ip32_fifo_write_block_pio(struct parport *p, |
| const void *buf, size_t len) |
| { |
| struct parport_ip32_private * const priv = p->physport->private_data; |
| const u8 *bufp = buf; |
| size_t left = len; |
| |
| priv->irq_mode = PARPORT_IP32_IRQ_HERE; |
| |
| while (left > 0) { |
| unsigned int count; |
| |
| count = (p->irq == PARPORT_IRQ_NONE) ? |
| parport_ip32_fwp_wait_polling(p) : |
| parport_ip32_fwp_wait_interrupt(p); |
| if (count == 0) |
| break; /* Transmission should be stopped */ |
| if (count > left) |
| count = left; |
| if (count == 1) { |
| writeb(*bufp, priv->regs.fifo); |
| bufp++, left--; |
| } else { |
| writesb(priv->regs.fifo, bufp, count); |
| bufp += count, left -= count; |
| } |
| } |
| |
| priv->irq_mode = PARPORT_IP32_IRQ_FWD; |
| |
| return len - left; |
| } |
| |
| /** |
| * parport_ip32_fifo_write_block_dma - write a block of data (DMA mode) |
| * @p: pointer to &struct parport |
| * @buf: buffer of data to write |
| * @len: length of buffer @buf |
| * |
| * Uses DMA to write the contents of the buffer @buf into the parallel port |
| * FIFO. Returns the number of bytes that were actually written. The |
| * parallel port must be correctly initialized before calling |
| * parport_ip32_fifo_write_block_dma(). |
| */ |
| static size_t parport_ip32_fifo_write_block_dma(struct parport *p, |
| const void *buf, size_t len) |
| { |
| struct parport_ip32_private * const priv = p->physport->private_data; |
| struct parport * const physport = p->physport; |
| unsigned long nfault_timeout; |
| unsigned long expire; |
| size_t written; |
| unsigned int ecr; |
| |
| priv->irq_mode = PARPORT_IP32_IRQ_HERE; |
| |
| parport_ip32_dma_start(p, DMA_TO_DEVICE, (void *)buf, len); |
| reinit_completion(&priv->irq_complete); |
| parport_ip32_frob_econtrol(p, ECR_DMAEN | ECR_SERVINTR, ECR_DMAEN); |
| |
| nfault_timeout = min((unsigned long)physport->cad->timeout, |
| msecs_to_jiffies(FIFO_NFAULT_TIMEOUT)); |
| expire = jiffies + physport->cad->timeout; |
| while (1) { |
| if (parport_ip32_fifo_wait_break(p, expire)) |
| break; |
| wait_for_completion_interruptible_timeout(&priv->irq_complete, |
| nfault_timeout); |
| ecr = parport_ip32_read_econtrol(p); |
| if (ecr & ECR_SERVINTR) |
| break; /* DMA transfer just finished */ |
| } |
| parport_ip32_dma_stop(p); |
| written = len - parport_ip32_dma_get_residue(); |
| |
| priv->irq_mode = PARPORT_IP32_IRQ_FWD; |
| |
| return written; |
| } |
| |
| /** |
| * parport_ip32_fifo_write_block - write a block of data |
| * @p: pointer to &struct parport |
| * @buf: buffer of data to write |
| * @len: length of buffer @buf |
| * |
| * Uses PIO or DMA to write the contents of the buffer @buf into the parallel |
| * p FIFO. Returns the number of bytes that were actually written. |
| */ |
| static size_t parport_ip32_fifo_write_block(struct parport *p, |
| const void *buf, size_t len) |
| { |
| size_t written = 0; |
| if (len) |
| /* FIXME - Maybe some threshold value should be set for @len |
| * under which we revert to PIO mode? */ |
| written = (p->modes & PARPORT_MODE_DMA) ? |
| parport_ip32_fifo_write_block_dma(p, buf, len) : |
| parport_ip32_fifo_write_block_pio(p, buf, len); |
| return written; |
| } |
| |
| /** |
| * parport_ip32_drain_fifo - wait for FIFO to empty |
| * @p: pointer to &struct parport |
| * @timeout: timeout, in jiffies |
| * |
| * This function waits for FIFO to empty. It returns 1 when FIFO is empty, or |
| * 0 if the timeout @timeout is reached before, or if a signal is pending. |
| */ |
| static unsigned int parport_ip32_drain_fifo(struct parport *p, |
| unsigned long timeout) |
| { |
| unsigned long expire = jiffies + timeout; |
| unsigned int polling_interval; |
| unsigned int counter; |
| |
| /* Busy wait for approx. 200us */ |
| for (counter = 0; counter < 40; counter++) { |
| if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY) |
| break; |
| if (time_after(jiffies, expire)) |
| break; |
| if (signal_pending(current)) |
| break; |
| udelay(5); |
| } |
| /* Poll slowly. Polling interval starts with 1 millisecond, and is |
| * increased exponentially until 128. */ |
| polling_interval = 1; /* msecs */ |
| while (!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY)) { |
| if (time_after_eq(jiffies, expire)) |
| break; |
| msleep_interruptible(polling_interval); |
| if (signal_pending(current)) |
| break; |
| if (polling_interval < 128) |
| polling_interval *= 2; |
| } |
| |
| return !!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY); |
| } |
| |
| /** |
| * parport_ip32_get_fifo_residue - reset FIFO |
| * @p: pointer to &struct parport |
| * @mode: current operation mode (ECR_MODE_PPF or ECR_MODE_ECP) |
| * |
| * This function resets FIFO, and returns the number of bytes remaining in it. |
| */ |
| static unsigned int parport_ip32_get_fifo_residue(struct parport *p, |
| unsigned int mode) |
| { |
| struct parport_ip32_private * const priv = p->physport->private_data; |
| unsigned int residue; |
| unsigned int cnfga; |
| |
| /* FIXME - We are missing one byte if the printer is off-line. I |
| * don't know how to detect this. It looks that the full bit is not |
| * always reliable. For the moment, the problem is avoided in most |
| * cases by testing for BUSY in parport_ip32_compat_write_data(). |
| */ |
| if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY) |
| residue = 0; |
| else { |
| pr_debug1(PPIP32 "%s: FIFO is stuck\n", p->name); |
| |
| /* Stop all transfers. |
| * |
| * Microsoft's document instructs to drive DCR_STROBE to 0, |
| * but it doesn't work (at least in Compatibility mode, not |
| * tested in ECP mode). Switching directly to Test mode (as |
| * in parport_pc) is not an option: it does confuse the port, |
| * ECP service interrupts are no more working after that. A |
| * hard reset is then needed to revert to a sane state. |
| * |
| * Let's hope that the FIFO is really stuck and that the |
| * peripheral doesn't wake up now. |
| */ |
| parport_ip32_frob_control(p, DCR_STROBE, 0); |
| |
| /* Fill up FIFO */ |
| for (residue = priv->fifo_depth; residue > 0; residue--) { |
| if (parport_ip32_read_econtrol(p) & ECR_F_FULL) |
| break; |
| writeb(0x00, priv->regs.fifo); |
| } |
| } |
| if (residue) |
| pr_debug1(PPIP32 "%s: %d PWord%s left in FIFO\n", |
| p->name, residue, |
| (residue == 1) ? " was" : "s were"); |
| |
| /* Now reset the FIFO */ |
| parport_ip32_set_mode(p, ECR_MODE_PS2); |
| |
| /* Host recovery for ECP mode */ |
| if (mode == ECR_MODE_ECP) { |
| parport_ip32_data_reverse(p); |
| parport_ip32_frob_control(p, DCR_nINIT, 0); |
| if (parport_wait_peripheral(p, DSR_PERROR, 0)) |
| pr_debug1(PPIP32 "%s: PEerror timeout 1 in %s\n", |
| p->name, __func__); |
| parport_ip32_frob_control(p, DCR_STROBE, DCR_STROBE); |
| parport_ip32_frob_control(p, DCR_nINIT, DCR_nINIT); |
| if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR)) |
| pr_debug1(PPIP32 "%s: PEerror timeout 2 in %s\n", |
| p->name, __func__); |
| } |
| |
| /* Adjust residue if needed */ |
| parport_ip32_set_mode(p, ECR_MODE_CFG); |
| cnfga = readb(priv->regs.cnfgA); |
| if (!(cnfga & CNFGA_nBYTEINTRANS)) { |
| pr_debug1(PPIP32 "%s: cnfgA contains 0x%02x\n", |
| p->name, cnfga); |
| pr_debug1(PPIP32 "%s: Accounting for extra byte\n", |
| p->name); |
| residue++; |
| } |
| |
| /* Don't care about partial PWords since we do not support |
| * PWord != 1 byte. */ |
| |
| /* Back to forward PS2 mode. */ |
| parport_ip32_set_mode(p, ECR_MODE_PS2); |
| parport_ip32_data_forward(p); |
| |
| return residue; |
| } |
| |
| /** |
| * parport_ip32_compat_write_data - write a block of data in SPP mode |
| * @p: pointer to &struct parport |
| * @buf: buffer of data to write |
| * @len: length of buffer @buf |
| * @flags: ignored |
| */ |
| static size_t parport_ip32_compat_write_data(struct parport *p, |
| const void *buf, size_t len, |
| int flags) |
| { |
| static unsigned int ready_before = 1; |
| struct parport_ip32_private * const priv = p->physport->private_data; |
| struct parport * const physport = p->physport; |
| size_t written = 0; |
| |
| /* Special case: a timeout of zero means we cannot call schedule(). |
| * Also if O_NONBLOCK is set then use the default implementation. */ |
| if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK) |
| return parport_ieee1284_write_compat(p, buf, len, flags); |
| |
| /* Reset FIFO, go in forward mode, and disable ackIntEn */ |
| parport_ip32_set_mode(p, ECR_MODE_PS2); |
| parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT); |
| parport_ip32_data_forward(p); |
| parport_ip32_disable_irq(p); |
| parport_ip32_set_mode(p, ECR_MODE_PPF); |
| physport->ieee1284.phase = IEEE1284_PH_FWD_DATA; |
| |
| /* Wait for peripheral to become ready */ |
| if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT, |
| DSR_nBUSY | DSR_nFAULT)) { |
| /* Avoid to flood the logs */ |
| if (ready_before) |
| pr_info(PPIP32 "%s: not ready in %s\n", |
| p->name, __func__); |
| ready_before = 0; |
| goto stop; |
| } |
| ready_before = 1; |
| |
| written = parport_ip32_fifo_write_block(p, buf, len); |
| |
| /* Wait FIFO to empty. Timeout is proportional to FIFO_depth. */ |
| parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth); |
| |
| /* Check for a potential residue */ |
| written -= parport_ip32_get_fifo_residue(p, ECR_MODE_PPF); |
| |
| /* Then, wait for BUSY to get low. */ |
| if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY)) |
| printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n", |
| p->name, __func__); |
| |
| stop: |
| /* Reset FIFO */ |
| parport_ip32_set_mode(p, ECR_MODE_PS2); |
| physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE; |
| |
| return written; |
| } |
| |
| /* |
| * FIXME - Insert here parport_ip32_ecp_read_data(). |
| */ |
| |
| /** |
| * parport_ip32_ecp_write_data - write a block of data in ECP mode |
| * @p: pointer to &struct parport |
| * @buf: buffer of data to write |
| * @len: length of buffer @buf |
| * @flags: ignored |
| */ |
| static size_t parport_ip32_ecp_write_data(struct parport *p, |
| const void *buf, size_t len, |
| int flags) |
| { |
| static unsigned int ready_before = 1; |
| struct parport_ip32_private * const priv = p->physport->private_data; |
| struct parport * const physport = p->physport; |
| size_t written = 0; |
| |
| /* Special case: a timeout of zero means we cannot call schedule(). |
| * Also if O_NONBLOCK is set then use the default implementation. */ |
| if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK) |
| return parport_ieee1284_ecp_write_data(p, buf, len, flags); |
| |
| /* Negotiate to forward mode if necessary. */ |
| if (physport->ieee1284.phase != IEEE1284_PH_FWD_IDLE) { |
| /* Event 47: Set nInit high. */ |
| parport_ip32_frob_control(p, DCR_nINIT | DCR_AUTOFD, |
| DCR_nINIT | DCR_AUTOFD); |
| |
| /* Event 49: PError goes high. */ |
| if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR)) { |
| printk(KERN_DEBUG PPIP32 "%s: PError timeout in %s\n", |
| p->name, __func__); |
| physport->ieee1284.phase = IEEE1284_PH_ECP_DIR_UNKNOWN; |
| return 0; |
| } |
| } |
| |
| /* Reset FIFO, go in forward mode, and disable ackIntEn */ |
| parport_ip32_set_mode(p, ECR_MODE_PS2); |
| parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT); |
| parport_ip32_data_forward(p); |
| parport_ip32_disable_irq(p); |
| parport_ip32_set_mode(p, ECR_MODE_ECP); |
| physport->ieee1284.phase = IEEE1284_PH_FWD_DATA; |
| |
| /* Wait for peripheral to become ready */ |
| if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT, |
| DSR_nBUSY | DSR_nFAULT)) { |
| /* Avoid to flood the logs */ |
| if (ready_before) |
| pr_info(PPIP32 "%s: not ready in %s\n", |
| p->name, __func__); |
| ready_before = 0; |
| goto stop; |
| } |
| ready_before = 1; |
| |
| written = parport_ip32_fifo_write_block(p, buf, len); |
| |
| /* Wait FIFO to empty. Timeout is proportional to FIFO_depth. */ |
| parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth); |
| |
| /* Check for a potential residue */ |
| written -= parport_ip32_get_fifo_residue(p, ECR_MODE_ECP); |
| |
| /* Then, wait for BUSY to get low. */ |
| if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY)) |
| printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n", |
| p->name, __func__); |
| |
| stop: |
| /* Reset FIFO */ |
| parport_ip32_set_mode(p, ECR_MODE_PS2); |
| physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE; |
| |
| return written; |
| } |
| |
| /* |
| * FIXME - Insert here parport_ip32_ecp_write_addr(). |
| */ |
| |
| /*--- Default parport operations ---------------------------------------*/ |
| |
| static const struct parport_operations parport_ip32_ops __initconst = { |
| .write_data = parport_ip32_write_data, |
| .read_data = parport_ip32_read_data, |
| |
| .write_control = parport_ip32_write_control, |
| .read_control = parport_ip32_read_control, |
| .frob_control = parport_ip32_frob_control, |
| |
| .read_status = parport_ip32_read_status, |
| |
| .enable_irq = parport_ip32_enable_irq, |
| .disable_irq = parport_ip32_disable_irq, |
| |
| .data_forward = parport_ip32_data_forward, |
| .data_reverse = parport_ip32_data_reverse, |
| |
| .init_state = parport_ip32_init_state, |
| .save_state = parport_ip32_save_state, |
| .restore_state = parport_ip32_restore_state, |
| |
| .epp_write_data = parport_ieee1284_epp_write_data, |
| .epp_read_data = parport_ieee1284_epp_read_data, |
| .epp_write_addr = parport_ieee1284_epp_write_addr, |
| .epp_read_addr = parport_ieee1284_epp_read_addr, |
| |
| .ecp_write_data = parport_ieee1284_ecp_write_data, |
| .ecp_read_data = parport_ieee1284_ecp_read_data, |
| .ecp_write_addr = parport_ieee1284_ecp_write_addr, |
| |
| .compat_write_data = parport_ieee1284_write_compat, |
| .nibble_read_data = parport_ieee1284_read_nibble, |
| .byte_read_data = parport_ieee1284_read_byte, |
| |
| .owner = THIS_MODULE, |
| }; |
| |
| /*--- Device detection -------------------------------------------------*/ |
| |
| /** |
| * parport_ip32_ecp_supported - check for an ECP port |
| * @p: pointer to the &parport structure |
| * |
| * Returns 1 if an ECP port is found, and 0 otherwise. This function actually |
| * checks if an Extended Control Register seems to be present. On successful |
| * return, the port is placed in SPP mode. |
| */ |
| static __init unsigned int parport_ip32_ecp_supported(struct parport *p) |
| { |
| struct parport_ip32_private * const priv = p->physport->private_data; |
| unsigned int ecr; |
| |
| ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR; |
| writeb(ecr, priv->regs.ecr); |
| if (readb(priv->regs.ecr) != (ecr | ECR_F_EMPTY)) |
| goto fail; |
| |
| pr_probe(p, "Found working ECR register\n"); |
| parport_ip32_set_mode(p, ECR_MODE_SPP); |
| parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT); |
| return 1; |
| |
| fail: |
| pr_probe(p, "ECR register not found\n"); |
| return 0; |
| } |
| |
| /** |
| * parport_ip32_fifo_supported - check for FIFO parameters |
| * @p: pointer to the &parport structure |
| * |
| * Check for FIFO parameters of an Extended Capabilities Port. Returns 1 on |
| * success, and 0 otherwise. Adjust FIFO parameters in the parport structure. |
| * On return, the port is placed in SPP mode. |
| */ |
| static __init unsigned int parport_ip32_fifo_supported(struct parport *p) |
| { |
| struct parport_ip32_private * const priv = p->physport->private_data; |
| unsigned int configa, configb; |
| unsigned int pword; |
| unsigned int i; |
| |
| /* Configuration mode */ |
| parport_ip32_set_mode(p, ECR_MODE_CFG); |
| configa = readb(priv->regs.cnfgA); |
| configb = readb(priv->regs.cnfgB); |
| |
| /* Find out PWord size */ |
| switch (configa & CNFGA_ID_MASK) { |
| case CNFGA_ID_8: |
| pword = 1; |
| break; |
| case CNFGA_ID_16: |
| pword = 2; |
| break; |
| case CNFGA_ID_32: |
| pword = 4; |
| break; |
| default: |
| pr_probe(p, "Unknown implementation ID: 0x%0x\n", |
| (configa & CNFGA_ID_MASK) >> CNFGA_ID_SHIFT); |
| goto fail; |
| break; |
| } |
| if (pword != 1) { |
| pr_probe(p, "Unsupported PWord size: %u\n", pword); |
| goto fail; |
| } |
| priv->pword = pword; |
| pr_probe(p, "PWord is %u bits\n", 8 * priv->pword); |
| |
| /* Check for compression support */ |
| writeb(configb | CNFGB_COMPRESS, priv->regs.cnfgB); |
| if (readb(priv->regs.cnfgB) & CNFGB_COMPRESS) |
| pr_probe(p, "Hardware compression detected (unsupported)\n"); |
| writeb(configb & ~CNFGB_COMPRESS, priv->regs.cnfgB); |
| |
| /* Reset FIFO and go in test mode (no interrupt, no DMA) */ |
| parport_ip32_set_mode(p, ECR_MODE_TST); |
| |
| /* FIFO must be empty now */ |
| if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) { |
| pr_probe(p, "FIFO not reset\n"); |
| goto fail; |
| } |
| |
| /* Find out FIFO depth. */ |
| priv->fifo_depth = 0; |
| for (i = 0; i < 1024; i++) { |
| if (readb(priv->regs.ecr) & ECR_F_FULL) { |
| /* FIFO full */ |
| priv->fifo_depth = i; |
| break; |
| } |
| writeb((u8)i, priv->regs.fifo); |
| } |
| if (i >= 1024) { |
| pr_probe(p, "Can't fill FIFO\n"); |
| goto fail; |
| } |
| if (!priv->fifo_depth) { |
| pr_probe(p, "Can't get FIFO depth\n"); |
| goto fail; |
| } |
| pr_probe(p, "FIFO is %u PWords deep\n", priv->fifo_depth); |
| |
| /* Enable interrupts */ |
| parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0); |
| |
| /* Find out writeIntrThreshold: number of PWords we know we can write |
| * if we get an interrupt. */ |
| priv->writeIntrThreshold = 0; |
| for (i = 0; i < priv->fifo_depth; i++) { |
| if (readb(priv->regs.fifo) != (u8)i) { |
| pr_probe(p, "Invalid data in FIFO\n"); |
| goto fail; |
| } |
| if (!priv->writeIntrThreshold |
| && readb(priv->regs.ecr) & ECR_SERVINTR) |
| /* writeIntrThreshold reached */ |
| priv->writeIntrThreshold = i + 1; |
| if (i + 1 < priv->fifo_depth |
| && readb(priv->regs.ecr) & ECR_F_EMPTY) { |
| /* FIFO empty before the last byte? */ |
| pr_probe(p, "Data lost in FIFO\n"); |
| goto fail; |
| } |
| } |
| if (!priv->writeIntrThreshold) { |
| pr_probe(p, "Can't get writeIntrThreshold\n"); |
| goto fail; |
| } |
| pr_probe(p, "writeIntrThreshold is %u\n", priv->writeIntrThreshold); |
| |
| /* FIFO must be empty now */ |
| if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) { |
| pr_probe(p, "Can't empty FIFO\n"); |
| goto fail; |
| } |
| |
| /* Reset FIFO */ |
| parport_ip32_set_mode(p, ECR_MODE_PS2); |
| /* Set reverse direction (must be in PS2 mode) */ |
| parport_ip32_data_reverse(p); |
| /* Test FIFO, no interrupt, no DMA */ |
| parport_ip32_set_mode(p, ECR_MODE_TST); |
| /* Enable interrupts */ |
| parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0); |
| |
| /* Find out readIntrThreshold: number of PWords we can read if we get |
| * an interrupt. */ |
| priv->readIntrThreshold = 0; |
| for (i = 0; i < priv->fifo_depth; i++) { |
| writeb(0xaa, priv->regs.fifo); |
| if (readb(priv->regs.ecr) & ECR_SERVINTR) { |
| /* readIntrThreshold reached */ |
| priv->readIntrThreshold = i + 1; |
| break; |
| } |
| } |
| if (!priv->readIntrThreshold) { |
| pr_probe(p, "Can't get readIntrThreshold\n"); |
| goto fail; |
| } |
| pr_probe(p, "readIntrThreshold is %u\n", priv->readIntrThreshold); |
| |
| /* Reset ECR */ |
| parport_ip32_set_mode(p, ECR_MODE_PS2); |
| parport_ip32_data_forward(p); |
| parport_ip32_set_mode(p, ECR_MODE_SPP); |
| return 1; |
| |
| fail: |
| priv->fifo_depth = 0; |
| parport_ip32_set_mode(p, ECR_MODE_SPP); |
| return 0; |
| } |
| |
| /*--- Initialization code ----------------------------------------------*/ |
| |
| /** |
| * parport_ip32_make_isa_registers - compute (ISA) register addresses |
| * @regs: pointer to &struct parport_ip32_regs to fill |
| * @base: base address of standard and EPP registers |
| * @base_hi: base address of ECP registers |
| * @regshift: how much to shift register offset by |
| * |
| * Compute register addresses, according to the ISA standard. The addresses |
| * of the standard and EPP registers are computed from address @base. The |
| * addresses of the ECP registers are computed from address @base_hi. |
| */ |
| static void __init |
| parport_ip32_make_isa_registers(struct parport_ip32_regs *regs, |
| void __iomem *base, void __iomem *base_hi, |
| unsigned int regshift) |
| { |
| #define r_base(offset) ((u8 __iomem *)base + ((offset) << regshift)) |
| #define r_base_hi(offset) ((u8 __iomem *)base_hi + ((offset) << regshift)) |
| *regs = (struct parport_ip32_regs){ |
| .data = r_base(0), |
| .dsr = r_base(1), |
| .dcr = r_base(2), |
| .eppAddr = r_base(3), |
| .eppData0 = r_base(4), |
| .eppData1 = r_base(5), |
| .eppData2 = r_base(6), |
| .eppData3 = r_base(7), |
| .ecpAFifo = r_base(0), |
| .fifo = r_base_hi(0), |
| .cnfgA = r_base_hi(0), |
| .cnfgB = r_base_hi(1), |
| .ecr = r_base_hi(2) |
| }; |
| #undef r_base_hi |
| #undef r_base |
| } |
| |
| /** |
| * parport_ip32_probe_port - probe and register IP32 built-in parallel port |
| * |
| * Returns the new allocated &parport structure. On error, an error code is |
| * encoded in return value with the ERR_PTR function. |
| */ |
| static __init struct parport *parport_ip32_probe_port(void) |
| { |
| struct parport_ip32_regs regs; |
| struct parport_ip32_private *priv = NULL; |
| struct parport_operations *ops = NULL; |
| struct parport *p = NULL; |
| int err; |
| |
| parport_ip32_make_isa_registers(®s, &mace->isa.parallel, |
| &mace->isa.ecp1284, 8 /* regshift */); |
| |
| ops = kmalloc(sizeof(struct parport_operations), GFP_KERNEL); |
| priv = kmalloc(sizeof(struct parport_ip32_private), GFP_KERNEL); |
| p = parport_register_port(0, PARPORT_IRQ_NONE, PARPORT_DMA_NONE, ops); |
| if (ops == NULL || priv == NULL || p == NULL) { |
| err = -ENOMEM; |
| goto fail; |
| } |
| p->base = MACE_BASE + offsetof(struct sgi_mace, isa.parallel); |
| p->base_hi = MACE_BASE + offsetof(struct sgi_mace, isa.ecp1284); |
| p->private_data = priv; |
| |
| *ops = parport_ip32_ops; |
| *priv = (struct parport_ip32_private){ |
| .regs = regs, |
| .dcr_writable = DCR_DIR | DCR_SELECT | DCR_nINIT | |
| DCR_AUTOFD | DCR_STROBE, |
| .irq_mode = PARPORT_IP32_IRQ_FWD, |
| }; |
| init_completion(&priv->irq_complete); |
| |
| /* Probe port. */ |
| if (!parport_ip32_ecp_supported(p)) { |
| err = -ENODEV; |
| goto fail; |
| } |
| parport_ip32_dump_state(p, "begin init", 0); |
| |
| /* We found what looks like a working ECR register. Simply assume |
| * that all modes are correctly supported. Enable basic modes. */ |
| p->modes = PARPORT_MODE_PCSPP | PARPORT_MODE_SAFEININT; |
| p->modes |= PARPORT_MODE_TRISTATE; |
| |
| if (!parport_ip32_fifo_supported(p)) { |
| pr_warn(PPIP32 "%s: error: FIFO disabled\n", p->name); |
| /* Disable hardware modes depending on a working FIFO. */ |
| features &= ~PARPORT_IP32_ENABLE_SPP; |
| features &= ~PARPORT_IP32_ENABLE_ECP; |
| /* DMA is not needed if FIFO is not supported. */ |
| features &= ~PARPORT_IP32_ENABLE_DMA; |
| } |
| |
| /* Request IRQ */ |
| if (features & PARPORT_IP32_ENABLE_IRQ) { |
| int irq = MACEISA_PARALLEL_IRQ; |
| if (request_irq(irq, parport_ip32_interrupt, 0, p->name, p)) { |
| pr_warn(PPIP32 "%s: error: IRQ disabled\n", p->name); |
| /* DMA cannot work without interrupts. */ |
| features &= ~PARPORT_IP32_ENABLE_DMA; |
| } else { |
| pr_probe(p, "Interrupt support enabled\n"); |
| p->irq = irq; |
| priv->dcr_writable |= DCR_IRQ; |
| } |
| } |
| |
| /* Allocate DMA resources */ |
| if (features & PARPORT_IP32_ENABLE_DMA) { |
| if (parport_ip32_dma_register()) |
| pr_warn(PPIP32 "%s: error: DMA disabled\n", p->name); |
| else { |
| pr_probe(p, "DMA support enabled\n"); |
| p->dma = 0; /* arbitrary value != PARPORT_DMA_NONE */ |
| p->modes |= PARPORT_MODE_DMA; |
| } |
| } |
| |
| if (features & PARPORT_IP32_ENABLE_SPP) { |
| /* Enable compatibility FIFO mode */ |
| p->ops->compat_write_data = parport_ip32_compat_write_data; |
| p->modes |= PARPORT_MODE_COMPAT; |
| pr_probe(p, "Hardware support for SPP mode enabled\n"); |
| } |
| if (features & PARPORT_IP32_ENABLE_EPP) { |
| /* Set up access functions to use EPP hardware. */ |
| p->ops->epp_read_data = parport_ip32_epp_read_data; |
| p->ops->epp_write_data = parport_ip32_epp_write_data; |
| p->ops->epp_read_addr = parport_ip32_epp_read_addr; |
| p->ops->epp_write_addr = parport_ip32_epp_write_addr; |
| p->modes |= PARPORT_MODE_EPP; |
| pr_probe(p, "Hardware support for EPP mode enabled\n"); |
| } |
| if (features & PARPORT_IP32_ENABLE_ECP) { |
| /* Enable ECP FIFO mode */ |
| p->ops->ecp_write_data = parport_ip32_ecp_write_data; |
| /* FIXME - not implemented */ |
| /* p->ops->ecp_read_data = parport_ip32_ecp_read_data; */ |
| /* p->ops->ecp_write_addr = parport_ip32_ecp_write_addr; */ |
| p->modes |= PARPORT_MODE_ECP; |
| pr_probe(p, "Hardware support for ECP mode enabled\n"); |
| } |
| |
| /* Initialize the port with sensible values */ |
| parport_ip32_set_mode(p, ECR_MODE_PS2); |
| parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT); |
| parport_ip32_data_forward(p); |
| parport_ip32_disable_irq(p); |
| parport_ip32_write_data(p, 0x00); |
| parport_ip32_dump_state(p, "end init", 0); |
| |
| /* Print out what we found */ |
| pr_info("%s: SGI IP32 at 0x%lx (0x%lx)", p->name, p->base, p->base_hi); |
| if (p->irq != PARPORT_IRQ_NONE) |
| pr_cont(", irq %d", p->irq); |
| pr_cont(" ["); |
| #define printmode(x) \ |
| do { \ |
| if (p->modes & PARPORT_MODE_##x) \ |
| pr_cont("%s%s", f++ ? "," : "", #x); \ |
| } while (0) |
| { |
| unsigned int f = 0; |
| printmode(PCSPP); |
| printmode(TRISTATE); |
| printmode(COMPAT); |
| printmode(EPP); |
| printmode(ECP); |
| printmode(DMA); |
| } |
| #undef printmode |
| pr_cont("]\n"); |
| |
| parport_announce_port(p); |
| return p; |
| |
| fail: |
| if (p) |
| parport_put_port(p); |
| kfree(priv); |
| kfree(ops); |
| return ERR_PTR(err); |
| } |
| |
| /** |
| * parport_ip32_unregister_port - unregister a parallel port |
| * @p: pointer to the &struct parport |
| * |
| * Unregisters a parallel port and free previously allocated resources |
| * (memory, IRQ, ...). |
| */ |
| static __exit void parport_ip32_unregister_port(struct parport *p) |
| { |
| struct parport_ip32_private * const priv = p->physport->private_data; |
| struct parport_operations *ops = p->ops; |
| |
| parport_remove_port(p); |
| if (p->modes & PARPORT_MODE_DMA) |
| parport_ip32_dma_unregister(); |
| if (p->irq != PARPORT_IRQ_NONE) |
| free_irq(p->irq, p); |
| parport_put_port(p); |
| kfree(priv); |
| kfree(ops); |
| } |
| |
| /** |
| * parport_ip32_init - module initialization function |
| */ |
| static int __init parport_ip32_init(void) |
| { |
| pr_info(PPIP32 "SGI IP32 built-in parallel port driver v0.6\n"); |
| this_port = parport_ip32_probe_port(); |
| return PTR_ERR_OR_ZERO(this_port); |
| } |
| |
| /** |
| * parport_ip32_exit - module termination function |
| */ |
| static void __exit parport_ip32_exit(void) |
| { |
| parport_ip32_unregister_port(this_port); |
| } |
| |
| /*--- Module stuff -----------------------------------------------------*/ |
| |
| MODULE_AUTHOR("Arnaud Giersch <arnaud.giersch@free.fr>"); |
| MODULE_DESCRIPTION("SGI IP32 built-in parallel port driver"); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION("0.6"); /* update in parport_ip32_init() too */ |
| |
| module_init(parport_ip32_init); |
| module_exit(parport_ip32_exit); |
| |
| module_param(verbose_probing, bool, S_IRUGO); |
| MODULE_PARM_DESC(verbose_probing, "Log chit-chat during initialization"); |
| |
| module_param(features, uint, S_IRUGO); |
| MODULE_PARM_DESC(features, |
| "Bit mask of features to enable" |
| ", bit 0: IRQ support" |
| ", bit 1: DMA support" |
| ", bit 2: hardware SPP mode" |
| ", bit 3: hardware EPP mode" |
| ", bit 4: hardware ECP mode"); |
| |
| /*--- Inform (X)Emacs about preferred coding style ---------------------*/ |
| /* |
| * Local Variables: |
| * mode: c |
| * c-file-style: "linux" |
| * indent-tabs-mode: t |
| * tab-width: 8 |
| * fill-column: 78 |
| * ispell-local-dictionary: "american" |
| * End: |
| */ |