blob: bd3a60dd779f43855f8c29914e751d4ce27c76a3 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018-2023, Intel Corporation. */
/* Intel(R) Ethernet Connection E800 Series Linux Driver */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <generated/utsrelease.h>
#include <linux/crash_dump.h>
#include "ice.h"
#include "ice_base.h"
#include "ice_lib.h"
#include "ice_fltr.h"
#include "ice_dcb_lib.h"
#include "ice_dcb_nl.h"
#include "devlink/devlink.h"
#include "devlink/devlink_port.h"
#include "ice_hwmon.h"
/* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
* ice tracepoint functions. This must be done exactly once across the
* ice driver.
*/
#define CREATE_TRACE_POINTS
#include "ice_trace.h"
#include "ice_eswitch.h"
#include "ice_tc_lib.h"
#include "ice_vsi_vlan_ops.h"
#include <net/xdp_sock_drv.h>
#define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
static const char ice_driver_string[] = DRV_SUMMARY;
static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
/* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
#define ICE_DDP_PKG_PATH "intel/ice/ddp/"
#define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
MODULE_DESCRIPTION(DRV_SUMMARY);
MODULE_IMPORT_NS(LIBIE);
MODULE_LICENSE("GPL v2");
MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
static int debug = -1;
module_param(debug, int, 0644);
#ifndef CONFIG_DYNAMIC_DEBUG
MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
#else
MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
#endif /* !CONFIG_DYNAMIC_DEBUG */
DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
EXPORT_SYMBOL(ice_xdp_locking_key);
/**
* ice_hw_to_dev - Get device pointer from the hardware structure
* @hw: pointer to the device HW structure
*
* Used to access the device pointer from compilation units which can't easily
* include the definition of struct ice_pf without leading to circular header
* dependencies.
*/
struct device *ice_hw_to_dev(struct ice_hw *hw)
{
struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
return &pf->pdev->dev;
}
static struct workqueue_struct *ice_wq;
struct workqueue_struct *ice_lag_wq;
static const struct net_device_ops ice_netdev_safe_mode_ops;
static const struct net_device_ops ice_netdev_ops;
static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
static void ice_vsi_release_all(struct ice_pf *pf);
static int ice_rebuild_channels(struct ice_pf *pf);
static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
static int
ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
void *cb_priv, enum tc_setup_type type, void *type_data,
void *data,
void (*cleanup)(struct flow_block_cb *block_cb));
bool netif_is_ice(const struct net_device *dev)
{
return dev && (dev->netdev_ops == &ice_netdev_ops);
}
/**
* ice_get_tx_pending - returns number of Tx descriptors not processed
* @ring: the ring of descriptors
*/
static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
{
u16 head, tail;
head = ring->next_to_clean;
tail = ring->next_to_use;
if (head != tail)
return (head < tail) ?
tail - head : (tail + ring->count - head);
return 0;
}
/**
* ice_check_for_hang_subtask - check for and recover hung queues
* @pf: pointer to PF struct
*/
static void ice_check_for_hang_subtask(struct ice_pf *pf)
{
struct ice_vsi *vsi = NULL;
struct ice_hw *hw;
unsigned int i;
int packets;
u32 v;
ice_for_each_vsi(pf, v)
if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
vsi = pf->vsi[v];
break;
}
if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
return;
if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
return;
hw = &vsi->back->hw;
ice_for_each_txq(vsi, i) {
struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
struct ice_ring_stats *ring_stats;
if (!tx_ring)
continue;
if (ice_ring_ch_enabled(tx_ring))
continue;
ring_stats = tx_ring->ring_stats;
if (!ring_stats)
continue;
if (tx_ring->desc) {
/* If packet counter has not changed the queue is
* likely stalled, so force an interrupt for this
* queue.
*
* prev_pkt would be negative if there was no
* pending work.
*/
packets = ring_stats->stats.pkts & INT_MAX;
if (ring_stats->tx_stats.prev_pkt == packets) {
/* Trigger sw interrupt to revive the queue */
ice_trigger_sw_intr(hw, tx_ring->q_vector);
continue;
}
/* Memory barrier between read of packet count and call
* to ice_get_tx_pending()
*/
smp_rmb();
ring_stats->tx_stats.prev_pkt =
ice_get_tx_pending(tx_ring) ? packets : -1;
}
}
}
/**
* ice_init_mac_fltr - Set initial MAC filters
* @pf: board private structure
*
* Set initial set of MAC filters for PF VSI; configure filters for permanent
* address and broadcast address. If an error is encountered, netdevice will be
* unregistered.
*/
static int ice_init_mac_fltr(struct ice_pf *pf)
{
struct ice_vsi *vsi;
u8 *perm_addr;
vsi = ice_get_main_vsi(pf);
if (!vsi)
return -EINVAL;
perm_addr = vsi->port_info->mac.perm_addr;
return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
}
/**
* ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
* @netdev: the net device on which the sync is happening
* @addr: MAC address to sync
*
* This is a callback function which is called by the in kernel device sync
* functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
* populates the tmp_sync_list, which is later used by ice_add_mac to add the
* MAC filters from the hardware.
*/
static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
ICE_FWD_TO_VSI))
return -EINVAL;
return 0;
}
/**
* ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
* @netdev: the net device on which the unsync is happening
* @addr: MAC address to unsync
*
* This is a callback function which is called by the in kernel device unsync
* functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
* populates the tmp_unsync_list, which is later used by ice_remove_mac to
* delete the MAC filters from the hardware.
*/
static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
/* Under some circumstances, we might receive a request to delete our
* own device address from our uc list. Because we store the device
* address in the VSI's MAC filter list, we need to ignore such
* requests and not delete our device address from this list.
*/
if (ether_addr_equal(addr, netdev->dev_addr))
return 0;
if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
ICE_FWD_TO_VSI))
return -EINVAL;
return 0;
}
/**
* ice_vsi_fltr_changed - check if filter state changed
* @vsi: VSI to be checked
*
* returns true if filter state has changed, false otherwise.
*/
static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
{
return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
}
/**
* ice_set_promisc - Enable promiscuous mode for a given PF
* @vsi: the VSI being configured
* @promisc_m: mask of promiscuous config bits
*
*/
static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
{
int status;
if (vsi->type != ICE_VSI_PF)
return 0;
if (ice_vsi_has_non_zero_vlans(vsi)) {
promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
promisc_m);
} else {
status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
promisc_m, 0);
}
if (status && status != -EEXIST)
return status;
netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n",
vsi->vsi_num, promisc_m);
return 0;
}
/**
* ice_clear_promisc - Disable promiscuous mode for a given PF
* @vsi: the VSI being configured
* @promisc_m: mask of promiscuous config bits
*
*/
static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
{
int status;
if (vsi->type != ICE_VSI_PF)
return 0;
if (ice_vsi_has_non_zero_vlans(vsi)) {
promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
promisc_m);
} else {
status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
promisc_m, 0);
}
netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n",
vsi->vsi_num, promisc_m);
return status;
}
/**
* ice_vsi_sync_fltr - Update the VSI filter list to the HW
* @vsi: ptr to the VSI
*
* Push any outstanding VSI filter changes through the AdminQ.
*/
static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
{
struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
struct device *dev = ice_pf_to_dev(vsi->back);
struct net_device *netdev = vsi->netdev;
bool promisc_forced_on = false;
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
u32 changed_flags = 0;
int err;
if (!vsi->netdev)
return -EINVAL;
while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
usleep_range(1000, 2000);
changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
vsi->current_netdev_flags = vsi->netdev->flags;
INIT_LIST_HEAD(&vsi->tmp_sync_list);
INIT_LIST_HEAD(&vsi->tmp_unsync_list);
if (ice_vsi_fltr_changed(vsi)) {
clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
/* grab the netdev's addr_list_lock */
netif_addr_lock_bh(netdev);
__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
ice_add_mac_to_unsync_list);
__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
ice_add_mac_to_unsync_list);
/* our temp lists are populated. release lock */
netif_addr_unlock_bh(netdev);
}
/* Remove MAC addresses in the unsync list */
err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
if (err) {
netdev_err(netdev, "Failed to delete MAC filters\n");
/* if we failed because of alloc failures, just bail */
if (err == -ENOMEM)
goto out;
}
/* Add MAC addresses in the sync list */
err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
ice_fltr_free_list(dev, &vsi->tmp_sync_list);
/* If filter is added successfully or already exists, do not go into
* 'if' condition and report it as error. Instead continue processing
* rest of the function.
*/
if (err && err != -EEXIST) {
netdev_err(netdev, "Failed to add MAC filters\n");
/* If there is no more space for new umac filters, VSI
* should go into promiscuous mode. There should be some
* space reserved for promiscuous filters.
*/
if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
!test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
vsi->state)) {
promisc_forced_on = true;
netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
vsi->vsi_num);
} else {
goto out;
}
}
err = 0;
/* check for changes in promiscuous modes */
if (changed_flags & IFF_ALLMULTI) {
if (vsi->current_netdev_flags & IFF_ALLMULTI) {
err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
if (err) {
vsi->current_netdev_flags &= ~IFF_ALLMULTI;
goto out_promisc;
}
} else {
/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
if (err) {
vsi->current_netdev_flags |= IFF_ALLMULTI;
goto out_promisc;
}
}
}
if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
if (vsi->current_netdev_flags & IFF_PROMISC) {
/* Apply Rx filter rule to get traffic from wire */
if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
err = ice_set_dflt_vsi(vsi);
if (err && err != -EEXIST) {
netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
err, vsi->vsi_num);
vsi->current_netdev_flags &=
~IFF_PROMISC;
goto out_promisc;
}
err = 0;
vlan_ops->dis_rx_filtering(vsi);
/* promiscuous mode implies allmulticast so
* that VSIs that are in promiscuous mode are
* subscribed to multicast packets coming to
* the port
*/
err = ice_set_promisc(vsi,
ICE_MCAST_PROMISC_BITS);
if (err)
goto out_promisc;
}
} else {
/* Clear Rx filter to remove traffic from wire */
if (ice_is_vsi_dflt_vsi(vsi)) {
err = ice_clear_dflt_vsi(vsi);
if (err) {
netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
err, vsi->vsi_num);
vsi->current_netdev_flags |=
IFF_PROMISC;
goto out_promisc;
}
if (vsi->netdev->features &
NETIF_F_HW_VLAN_CTAG_FILTER)
vlan_ops->ena_rx_filtering(vsi);
}
/* disable allmulti here, but only if allmulti is not
* still enabled for the netdev
*/
if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
err = ice_clear_promisc(vsi,
ICE_MCAST_PROMISC_BITS);
if (err) {
netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n",
err, vsi->vsi_num);
}
}
}
}
goto exit;
out_promisc:
set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
goto exit;
out:
/* if something went wrong then set the changed flag so we try again */
set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
exit:
clear_bit(ICE_CFG_BUSY, vsi->state);
return err;
}
/**
* ice_sync_fltr_subtask - Sync the VSI filter list with HW
* @pf: board private structure
*/
static void ice_sync_fltr_subtask(struct ice_pf *pf)
{
int v;
if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
return;
clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
ice_for_each_vsi(pf, v)
if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
ice_vsi_sync_fltr(pf->vsi[v])) {
/* come back and try again later */
set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
break;
}
}
/**
* ice_pf_dis_all_vsi - Pause all VSIs on a PF
* @pf: the PF
* @locked: is the rtnl_lock already held
*/
static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
{
int node;
int v;
ice_for_each_vsi(pf, v)
if (pf->vsi[v])
ice_dis_vsi(pf->vsi[v], locked);
for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
pf->pf_agg_node[node].num_vsis = 0;
for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
pf->vf_agg_node[node].num_vsis = 0;
}
/**
* ice_clear_sw_switch_recipes - clear switch recipes
* @pf: board private structure
*
* Mark switch recipes as not created in sw structures. There are cases where
* rules (especially advanced rules) need to be restored, either re-read from
* hardware or added again. For example after the reset. 'recp_created' flag
* prevents from doing that and need to be cleared upfront.
*/
static void ice_clear_sw_switch_recipes(struct ice_pf *pf)
{
struct ice_sw_recipe *recp;
u8 i;
recp = pf->hw.switch_info->recp_list;
for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
recp[i].recp_created = false;
}
/**
* ice_prepare_for_reset - prep for reset
* @pf: board private structure
* @reset_type: reset type requested
*
* Inform or close all dependent features in prep for reset.
*/
static void
ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
{
struct ice_hw *hw = &pf->hw;
struct ice_vsi *vsi;
struct ice_vf *vf;
unsigned int bkt;
dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
/* already prepared for reset */
if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
return;
ice_unplug_aux_dev(pf);
/* Notify VFs of impending reset */
if (ice_check_sq_alive(hw, &hw->mailboxq))
ice_vc_notify_reset(pf);
/* Disable VFs until reset is completed */
mutex_lock(&pf->vfs.table_lock);
ice_for_each_vf(pf, bkt, vf)
ice_set_vf_state_dis(vf);
mutex_unlock(&pf->vfs.table_lock);
if (ice_is_eswitch_mode_switchdev(pf)) {
if (reset_type != ICE_RESET_PFR)
ice_clear_sw_switch_recipes(pf);
}
/* release ADQ specific HW and SW resources */
vsi = ice_get_main_vsi(pf);
if (!vsi)
goto skip;
/* to be on safe side, reset orig_rss_size so that normal flow
* of deciding rss_size can take precedence
*/
vsi->orig_rss_size = 0;
if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
if (reset_type == ICE_RESET_PFR) {
vsi->old_ena_tc = vsi->all_enatc;
vsi->old_numtc = vsi->all_numtc;
} else {
ice_remove_q_channels(vsi, true);
/* for other reset type, do not support channel rebuild
* hence reset needed info
*/
vsi->old_ena_tc = 0;
vsi->all_enatc = 0;
vsi->old_numtc = 0;
vsi->all_numtc = 0;
vsi->req_txq = 0;
vsi->req_rxq = 0;
clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
}
}
skip:
/* clear SW filtering DB */
ice_clear_hw_tbls(hw);
/* disable the VSIs and their queues that are not already DOWN */
ice_pf_dis_all_vsi(pf, false);
if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
ice_ptp_prepare_for_reset(pf, reset_type);
if (ice_is_feature_supported(pf, ICE_F_GNSS))
ice_gnss_exit(pf);
if (hw->port_info)
ice_sched_clear_port(hw->port_info);
ice_shutdown_all_ctrlq(hw, false);
set_bit(ICE_PREPARED_FOR_RESET, pf->state);
}
/**
* ice_do_reset - Initiate one of many types of resets
* @pf: board private structure
* @reset_type: reset type requested before this function was called.
*/
static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) {
dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n");
reset_type = ICE_RESET_CORER;
}
ice_prepare_for_reset(pf, reset_type);
/* trigger the reset */
if (ice_reset(hw, reset_type)) {
dev_err(dev, "reset %d failed\n", reset_type);
set_bit(ICE_RESET_FAILED, pf->state);
clear_bit(ICE_RESET_OICR_RECV, pf->state);
clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
clear_bit(ICE_PFR_REQ, pf->state);
clear_bit(ICE_CORER_REQ, pf->state);
clear_bit(ICE_GLOBR_REQ, pf->state);
wake_up(&pf->reset_wait_queue);
return;
}
/* PFR is a bit of a special case because it doesn't result in an OICR
* interrupt. So for PFR, rebuild after the reset and clear the reset-
* associated state bits.
*/
if (reset_type == ICE_RESET_PFR) {
pf->pfr_count++;
ice_rebuild(pf, reset_type);
clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
clear_bit(ICE_PFR_REQ, pf->state);
wake_up(&pf->reset_wait_queue);
ice_reset_all_vfs(pf);
}
}
/**
* ice_reset_subtask - Set up for resetting the device and driver
* @pf: board private structure
*/
static void ice_reset_subtask(struct ice_pf *pf)
{
enum ice_reset_req reset_type = ICE_RESET_INVAL;
/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
* OICR interrupt. The OICR handler (ice_misc_intr) determines what type
* of reset is pending and sets bits in pf->state indicating the reset
* type and ICE_RESET_OICR_RECV. So, if the latter bit is set
* prepare for pending reset if not already (for PF software-initiated
* global resets the software should already be prepared for it as
* indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
* by firmware or software on other PFs, that bit is not set so prepare
* for the reset now), poll for reset done, rebuild and return.
*/
if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
/* Perform the largest reset requested */
if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
reset_type = ICE_RESET_CORER;
if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
reset_type = ICE_RESET_GLOBR;
if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
reset_type = ICE_RESET_EMPR;
/* return if no valid reset type requested */
if (reset_type == ICE_RESET_INVAL)
return;
ice_prepare_for_reset(pf, reset_type);
/* make sure we are ready to rebuild */
if (ice_check_reset(&pf->hw)) {
set_bit(ICE_RESET_FAILED, pf->state);
} else {
/* done with reset. start rebuild */
pf->hw.reset_ongoing = false;
ice_rebuild(pf, reset_type);
/* clear bit to resume normal operations, but
* ICE_NEEDS_RESTART bit is set in case rebuild failed
*/
clear_bit(ICE_RESET_OICR_RECV, pf->state);
clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
clear_bit(ICE_PFR_REQ, pf->state);
clear_bit(ICE_CORER_REQ, pf->state);
clear_bit(ICE_GLOBR_REQ, pf->state);
wake_up(&pf->reset_wait_queue);
ice_reset_all_vfs(pf);
}
return;
}
/* No pending resets to finish processing. Check for new resets */
if (test_bit(ICE_PFR_REQ, pf->state)) {
reset_type = ICE_RESET_PFR;
if (pf->lag && pf->lag->bonded) {
dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n");
reset_type = ICE_RESET_CORER;
}
}
if (test_bit(ICE_CORER_REQ, pf->state))
reset_type = ICE_RESET_CORER;
if (test_bit(ICE_GLOBR_REQ, pf->state))
reset_type = ICE_RESET_GLOBR;
/* If no valid reset type requested just return */
if (reset_type == ICE_RESET_INVAL)
return;
/* reset if not already down or busy */
if (!test_bit(ICE_DOWN, pf->state) &&
!test_bit(ICE_CFG_BUSY, pf->state)) {
ice_do_reset(pf, reset_type);
}
}
/**
* ice_print_topo_conflict - print topology conflict message
* @vsi: the VSI whose topology status is being checked
*/
static void ice_print_topo_conflict(struct ice_vsi *vsi)
{
switch (vsi->port_info->phy.link_info.topo_media_conflict) {
case ICE_AQ_LINK_TOPO_CONFLICT:
case ICE_AQ_LINK_MEDIA_CONFLICT:
case ICE_AQ_LINK_TOPO_UNREACH_PRT:
case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
break;
case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
else
netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
break;
default:
break;
}
}
/**
* ice_print_link_msg - print link up or down message
* @vsi: the VSI whose link status is being queried
* @isup: boolean for if the link is now up or down
*/
void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
{
struct ice_aqc_get_phy_caps_data *caps;
const char *an_advertised;
const char *fec_req;
const char *speed;
const char *fec;
const char *fc;
const char *an;
int status;
if (!vsi)
return;
if (vsi->current_isup == isup)
return;
vsi->current_isup = isup;
if (!isup) {
netdev_info(vsi->netdev, "NIC Link is Down\n");
return;
}
switch (vsi->port_info->phy.link_info.link_speed) {
case ICE_AQ_LINK_SPEED_200GB:
speed = "200 G";
break;
case ICE_AQ_LINK_SPEED_100GB:
speed = "100 G";
break;
case ICE_AQ_LINK_SPEED_50GB:
speed = "50 G";
break;
case ICE_AQ_LINK_SPEED_40GB:
speed = "40 G";
break;
case ICE_AQ_LINK_SPEED_25GB:
speed = "25 G";
break;
case ICE_AQ_LINK_SPEED_20GB:
speed = "20 G";
break;
case ICE_AQ_LINK_SPEED_10GB:
speed = "10 G";
break;
case ICE_AQ_LINK_SPEED_5GB:
speed = "5 G";
break;
case ICE_AQ_LINK_SPEED_2500MB:
speed = "2.5 G";
break;
case ICE_AQ_LINK_SPEED_1000MB:
speed = "1 G";
break;
case ICE_AQ_LINK_SPEED_100MB:
speed = "100 M";
break;
default:
speed = "Unknown ";
break;
}
switch (vsi->port_info->fc.current_mode) {
case ICE_FC_FULL:
fc = "Rx/Tx";
break;
case ICE_FC_TX_PAUSE:
fc = "Tx";
break;
case ICE_FC_RX_PAUSE:
fc = "Rx";
break;
case ICE_FC_NONE:
fc = "None";
break;
default:
fc = "Unknown";
break;
}
/* Get FEC mode based on negotiated link info */
switch (vsi->port_info->phy.link_info.fec_info) {
case ICE_AQ_LINK_25G_RS_528_FEC_EN:
case ICE_AQ_LINK_25G_RS_544_FEC_EN:
fec = "RS-FEC";
break;
case ICE_AQ_LINK_25G_KR_FEC_EN:
fec = "FC-FEC/BASE-R";
break;
default:
fec = "NONE";
break;
}
/* check if autoneg completed, might be false due to not supported */
if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
an = "True";
else
an = "False";
/* Get FEC mode requested based on PHY caps last SW configuration */
caps = kzalloc(sizeof(*caps), GFP_KERNEL);
if (!caps) {
fec_req = "Unknown";
an_advertised = "Unknown";
goto done;
}
status = ice_aq_get_phy_caps(vsi->port_info, false,
ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
if (status)
netdev_info(vsi->netdev, "Get phy capability failed.\n");
an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
fec_req = "RS-FEC";
else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
fec_req = "FC-FEC/BASE-R";
else
fec_req = "NONE";
kfree(caps);
done:
netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
speed, fec_req, fec, an_advertised, an, fc);
ice_print_topo_conflict(vsi);
}
/**
* ice_vsi_link_event - update the VSI's netdev
* @vsi: the VSI on which the link event occurred
* @link_up: whether or not the VSI needs to be set up or down
*/
static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
{
if (!vsi)
return;
if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
return;
if (vsi->type == ICE_VSI_PF) {
if (link_up == netif_carrier_ok(vsi->netdev))
return;
if (link_up) {
netif_carrier_on(vsi->netdev);
netif_tx_wake_all_queues(vsi->netdev);
} else {
netif_carrier_off(vsi->netdev);
netif_tx_stop_all_queues(vsi->netdev);
}
}
}
/**
* ice_set_dflt_mib - send a default config MIB to the FW
* @pf: private PF struct
*
* This function sends a default configuration MIB to the FW.
*
* If this function errors out at any point, the driver is still able to
* function. The main impact is that LFC may not operate as expected.
* Therefore an error state in this function should be treated with a DBG
* message and continue on with driver rebuild/reenable.
*/
static void ice_set_dflt_mib(struct ice_pf *pf)
{
struct device *dev = ice_pf_to_dev(pf);
u8 mib_type, *buf, *lldpmib = NULL;
u16 len, typelen, offset = 0;
struct ice_lldp_org_tlv *tlv;
struct ice_hw *hw = &pf->hw;
u32 ouisubtype;
mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
if (!lldpmib) {
dev_dbg(dev, "%s Failed to allocate MIB memory\n",
__func__);
return;
}
/* Add ETS CFG TLV */
tlv = (struct ice_lldp_org_tlv *)lldpmib;
typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
ICE_IEEE_ETS_TLV_LEN);
tlv->typelen = htons(typelen);
ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
ICE_IEEE_SUBTYPE_ETS_CFG);
tlv->ouisubtype = htonl(ouisubtype);
buf = tlv->tlvinfo;
buf[0] = 0;
/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
* Octets 5 - 12 are BW values, set octet 5 to 100% BW.
* Octets 13 - 20 are TSA values - leave as zeros
*/
buf[5] = 0x64;
len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
offset += len + 2;
tlv = (struct ice_lldp_org_tlv *)
((char *)tlv + sizeof(tlv->typelen) + len);
/* Add ETS REC TLV */
buf = tlv->tlvinfo;
tlv->typelen = htons(typelen);
ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
ICE_IEEE_SUBTYPE_ETS_REC);
tlv->ouisubtype = htonl(ouisubtype);
/* First octet of buf is reserved
* Octets 1 - 4 map UP to TC - all UPs map to zero
* Octets 5 - 12 are BW values - set TC 0 to 100%.
* Octets 13 - 20 are TSA value - leave as zeros
*/
buf[5] = 0x64;
offset += len + 2;
tlv = (struct ice_lldp_org_tlv *)
((char *)tlv + sizeof(tlv->typelen) + len);
/* Add PFC CFG TLV */
typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
ICE_IEEE_PFC_TLV_LEN);
tlv->typelen = htons(typelen);
ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
ICE_IEEE_SUBTYPE_PFC_CFG);
tlv->ouisubtype = htonl(ouisubtype);
/* Octet 1 left as all zeros - PFC disabled */
buf[0] = 0x08;
len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
offset += len + 2;
if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
kfree(lldpmib);
}
/**
* ice_check_phy_fw_load - check if PHY FW load failed
* @pf: pointer to PF struct
* @link_cfg_err: bitmap from the link info structure
*
* check if external PHY FW load failed and print an error message if it did
*/
static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
{
if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
return;
}
if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
return;
if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
}
}
/**
* ice_check_module_power
* @pf: pointer to PF struct
* @link_cfg_err: bitmap from the link info structure
*
* check module power level returned by a previous call to aq_get_link_info
* and print error messages if module power level is not supported
*/
static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
{
/* if module power level is supported, clear the flag */
if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
return;
}
/* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
* above block didn't clear this bit, there's nothing to do
*/
if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
return;
if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
} else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
}
}
/**
* ice_check_link_cfg_err - check if link configuration failed
* @pf: pointer to the PF struct
* @link_cfg_err: bitmap from the link info structure
*
* print if any link configuration failure happens due to the value in the
* link_cfg_err parameter in the link info structure
*/
static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
{
ice_check_module_power(pf, link_cfg_err);
ice_check_phy_fw_load(pf, link_cfg_err);
}
/**
* ice_link_event - process the link event
* @pf: PF that the link event is associated with
* @pi: port_info for the port that the link event is associated with
* @link_up: true if the physical link is up and false if it is down
* @link_speed: current link speed received from the link event
*
* Returns 0 on success and negative on failure
*/
static int
ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
u16 link_speed)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_phy_info *phy_info;
struct ice_vsi *vsi;
u16 old_link_speed;
bool old_link;
int status;
phy_info = &pi->phy;
phy_info->link_info_old = phy_info->link_info;
old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
old_link_speed = phy_info->link_info_old.link_speed;
/* update the link info structures and re-enable link events,
* don't bail on failure due to other book keeping needed
*/
status = ice_update_link_info(pi);
if (status)
dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
pi->lport, status,
ice_aq_str(pi->hw->adminq.sq_last_status));
ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
/* Check if the link state is up after updating link info, and treat
* this event as an UP event since the link is actually UP now.
*/
if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
link_up = true;
vsi = ice_get_main_vsi(pf);
if (!vsi || !vsi->port_info)
return -EINVAL;
/* turn off PHY if media was removed */
if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
ice_set_link(vsi, false);
}
/* if the old link up/down and speed is the same as the new */
if (link_up == old_link && link_speed == old_link_speed)
return 0;
ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
if (ice_is_dcb_active(pf)) {
if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
ice_dcb_rebuild(pf);
} else {
if (link_up)
ice_set_dflt_mib(pf);
}
ice_vsi_link_event(vsi, link_up);
ice_print_link_msg(vsi, link_up);
ice_vc_notify_link_state(pf);
return 0;
}
/**
* ice_watchdog_subtask - periodic tasks not using event driven scheduling
* @pf: board private structure
*/
static void ice_watchdog_subtask(struct ice_pf *pf)
{
int i;
/* if interface is down do nothing */
if (test_bit(ICE_DOWN, pf->state) ||
test_bit(ICE_CFG_BUSY, pf->state))
return;
/* make sure we don't do these things too often */
if (time_before(jiffies,
pf->serv_tmr_prev + pf->serv_tmr_period))
return;
pf->serv_tmr_prev = jiffies;
/* Update the stats for active netdevs so the network stack
* can look at updated numbers whenever it cares to
*/
ice_update_pf_stats(pf);
ice_for_each_vsi(pf, i)
if (pf->vsi[i] && pf->vsi[i]->netdev)
ice_update_vsi_stats(pf->vsi[i]);
}
/**
* ice_init_link_events - enable/initialize link events
* @pi: pointer to the port_info instance
*
* Returns -EIO on failure, 0 on success
*/
static int ice_init_link_events(struct ice_port_info *pi)
{
u16 mask;
mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
pi->lport);
return -EIO;
}
if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
pi->lport);
return -EIO;
}
return 0;
}
/**
* ice_handle_link_event - handle link event via ARQ
* @pf: PF that the link event is associated with
* @event: event structure containing link status info
*/
static int
ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
{
struct ice_aqc_get_link_status_data *link_data;
struct ice_port_info *port_info;
int status;
link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
port_info = pf->hw.port_info;
if (!port_info)
return -EINVAL;
status = ice_link_event(pf, port_info,
!!(link_data->link_info & ICE_AQ_LINK_UP),
le16_to_cpu(link_data->link_speed));
if (status)
dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
status);
return status;
}
/**
* ice_get_fwlog_data - copy the FW log data from ARQ event
* @pf: PF that the FW log event is associated with
* @event: event structure containing FW log data
*/
static void
ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event)
{
struct ice_fwlog_data *fwlog;
struct ice_hw *hw = &pf->hw;
fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail];
memset(fwlog->data, 0, PAGE_SIZE);
fwlog->data_size = le16_to_cpu(event->desc.datalen);
memcpy(fwlog->data, event->msg_buf, fwlog->data_size);
ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size);
if (ice_fwlog_ring_full(&hw->fwlog_ring)) {
/* the rings are full so bump the head to create room */
ice_fwlog_ring_increment(&hw->fwlog_ring.head,
hw->fwlog_ring.size);
}
}
/**
* ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware
* @pf: pointer to the PF private structure
* @task: intermediate helper storage and identifier for waiting
* @opcode: the opcode to wait for
*
* Prepares to wait for a specific AdminQ completion event on the ARQ for
* a given PF. Actual wait would be done by a call to ice_aq_wait_for_event().
*
* Calls are separated to allow caller registering for event before sending
* the command, which mitigates a race between registering and FW responding.
*
* To obtain only the descriptor contents, pass an task->event with null
* msg_buf. If the complete data buffer is desired, allocate the
* task->event.msg_buf with enough space ahead of time.
*/
void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task,
u16 opcode)
{
INIT_HLIST_NODE(&task->entry);
task->opcode = opcode;
task->state = ICE_AQ_TASK_WAITING;
spin_lock_bh(&pf->aq_wait_lock);
hlist_add_head(&task->entry, &pf->aq_wait_list);
spin_unlock_bh(&pf->aq_wait_lock);
}
/**
* ice_aq_wait_for_event - Wait for an AdminQ event from firmware
* @pf: pointer to the PF private structure
* @task: ptr prepared by ice_aq_prep_for_event()
* @timeout: how long to wait, in jiffies
*
* Waits for a specific AdminQ completion event on the ARQ for a given PF. The
* current thread will be put to sleep until the specified event occurs or
* until the given timeout is reached.
*
* Returns: zero on success, or a negative error code on failure.
*/
int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task,
unsigned long timeout)
{
enum ice_aq_task_state *state = &task->state;
struct device *dev = ice_pf_to_dev(pf);
unsigned long start = jiffies;
long ret;
int err;
ret = wait_event_interruptible_timeout(pf->aq_wait_queue,
*state != ICE_AQ_TASK_WAITING,
timeout);
switch (*state) {
case ICE_AQ_TASK_NOT_PREPARED:
WARN(1, "call to %s without ice_aq_prep_for_event()", __func__);
err = -EINVAL;
break;
case ICE_AQ_TASK_WAITING:
err = ret < 0 ? ret : -ETIMEDOUT;
break;
case ICE_AQ_TASK_CANCELED:
err = ret < 0 ? ret : -ECANCELED;
break;
case ICE_AQ_TASK_COMPLETE:
err = ret < 0 ? ret : 0;
break;
default:
WARN(1, "Unexpected AdminQ wait task state %u", *state);
err = -EINVAL;
break;
}
dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
jiffies_to_msecs(jiffies - start),
jiffies_to_msecs(timeout),
task->opcode);
spin_lock_bh(&pf->aq_wait_lock);
hlist_del(&task->entry);
spin_unlock_bh(&pf->aq_wait_lock);
return err;
}
/**
* ice_aq_check_events - Check if any thread is waiting for an AdminQ event
* @pf: pointer to the PF private structure
* @opcode: the opcode of the event
* @event: the event to check
*
* Loops over the current list of pending threads waiting for an AdminQ event.
* For each matching task, copy the contents of the event into the task
* structure and wake up the thread.
*
* If multiple threads wait for the same opcode, they will all be woken up.
*
* Note that event->msg_buf will only be duplicated if the event has a buffer
* with enough space already allocated. Otherwise, only the descriptor and
* message length will be copied.
*
* Returns: true if an event was found, false otherwise
*/
static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
struct ice_rq_event_info *event)
{
struct ice_rq_event_info *task_ev;
struct ice_aq_task *task;
bool found = false;
spin_lock_bh(&pf->aq_wait_lock);
hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
if (task->state != ICE_AQ_TASK_WAITING)
continue;
if (task->opcode != opcode)
continue;
task_ev = &task->event;
memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
task_ev->msg_len = event->msg_len;
/* Only copy the data buffer if a destination was set */
if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
memcpy(task_ev->msg_buf, event->msg_buf,
event->buf_len);
task_ev->buf_len = event->buf_len;
}
task->state = ICE_AQ_TASK_COMPLETE;
found = true;
}
spin_unlock_bh(&pf->aq_wait_lock);
if (found)
wake_up(&pf->aq_wait_queue);
}
/**
* ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
* @pf: the PF private structure
*
* Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
* This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
*/
static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
{
struct ice_aq_task *task;
spin_lock_bh(&pf->aq_wait_lock);
hlist_for_each_entry(task, &pf->aq_wait_list, entry)
task->state = ICE_AQ_TASK_CANCELED;
spin_unlock_bh(&pf->aq_wait_lock);
wake_up(&pf->aq_wait_queue);
}
#define ICE_MBX_OVERFLOW_WATERMARK 64
/**
* __ice_clean_ctrlq - helper function to clean controlq rings
* @pf: ptr to struct ice_pf
* @q_type: specific Control queue type
*/
static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_rq_event_info event;
struct ice_hw *hw = &pf->hw;
struct ice_ctl_q_info *cq;
u16 pending, i = 0;
const char *qtype;
u32 oldval, val;
/* Do not clean control queue if/when PF reset fails */
if (test_bit(ICE_RESET_FAILED, pf->state))
return 0;
switch (q_type) {
case ICE_CTL_Q_ADMIN:
cq = &hw->adminq;
qtype = "Admin";
break;
case ICE_CTL_Q_SB:
cq = &hw->sbq;
qtype = "Sideband";
break;
case ICE_CTL_Q_MAILBOX:
cq = &hw->mailboxq;
qtype = "Mailbox";
/* we are going to try to detect a malicious VF, so set the
* state to begin detection
*/
hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
break;
default:
dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
return 0;
}
/* check for error indications - PF_xx_AxQLEN register layout for
* FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
*/
val = rd32(hw, cq->rq.len);
if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
PF_FW_ARQLEN_ARQCRIT_M)) {
oldval = val;
if (val & PF_FW_ARQLEN_ARQVFE_M)
dev_dbg(dev, "%s Receive Queue VF Error detected\n",
qtype);
if (val & PF_FW_ARQLEN_ARQOVFL_M) {
dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
qtype);
}
if (val & PF_FW_ARQLEN_ARQCRIT_M)
dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
qtype);
val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
PF_FW_ARQLEN_ARQCRIT_M);
if (oldval != val)
wr32(hw, cq->rq.len, val);
}
val = rd32(hw, cq->sq.len);
if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
PF_FW_ATQLEN_ATQCRIT_M)) {
oldval = val;
if (val & PF_FW_ATQLEN_ATQVFE_M)
dev_dbg(dev, "%s Send Queue VF Error detected\n",
qtype);
if (val & PF_FW_ATQLEN_ATQOVFL_M) {
dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
qtype);
}
if (val & PF_FW_ATQLEN_ATQCRIT_M)
dev_dbg(dev, "%s Send Queue Critical Error detected\n",
qtype);
val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
PF_FW_ATQLEN_ATQCRIT_M);
if (oldval != val)
wr32(hw, cq->sq.len, val);
}
event.buf_len = cq->rq_buf_size;
event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
if (!event.msg_buf)
return 0;
do {
struct ice_mbx_data data = {};
u16 opcode;
int ret;
ret = ice_clean_rq_elem(hw, cq, &event, &pending);
if (ret == -EALREADY)
break;
if (ret) {
dev_err(dev, "%s Receive Queue event error %d\n", qtype,
ret);
break;
}
opcode = le16_to_cpu(event.desc.opcode);
/* Notify any thread that might be waiting for this event */
ice_aq_check_events(pf, opcode, &event);
switch (opcode) {
case ice_aqc_opc_get_link_status:
if (ice_handle_link_event(pf, &event))
dev_err(dev, "Could not handle link event\n");
break;
case ice_aqc_opc_event_lan_overflow:
ice_vf_lan_overflow_event(pf, &event);
break;
case ice_mbx_opc_send_msg_to_pf:
data.num_msg_proc = i;
data.num_pending_arq = pending;
data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries;
data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK;
ice_vc_process_vf_msg(pf, &event, &data);
break;
case ice_aqc_opc_fw_logs_event:
ice_get_fwlog_data(pf, &event);
break;
case ice_aqc_opc_lldp_set_mib_change:
ice_dcb_process_lldp_set_mib_change(pf, &event);
break;
default:
dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
qtype, opcode);
break;
}
} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
kfree(event.msg_buf);
return pending && (i == ICE_DFLT_IRQ_WORK);
}
/**
* ice_ctrlq_pending - check if there is a difference between ntc and ntu
* @hw: pointer to hardware info
* @cq: control queue information
*
* returns true if there are pending messages in a queue, false if there aren't
*/
static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
u16 ntu;
ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
return cq->rq.next_to_clean != ntu;
}
/**
* ice_clean_adminq_subtask - clean the AdminQ rings
* @pf: board private structure
*/
static void ice_clean_adminq_subtask(struct ice_pf *pf)
{
struct ice_hw *hw = &pf->hw;
if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
return;
if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
return;
clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
/* There might be a situation where new messages arrive to a control
* queue between processing the last message and clearing the
* EVENT_PENDING bit. So before exiting, check queue head again (using
* ice_ctrlq_pending) and process new messages if any.
*/
if (ice_ctrlq_pending(hw, &hw->adminq))
__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
ice_flush(hw);
}
/**
* ice_clean_mailboxq_subtask - clean the MailboxQ rings
* @pf: board private structure
*/
static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
{
struct ice_hw *hw = &pf->hw;
if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
return;
if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
return;
clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
if (ice_ctrlq_pending(hw, &hw->mailboxq))
__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
ice_flush(hw);
}
/**
* ice_clean_sbq_subtask - clean the Sideband Queue rings
* @pf: board private structure
*/
static void ice_clean_sbq_subtask(struct ice_pf *pf)
{
struct ice_hw *hw = &pf->hw;
/* if mac_type is not generic, sideband is not supported
* and there's nothing to do here
*/
if (!ice_is_generic_mac(hw)) {
clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
return;
}
if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
return;
if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
return;
clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
if (ice_ctrlq_pending(hw, &hw->sbq))
__ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
ice_flush(hw);
}
/**
* ice_service_task_schedule - schedule the service task to wake up
* @pf: board private structure
*
* If not already scheduled, this puts the task into the work queue.
*/
void ice_service_task_schedule(struct ice_pf *pf)
{
if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
!test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
!test_bit(ICE_NEEDS_RESTART, pf->state))
queue_work(ice_wq, &pf->serv_task);
}
/**
* ice_service_task_complete - finish up the service task
* @pf: board private structure
*/
static void ice_service_task_complete(struct ice_pf *pf)
{
WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
/* force memory (pf->state) to sync before next service task */
smp_mb__before_atomic();
clear_bit(ICE_SERVICE_SCHED, pf->state);
}
/**
* ice_service_task_stop - stop service task and cancel works
* @pf: board private structure
*
* Return 0 if the ICE_SERVICE_DIS bit was not already set,
* 1 otherwise.
*/
static int ice_service_task_stop(struct ice_pf *pf)
{
int ret;
ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
if (pf->serv_tmr.function)
del_timer_sync(&pf->serv_tmr);
if (pf->serv_task.func)
cancel_work_sync(&pf->serv_task);
clear_bit(ICE_SERVICE_SCHED, pf->state);
return ret;
}
/**
* ice_service_task_restart - restart service task and schedule works
* @pf: board private structure
*
* This function is needed for suspend and resume works (e.g WoL scenario)
*/
static void ice_service_task_restart(struct ice_pf *pf)
{
clear_bit(ICE_SERVICE_DIS, pf->state);
ice_service_task_schedule(pf);
}
/**
* ice_service_timer - timer callback to schedule service task
* @t: pointer to timer_list
*/
static void ice_service_timer(struct timer_list *t)
{
struct ice_pf *pf = from_timer(pf, t, serv_tmr);
mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
ice_service_task_schedule(pf);
}
/**
* ice_mdd_maybe_reset_vf - reset VF after MDD event
* @pf: pointer to the PF structure
* @vf: pointer to the VF structure
* @reset_vf_tx: whether Tx MDD has occurred
* @reset_vf_rx: whether Rx MDD has occurred
*
* Since the queue can get stuck on VF MDD events, the PF can be configured to
* automatically reset the VF by enabling the private ethtool flag
* mdd-auto-reset-vf.
*/
static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf,
bool reset_vf_tx, bool reset_vf_rx)
{
struct device *dev = ice_pf_to_dev(pf);
if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags))
return;
/* VF MDD event counters will be cleared by reset, so print the event
* prior to reset.
*/
if (reset_vf_tx)
ice_print_vf_tx_mdd_event(vf);
if (reset_vf_rx)
ice_print_vf_rx_mdd_event(vf);
dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n",
pf->hw.pf_id, vf->vf_id);
ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
}
/**
* ice_handle_mdd_event - handle malicious driver detect event
* @pf: pointer to the PF structure
*
* Called from service task. OICR interrupt handler indicates MDD event.
* VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
* messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
* disable the queue, the PF can be configured to reset the VF using ethtool
* private flag mdd-auto-reset-vf.
*/
static void ice_handle_mdd_event(struct ice_pf *pf)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
struct ice_vf *vf;
unsigned int bkt;
u32 reg;
if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
/* Since the VF MDD event logging is rate limited, check if
* there are pending MDD events.
*/
ice_print_vfs_mdd_events(pf);
return;
}
/* find what triggered an MDD event */
reg = rd32(hw, GL_MDET_TX_PQM);
if (reg & GL_MDET_TX_PQM_VALID_M) {
u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg);
u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg);
u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg);
u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg);
if (netif_msg_tx_err(pf))
dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
event, queue, pf_num, vf_num);
wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
}
reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw));
if (reg & GL_MDET_TX_TCLAN_VALID_M) {
u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg);
u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg);
u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg);
u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg);
if (netif_msg_tx_err(pf))
dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
event, queue, pf_num, vf_num);
wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX);
}
reg = rd32(hw, GL_MDET_RX);
if (reg & GL_MDET_RX_VALID_M) {
u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg);
u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg);
u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg);
u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg);
if (netif_msg_rx_err(pf))
dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
event, queue, pf_num, vf_num);
wr32(hw, GL_MDET_RX, 0xffffffff);
}
/* check to see if this PF caused an MDD event */
reg = rd32(hw, PF_MDET_TX_PQM);
if (reg & PF_MDET_TX_PQM_VALID_M) {
wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
if (netif_msg_tx_err(pf))
dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
}
reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw));
if (reg & PF_MDET_TX_TCLAN_VALID_M) {
wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff);
if (netif_msg_tx_err(pf))
dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
}
reg = rd32(hw, PF_MDET_RX);
if (reg & PF_MDET_RX_VALID_M) {
wr32(hw, PF_MDET_RX, 0xFFFF);
if (netif_msg_rx_err(pf))
dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
}
/* Check to see if one of the VFs caused an MDD event, and then
* increment counters and set print pending
*/
mutex_lock(&pf->vfs.table_lock);
ice_for_each_vf(pf, bkt, vf) {
bool reset_vf_tx = false, reset_vf_rx = false;
reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
if (reg & VP_MDET_TX_PQM_VALID_M) {
wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
vf->mdd_tx_events.count++;
set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
if (netif_msg_tx_err(pf))
dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
vf->vf_id);
reset_vf_tx = true;
}
reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
if (reg & VP_MDET_TX_TCLAN_VALID_M) {
wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
vf->mdd_tx_events.count++;
set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
if (netif_msg_tx_err(pf))
dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
vf->vf_id);
reset_vf_tx = true;
}
reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
if (reg & VP_MDET_TX_TDPU_VALID_M) {
wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
vf->mdd_tx_events.count++;
set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
if (netif_msg_tx_err(pf))
dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
vf->vf_id);
reset_vf_tx = true;
}
reg = rd32(hw, VP_MDET_RX(vf->vf_id));
if (reg & VP_MDET_RX_VALID_M) {
wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
vf->mdd_rx_events.count++;
set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
if (netif_msg_rx_err(pf))
dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
vf->vf_id);
reset_vf_rx = true;
}
if (reset_vf_tx || reset_vf_rx)
ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx,
reset_vf_rx);
}
mutex_unlock(&pf->vfs.table_lock);
ice_print_vfs_mdd_events(pf);
}
/**
* ice_force_phys_link_state - Force the physical link state
* @vsi: VSI to force the physical link state to up/down
* @link_up: true/false indicates to set the physical link to up/down
*
* Force the physical link state by getting the current PHY capabilities from
* hardware and setting the PHY config based on the determined capabilities. If
* link changes a link event will be triggered because both the Enable Automatic
* Link Update and LESM Enable bits are set when setting the PHY capabilities.
*
* Returns 0 on success, negative on failure
*/
static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
{
struct ice_aqc_get_phy_caps_data *pcaps;
struct ice_aqc_set_phy_cfg_data *cfg;
struct ice_port_info *pi;
struct device *dev;
int retcode;
if (!vsi || !vsi->port_info || !vsi->back)
return -EINVAL;
if (vsi->type != ICE_VSI_PF)
return 0;
dev = ice_pf_to_dev(vsi->back);
pi = vsi->port_info;
pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
if (!pcaps)
return -ENOMEM;
retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
NULL);
if (retcode) {
dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
vsi->vsi_num, retcode);
retcode = -EIO;
goto out;
}
/* No change in link */
if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
goto out;
/* Use the current user PHY configuration. The current user PHY
* configuration is initialized during probe from PHY capabilities
* software mode, and updated on set PHY configuration.
*/
cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
if (!cfg) {
retcode = -ENOMEM;
goto out;
}
cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
if (link_up)
cfg->caps |= ICE_AQ_PHY_ENA_LINK;
else
cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
if (retcode) {
dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
vsi->vsi_num, retcode);
retcode = -EIO;
}
kfree(cfg);
out:
kfree(pcaps);
return retcode;
}
/**
* ice_init_nvm_phy_type - Initialize the NVM PHY type
* @pi: port info structure
*
* Initialize nvm_phy_type_[low|high] for link lenient mode support
*/
static int ice_init_nvm_phy_type(struct ice_port_info *pi)
{
struct ice_aqc_get_phy_caps_data *pcaps;
struct ice_pf *pf = pi->hw->back;
int err;
pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
if (!pcaps)
return -ENOMEM;
err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
pcaps, NULL);
if (err) {
dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
goto out;
}
pf->nvm_phy_type_hi = pcaps->phy_type_high;
pf->nvm_phy_type_lo = pcaps->phy_type_low;
out:
kfree(pcaps);
return err;
}
/**
* ice_init_link_dflt_override - Initialize link default override
* @pi: port info structure
*
* Initialize link default override and PHY total port shutdown during probe
*/
static void ice_init_link_dflt_override(struct ice_port_info *pi)
{
struct ice_link_default_override_tlv *ldo;
struct ice_pf *pf = pi->hw->back;
ldo = &pf->link_dflt_override;
if (ice_get_link_default_override(ldo, pi))
return;
if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
return;
/* Enable Total Port Shutdown (override/replace link-down-on-close
* ethtool private flag) for ports with Port Disable bit set.
*/
set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
}
/**
* ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
* @pi: port info structure
*
* If default override is enabled, initialize the user PHY cfg speed and FEC
* settings using the default override mask from the NVM.
*
* The PHY should only be configured with the default override settings the
* first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
* is used to indicate that the user PHY cfg default override is initialized
* and the PHY has not been configured with the default override settings. The
* state is set here, and cleared in ice_configure_phy the first time the PHY is
* configured.
*
* This function should be called only if the FW doesn't support default
* configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
*/
static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
{
struct ice_link_default_override_tlv *ldo;
struct ice_aqc_set_phy_cfg_data *cfg;
struct ice_phy_info *phy = &pi->phy;
struct ice_pf *pf = pi->hw->back;
ldo = &pf->link_dflt_override;
/* If link default override is enabled, use to mask NVM PHY capabilities
* for speed and FEC default configuration.
*/
cfg = &phy->curr_user_phy_cfg;
if (ldo->phy_type_low || ldo->phy_type_high) {
cfg->phy_type_low = pf->nvm_phy_type_lo &
cpu_to_le64(ldo->phy_type_low);
cfg->phy_type_high = pf->nvm_phy_type_hi &
cpu_to_le64(ldo->phy_type_high);
}
cfg->link_fec_opt = ldo->fec_options;
phy->curr_user_fec_req = ICE_FEC_AUTO;
set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
}
/**
* ice_init_phy_user_cfg - Initialize the PHY user configuration
* @pi: port info structure
*
* Initialize the current user PHY configuration, speed, FEC, and FC requested
* mode to default. The PHY defaults are from get PHY capabilities topology
* with media so call when media is first available. An error is returned if
* called when media is not available. The PHY initialization completed state is
* set here.
*
* These configurations are used when setting PHY
* configuration. The user PHY configuration is updated on set PHY
* configuration. Returns 0 on success, negative on failure
*/
static int ice_init_phy_user_cfg(struct ice_port_info *pi)
{
struct ice_aqc_get_phy_caps_data *pcaps;
struct ice_phy_info *phy = &pi->phy;
struct ice_pf *pf = pi->hw->back;
int err;
if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
return -EIO;
pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
if (!pcaps)
return -ENOMEM;
if (ice_fw_supports_report_dflt_cfg(pi->hw))
err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
pcaps, NULL);
else
err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
pcaps, NULL);
if (err) {
dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
goto err_out;
}
ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
/* check if lenient mode is supported and enabled */
if (ice_fw_supports_link_override(pi->hw) &&
!(pcaps->module_compliance_enforcement &
ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
/* if the FW supports default PHY configuration mode, then the driver
* does not have to apply link override settings. If not,
* initialize user PHY configuration with link override values
*/
if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
(pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
ice_init_phy_cfg_dflt_override(pi);
goto out;
}
}
/* if link default override is not enabled, set user flow control and
* FEC settings based on what get_phy_caps returned
*/
phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
pcaps->link_fec_options);
phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
out:
phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
err_out:
kfree(pcaps);
return err;
}
/**
* ice_configure_phy - configure PHY
* @vsi: VSI of PHY
*
* Set the PHY configuration. If the current PHY configuration is the same as
* the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
* configure the based get PHY capabilities for topology with media.
*/
static int ice_configure_phy(struct ice_vsi *vsi)
{
struct device *dev = ice_pf_to_dev(vsi->back);
struct ice_port_info *pi = vsi->port_info;
struct ice_aqc_get_phy_caps_data *pcaps;
struct ice_aqc_set_phy_cfg_data *cfg;
struct ice_phy_info *phy = &pi->phy;
struct ice_pf *pf = vsi->back;
int err;
/* Ensure we have media as we cannot configure a medialess port */
if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
return -ENOMEDIUM;
ice_print_topo_conflict(vsi);
if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
return -EPERM;
if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
return ice_force_phys_link_state(vsi, true);
pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
if (!pcaps)
return -ENOMEM;
/* Get current PHY config */
err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
NULL);
if (err) {
dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
vsi->vsi_num, err);
goto done;
}
/* If PHY enable link is configured and configuration has not changed,
* there's nothing to do
*/
if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
goto done;
/* Use PHY topology as baseline for configuration */
memset(pcaps, 0, sizeof(*pcaps));
if (ice_fw_supports_report_dflt_cfg(pi->hw))
err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
pcaps, NULL);
else
err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
pcaps, NULL);
if (err) {
dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
vsi->vsi_num, err);
goto done;
}
cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
if (!cfg) {
err = -ENOMEM;
goto done;
}
ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
/* Speed - If default override pending, use curr_user_phy_cfg set in
* ice_init_phy_user_cfg_ldo.
*/
if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
vsi->back->state)) {
cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
} else {
u64 phy_low = 0, phy_high = 0;
ice_update_phy_type(&phy_low, &phy_high,
pi->phy.curr_user_speed_req);
cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
cfg->phy_type_high = pcaps->phy_type_high &
cpu_to_le64(phy_high);
}
/* Can't provide what was requested; use PHY capabilities */
if (!cfg->phy_type_low && !cfg->phy_type_high) {
cfg->phy_type_low = pcaps->phy_type_low;
cfg->phy_type_high = pcaps->phy_type_high;
}
/* FEC */
ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
/* Can't provide what was requested; use PHY capabilities */
if (cfg->link_fec_opt !=
(cfg->link_fec_opt & pcaps->link_fec_options)) {
cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
cfg->link_fec_opt = pcaps->link_fec_options;
}
/* Flow Control - always supported; no need to check against
* capabilities
*/
ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
/* Enable link and link update */
cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
if (err)
dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
vsi->vsi_num, err);
kfree(cfg);
done:
kfree(pcaps);
return err;
}
/**
* ice_check_media_subtask - Check for media
* @pf: pointer to PF struct
*
* If media is available, then initialize PHY user configuration if it is not
* been, and configure the PHY if the interface is up.
*/
static void ice_check_media_subtask(struct ice_pf *pf)
{
struct ice_port_info *pi;
struct ice_vsi *vsi;
int err;
/* No need to check for media if it's already present */
if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
return;
vsi = ice_get_main_vsi(pf);
if (!vsi)
return;
/* Refresh link info and check if media is present */
pi = vsi->port_info;
err = ice_update_link_info(pi);
if (err)
return;
ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
ice_init_phy_user_cfg(pi);
/* PHY settings are reset on media insertion, reconfigure
* PHY to preserve settings.
*/
if (test_bit(ICE_VSI_DOWN, vsi->state) &&
test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
return;
err = ice_configure_phy(vsi);
if (!err)
clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
/* A Link Status Event will be generated; the event handler
* will complete bringing the interface up
*/
}
}
/**
* ice_service_task - manage and run subtasks
* @work: pointer to work_struct contained by the PF struct
*/
static void ice_service_task(struct work_struct *work)
{
struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
unsigned long start_time = jiffies;
/* subtasks */
/* process reset requests first */
ice_reset_subtask(pf);
/* bail if a reset/recovery cycle is pending or rebuild failed */
if (ice_is_reset_in_progress(pf->state) ||
test_bit(ICE_SUSPENDED, pf->state) ||
test_bit(ICE_NEEDS_RESTART, pf->state)) {
ice_service_task_complete(pf);
return;
}
if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
struct iidc_event *event;
event = kzalloc(sizeof(*event), GFP_KERNEL);
if (event) {
set_bit(IIDC_EVENT_CRIT_ERR, event->type);
/* report the entire OICR value to AUX driver */
swap(event->reg, pf->oicr_err_reg);
ice_send_event_to_aux(pf, event);
kfree(event);
}
}
/* unplug aux dev per request, if an unplug request came in
* while processing a plug request, this will handle it
*/
if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags))
ice_unplug_aux_dev(pf);
/* Plug aux device per request */
if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
ice_plug_aux_dev(pf);
if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
struct iidc_event *event;
event = kzalloc(sizeof(*event), GFP_KERNEL);
if (event) {
set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
ice_send_event_to_aux(pf, event);
kfree(event);
}
}
ice_clean_adminq_subtask(pf);
ice_check_media_subtask(pf);
ice_check_for_hang_subtask(pf);
ice_sync_fltr_subtask(pf);
ice_handle_mdd_event(pf);
ice_watchdog_subtask(pf);
if (ice_is_safe_mode(pf)) {
ice_service_task_complete(pf);
return;
}
ice_process_vflr_event(pf);
ice_clean_mailboxq_subtask(pf);
ice_clean_sbq_subtask(pf);
ice_sync_arfs_fltrs(pf);
ice_flush_fdir_ctx(pf);
/* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
ice_service_task_complete(pf);
/* If the tasks have taken longer than one service timer period
* or there is more work to be done, reset the service timer to
* schedule the service task now.
*/
if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
mod_timer(&pf->serv_tmr, jiffies);
}
/**
* ice_set_ctrlq_len - helper function to set controlq length
* @hw: pointer to the HW instance
*/
static void ice_set_ctrlq_len(struct ice_hw *hw)
{
hw->adminq.num_rq_entries = ICE_AQ_LEN;
hw->adminq.num_sq_entries = ICE_AQ_LEN;
hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
hw->sbq.num_rq_entries = ICE_SBQ_LEN;
hw->sbq.num_sq_entries = ICE_SBQ_LEN;
hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
}
/**
* ice_schedule_reset - schedule a reset
* @pf: board private structure
* @reset: reset being requested
*/
int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
{
struct device *dev = ice_pf_to_dev(pf);
/* bail out if earlier reset has failed */
if (test_bit(ICE_RESET_FAILED, pf->state)) {
dev_dbg(dev, "earlier reset has failed\n");
return -EIO;
}
/* bail if reset/recovery already in progress */
if (ice_is_reset_in_progress(pf->state)) {
dev_dbg(dev, "Reset already in progress\n");
return -EBUSY;
}
switch (reset) {
case ICE_RESET_PFR:
set_bit(ICE_PFR_REQ, pf->state);
break;
case ICE_RESET_CORER:
set_bit(ICE_CORER_REQ, pf->state);
break;
case ICE_RESET_GLOBR:
set_bit(ICE_GLOBR_REQ, pf->state);
break;
default:
return -EINVAL;
}
ice_service_task_schedule(pf);
return 0;
}
/**
* ice_irq_affinity_notify - Callback for affinity changes
* @notify: context as to what irq was changed
* @mask: the new affinity mask
*
* This is a callback function used by the irq_set_affinity_notifier function
* so that we may register to receive changes to the irq affinity masks.
*/
static void
ice_irq_affinity_notify(struct irq_affinity_notify *notify,
const cpumask_t *mask)
{
struct ice_q_vector *q_vector =
container_of(notify, struct ice_q_vector, affinity_notify);
cpumask_copy(&q_vector->affinity_mask, mask);
}
/**
* ice_irq_affinity_release - Callback for affinity notifier release
* @ref: internal core kernel usage
*
* This is a callback function used by the irq_set_affinity_notifier function
* to inform the current notification subscriber that they will no longer
* receive notifications.
*/
static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
/**
* ice_vsi_ena_irq - Enable IRQ for the given VSI
* @vsi: the VSI being configured
*/
static int ice_vsi_ena_irq(struct ice_vsi *vsi)
{
struct ice_hw *hw = &vsi->back->hw;
int i;
ice_for_each_q_vector(vsi, i)
ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
ice_flush(hw);
return 0;
}
/**
* ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
* @vsi: the VSI being configured
* @basename: name for the vector
*/
static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
{
int q_vectors = vsi->num_q_vectors;
struct ice_pf *pf = vsi->back;
struct device *dev;
int rx_int_idx = 0;
int tx_int_idx = 0;
int vector, err;
int irq_num;
dev = ice_pf_to_dev(pf);
for (vector = 0; vector < q_vectors; vector++) {
struct ice_q_vector *q_vector = vsi->q_vectors[vector];
irq_num = q_vector->irq.virq;
if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
snprintf(q_vector->name, sizeof(q_vector->name) - 1,
"%s-%s-%d", basename, "TxRx", rx_int_idx++);
tx_int_idx++;
} else if (q_vector->rx.rx_ring) {
snprintf(q_vector->name, sizeof(q_vector->name) - 1,
"%s-%s-%d", basename, "rx", rx_int_idx++);
} else if (q_vector->tx.tx_ring) {
snprintf(q_vector->name, sizeof(q_vector->name) - 1,
"%s-%s-%d", basename, "tx", tx_int_idx++);
} else {
/* skip this unused q_vector */
continue;
}
if (vsi->type == ICE_VSI_CTRL && vsi->vf)
err = devm_request_irq(dev, irq_num, vsi->irq_handler,
IRQF_SHARED, q_vector->name,
q_vector);
else
err = devm_request_irq(dev, irq_num, vsi->irq_handler,
0, q_vector->name, q_vector);
if (err) {
netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
err);
goto free_q_irqs;
}
/* register for affinity change notifications */
if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
struct irq_affinity_notify *affinity_notify;
affinity_notify = &q_vector->affinity_notify;
affinity_notify->notify = ice_irq_affinity_notify;
affinity_notify->release = ice_irq_affinity_release;
irq_set_affinity_notifier(irq_num, affinity_notify);
}
/* assign the mask for this irq */
irq_update_affinity_hint(irq_num, &q_vector->affinity_mask);
}
err = ice_set_cpu_rx_rmap(vsi);
if (err) {
netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
vsi->vsi_num, ERR_PTR(err));
goto free_q_irqs;
}
vsi->irqs_ready = true;
return 0;
free_q_irqs:
while (vector--) {
irq_num = vsi->q_vectors[vector]->irq.virq;
if (!IS_ENABLED(CONFIG_RFS_ACCEL))
irq_set_affinity_notifier(irq_num, NULL);
irq_update_affinity_hint(irq_num, NULL);
devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
}
return err;
}
/**
* ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
* @vsi: VSI to setup Tx rings used by XDP
*
* Return 0 on success and negative value on error
*/
static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
{
struct device *dev = ice_pf_to_dev(vsi->back);
struct ice_tx_desc *tx_desc;
int i, j;
ice_for_each_xdp_txq(vsi, i) {
u16 xdp_q_idx = vsi->alloc_txq + i;
struct ice_ring_stats *ring_stats;
struct ice_tx_ring *xdp_ring;
xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
if (!xdp_ring)
goto free_xdp_rings;
ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
if (!ring_stats) {
ice_free_tx_ring(xdp_ring);
goto free_xdp_rings;
}
xdp_ring->ring_stats = ring_stats;
xdp_ring->q_index = xdp_q_idx;
xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
xdp_ring->vsi = vsi;
xdp_ring->netdev = NULL;
xdp_ring->dev = dev;
xdp_ring->count = vsi->num_tx_desc;
WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
if (ice_setup_tx_ring(xdp_ring))
goto free_xdp_rings;
ice_set_ring_xdp(xdp_ring);
spin_lock_init(&xdp_ring->tx_lock);
for (j = 0; j < xdp_ring->count; j++) {
tx_desc = ICE_TX_DESC(xdp_ring, j);
tx_desc->cmd_type_offset_bsz = 0;
}
}
return 0;
free_xdp_rings:
for (; i >= 0; i--) {
if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
vsi->xdp_rings[i]->ring_stats = NULL;
ice_free_tx_ring(vsi->xdp_rings[i]);
}
}
return -ENOMEM;
}
/**
* ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
* @vsi: VSI to set the bpf prog on
* @prog: the bpf prog pointer
*/
static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
{
struct bpf_prog *old_prog;
int i;
old_prog = xchg(&vsi->xdp_prog, prog);
ice_for_each_rxq(vsi, i)
WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
if (old_prog)
bpf_prog_put(old_prog);
}
static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid)
{
struct ice_q_vector *q_vector;
struct ice_tx_ring *ring;
if (static_key_enabled(&ice_xdp_locking_key))
return vsi->xdp_rings[qid % vsi->num_xdp_txq];
q_vector = vsi->rx_rings[qid]->q_vector;
ice_for_each_tx_ring(ring, q_vector->tx)
if (ice_ring_is_xdp(ring))
return ring;
return NULL;
}
/**
* ice_map_xdp_rings - Map XDP rings to interrupt vectors
* @vsi: the VSI with XDP rings being configured
*
* Map XDP rings to interrupt vectors and perform the configuration steps
* dependent on the mapping.
*/
void ice_map_xdp_rings(struct ice_vsi *vsi)
{
int xdp_rings_rem = vsi->num_xdp_txq;
int v_idx, q_idx;
/* follow the logic from ice_vsi_map_rings_to_vectors */
ice_for_each_q_vector(vsi, v_idx) {
struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
int xdp_rings_per_v, q_id, q_base;
xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
vsi->num_q_vectors - v_idx);
q_base = vsi->num_xdp_txq - xdp_rings_rem;
for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
xdp_ring->q_vector = q_vector;
xdp_ring->next = q_vector->tx.tx_ring;
q_vector->tx.tx_ring = xdp_ring;
}
xdp_rings_rem -= xdp_rings_per_v;
}
ice_for_each_rxq(vsi, q_idx) {
vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi,
q_idx);
ice_tx_xsk_pool(vsi, q_idx);
}
}
/**
* ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
* @vsi: VSI to bring up Tx rings used by XDP
* @prog: bpf program that will be assigned to VSI
* @cfg_type: create from scratch or restore the existing configuration
*
* Return 0 on success and negative value on error
*/
int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog,
enum ice_xdp_cfg cfg_type)
{
u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
struct ice_pf *pf = vsi->back;
struct ice_qs_cfg xdp_qs_cfg = {
.qs_mutex = &pf->avail_q_mutex,
.pf_map = pf->avail_txqs,
.pf_map_size = pf->max_pf_txqs,
.q_count = vsi->num_xdp_txq,
.scatter_count = ICE_MAX_SCATTER_TXQS,
.vsi_map = vsi->txq_map,
.vsi_map_offset = vsi->alloc_txq,
.mapping_mode = ICE_VSI_MAP_CONTIG
};
struct device *dev;
int status, i;
dev = ice_pf_to_dev(pf);
vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
sizeof(*vsi->xdp_rings), GFP_KERNEL);
if (!vsi->xdp_rings)
return -ENOMEM;
vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
if (__ice_vsi_get_qs(&xdp_qs_cfg))
goto err_map_xdp;
if (static_key_enabled(&ice_xdp_locking_key))
netdev_warn(vsi->netdev,
"Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
if (ice_xdp_alloc_setup_rings(vsi))
goto clear_xdp_rings;
/* omit the scheduler update if in reset path; XDP queues will be
* taken into account at the end of ice_vsi_rebuild, where
* ice_cfg_vsi_lan is being called
*/
if (cfg_type == ICE_XDP_CFG_PART)
return 0;
ice_map_xdp_rings(vsi);
/* tell the Tx scheduler that right now we have
* additional queues
*/
for (i = 0; i < vsi->tc_cfg.numtc; i++)
max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
max_txqs);
if (status) {
dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
status);
goto clear_xdp_rings;
}
/* assign the prog only when it's not already present on VSI;
* this flow is a subject of both ethtool -L and ndo_bpf flows;
* VSI rebuild that happens under ethtool -L can expose us to
* the bpf_prog refcount issues as we would be swapping same
* bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
* on it as it would be treated as an 'old_prog'; for ndo_bpf
* this is not harmful as dev_xdp_install bumps the refcount
* before calling the op exposed by the driver;
*/
if (!ice_is_xdp_ena_vsi(vsi))
ice_vsi_assign_bpf_prog(vsi, prog);
return 0;
clear_xdp_rings:
ice_for_each_xdp_txq(vsi, i)
if (vsi->xdp_rings[i]) {
kfree_rcu(vsi->xdp_rings[i], rcu);
vsi->xdp_rings[i] = NULL;
}
err_map_xdp:
mutex_lock(&pf->avail_q_mutex);
ice_for_each_xdp_txq(vsi, i) {
clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
}
mutex_unlock(&pf->avail_q_mutex);
devm_kfree(dev, vsi->xdp_rings);
return -ENOMEM;
}
/**
* ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
* @vsi: VSI to remove XDP rings
* @cfg_type: disable XDP permanently or allow it to be restored later
*
* Detach XDP rings from irq vectors, clean up the PF bitmap and free
* resources
*/
int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type)
{
u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
struct ice_pf *pf = vsi->back;
int i, v_idx;
/* q_vectors are freed in reset path so there's no point in detaching
* rings
*/
if (cfg_type == ICE_XDP_CFG_PART)
goto free_qmap;
ice_for_each_q_vector(vsi, v_idx) {
struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
struct ice_tx_ring *ring;
ice_for_each_tx_ring(ring, q_vector->tx)
if (!ring->tx_buf || !ice_ring_is_xdp(ring))
break;
/* restore the value of last node prior to XDP setup */
q_vector->tx.tx_ring = ring;
}
free_qmap:
mutex_lock(&pf->avail_q_mutex);
ice_for_each_xdp_txq(vsi, i) {
clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
}
mutex_unlock(&pf->avail_q_mutex);
ice_for_each_xdp_txq(vsi, i)
if (vsi->xdp_rings[i]) {
if (vsi->xdp_rings[i]->desc) {
synchronize_rcu();
ice_free_tx_ring(vsi->xdp_rings[i]);
}
kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
vsi->xdp_rings[i]->ring_stats = NULL;
kfree_rcu(vsi->xdp_rings[i], rcu);
vsi->xdp_rings[i] = NULL;
}
devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
vsi->xdp_rings = NULL;
if (static_key_enabled(&ice_xdp_locking_key))
static_branch_dec(&ice_xdp_locking_key);
if (cfg_type == ICE_XDP_CFG_PART)
return 0;
ice_vsi_assign_bpf_prog(vsi, NULL);
/* notify Tx scheduler that we destroyed XDP queues and bring
* back the old number of child nodes
*/
for (i = 0; i < vsi->tc_cfg.numtc; i++)
max_txqs[i] = vsi->num_txq;
/* change number of XDP Tx queues to 0 */
vsi->num_xdp_txq = 0;
return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
max_txqs);
}
/**
* ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
* @vsi: VSI to schedule napi on
*/
static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
{
int i;
ice_for_each_rxq(vsi, i) {
struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
if (rx_ring->xsk_pool)
napi_schedule(&rx_ring->q_vector->napi);
}
}
/**
* ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
* @vsi: VSI to determine the count of XDP Tx qs
*
* returns 0 if Tx qs count is higher than at least half of CPU count,
* -ENOMEM otherwise
*/
int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
{
u16 avail = ice_get_avail_txq_count(vsi->back);
u16 cpus = num_possible_cpus();
if (avail < cpus / 2)
return -ENOMEM;
vsi->num_xdp_txq = min_t(u16, avail, cpus);
if (vsi->num_xdp_txq < cpus)
static_branch_inc(&ice_xdp_locking_key);
return 0;
}
/**
* ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
* @vsi: Pointer to VSI structure
*/
static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
{
if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
return ICE_RXBUF_1664;
else
return ICE_RXBUF_3072;
}
/**
* ice_xdp_setup_prog - Add or remove XDP eBPF program
* @vsi: VSI to setup XDP for
* @prog: XDP program
* @extack: netlink extended ack
*/
static int
ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
struct netlink_ext_ack *extack)
{
unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
bool if_running = netif_running(vsi->netdev);
int ret = 0, xdp_ring_err = 0;
if (prog && !prog->aux->xdp_has_frags) {
if (frame_size > ice_max_xdp_frame_size(vsi)) {
NL_SET_ERR_MSG_MOD(extack,
"MTU is too large for linear frames and XDP prog does not support frags");
return -EOPNOTSUPP;
}
}
/* hot swap progs and avoid toggling link */
if (ice_is_xdp_ena_vsi(vsi) == !!prog) {
ice_vsi_assign_bpf_prog(vsi, prog);
return 0;
}
/* need to stop netdev while setting up the program for Rx rings */
if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
ret = ice_down(vsi);
if (ret) {
NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
return ret;
}
}
if (!ice_is_xdp_ena_vsi(vsi) && prog) {
xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
if (xdp_ring_err) {
NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
} else {
xdp_ring_err = ice_prepare_xdp_rings(vsi, prog,
ICE_XDP_CFG_FULL);
if (xdp_ring_err)
NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
}
xdp_features_set_redirect_target(vsi->netdev, true);
/* reallocate Rx queues that are used for zero-copy */
xdp_ring_err = ice_realloc_zc_buf(vsi, true);
if (xdp_ring_err)
NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
xdp_features_clear_redirect_target(vsi->netdev);
xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL);
if (xdp_ring_err)
NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
/* reallocate Rx queues that were used for zero-copy */
xdp_ring_err = ice_realloc_zc_buf(vsi, false);
if (xdp_ring_err)
NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
}
if (if_running)
ret = ice_up(vsi);
if (!ret && prog)
ice_vsi_rx_napi_schedule(vsi);
return (ret || xdp_ring_err) ? -ENOMEM : 0;
}
/**
* ice_xdp_safe_mode - XDP handler for safe mode
* @dev: netdevice
* @xdp: XDP command
*/
static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
struct netdev_bpf *xdp)
{
NL_SET_ERR_MSG_MOD(xdp->extack,
"Please provide working DDP firmware package in order to use XDP\n"
"Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
return -EOPNOTSUPP;
}
/**
* ice_xdp - implements XDP handler
* @dev: netdevice
* @xdp: XDP command
*/
static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
{
struct ice_netdev_priv *np = netdev_priv(dev);
struct ice_vsi *vsi = np->vsi;
if (vsi->type != ICE_VSI_PF) {
NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
return -EINVAL;
}
switch (xdp->command) {
case XDP_SETUP_PROG:
return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
case XDP_SETUP_XSK_POOL:
return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
xdp->xsk.queue_id);
default:
return -EINVAL;
}
}
/**
* ice_ena_misc_vector - enable the non-queue interrupts
* @pf: board private structure
*/
static void ice_ena_misc_vector(struct ice_pf *pf)
{
struct ice_hw *hw = &pf->hw;
u32 pf_intr_start_offset;
u32 val;
/* Disable anti-spoof detection interrupt to prevent spurious event
* interrupts during a function reset. Anti-spoof functionally is
* still supported.
*/
val = rd32(hw, GL_MDCK_TX_TDPU);
val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
wr32(hw, GL_MDCK_TX_TDPU, val);
/* clear things first */
wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
rd32(hw, PFINT_OICR); /* read to clear */
val = (PFINT_OICR_ECC_ERR_M |
PFINT_OICR_MAL_DETECT_M |
PFINT_OICR_GRST_M |
PFINT_OICR_PCI_EXCEPTION_M |
PFINT_OICR_VFLR_M |
PFINT_OICR_HMC_ERR_M |
PFINT_OICR_PE_PUSH_M |
PFINT_OICR_PE_CRITERR_M);
wr32(hw, PFINT_OICR_ENA, val);
/* SW_ITR_IDX = 0, but don't change INTENA */
wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
return;
pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
}
/**
* ice_ll_ts_intr - ll_ts interrupt handler
* @irq: interrupt number
* @data: pointer to a q_vector
*/
static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data)
{
struct ice_pf *pf = data;
u32 pf_intr_start_offset;
struct ice_ptp_tx *tx;
unsigned long flags;
struct ice_hw *hw;
u32 val;
u8 idx;
hw = &pf->hw;
tx = &pf->ptp.port.tx;
spin_lock_irqsave(&tx->lock, flags);
ice_ptp_complete_tx_single_tstamp(tx);
idx = find_next_bit_wrap(tx->in_use, tx->len,
tx->last_ll_ts_idx_read + 1);
if (idx != tx->len)
ice_ptp_req_tx_single_tstamp(tx, idx);
spin_unlock_irqrestore(&tx->lock, flags);
val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
(ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
val);
return IRQ_HANDLED;
}
/**
* ice_misc_intr - misc interrupt handler
* @irq: interrupt number
* @data: pointer to a q_vector
*/
static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
{
struct ice_pf *pf = (struct ice_pf *)data;
irqreturn_t ret = IRQ_HANDLED;
struct ice_hw *hw = &pf->hw;
struct device *dev;
u32 oicr, ena_mask;
dev = ice_pf_to_dev(pf);
set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
oicr = rd32(hw, PFINT_OICR);
ena_mask = rd32(hw, PFINT_OICR_ENA);
if (oicr & PFINT_OICR_SWINT_M) {
ena_mask &= ~PFINT_OICR_SWINT_M;
pf->sw_int_count++;
}
if (oicr & PFINT_OICR_MAL_DETECT_M) {
ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
set_bit(ICE_MDD_EVENT_PENDING, pf->state);
}
if (oicr & PFINT_OICR_VFLR_M) {
/* disable any further VFLR event notifications */
if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
u32 reg = rd32(hw, PFINT_OICR_ENA);
reg &= ~PFINT_OICR_VFLR_M;
wr32(hw, PFINT_OICR_ENA, reg);
} else {
ena_mask &= ~PFINT_OICR_VFLR_M;
set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
}
}
if (oicr & PFINT_OICR_GRST_M) {
u32 reset;
/* we have a reset warning */
ena_mask &= ~PFINT_OICR_GRST_M;
reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M,
rd32(hw, GLGEN_RSTAT));
if (reset == ICE_RESET_CORER)
pf->corer_count++;
else if (reset == ICE_RESET_GLOBR)
pf->globr_count++;
else if (reset == ICE_RESET_EMPR)
pf->empr_count++;
else
dev_dbg(dev, "Invalid reset type %d\n", reset);
/* If a reset cycle isn't already in progress, we set a bit in
* pf->state so that the service task can start a reset/rebuild.
*/
if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
if (reset == ICE_RESET_CORER)
set_bit(ICE_CORER_RECV, pf->state);
else if (reset == ICE_RESET_GLOBR)
set_bit(ICE_GLOBR_RECV, pf->state);
else
set_bit(ICE_EMPR_RECV, pf->state);
/* There are couple of different bits at play here.
* hw->reset_ongoing indicates whether the hardware is
* in reset. This is set to true when a reset interrupt
* is received and set back to false after the driver
* has determined that the hardware is out of reset.
*
* ICE_RESET_OICR_RECV in pf->state indicates
* that a post reset rebuild is required before the
* driver is operational again. This is set above.
*
* As this is the start of the reset/rebuild cycle, set
* both to indicate that.
*/
hw->reset_ongoing = true;
}
}
if (oicr & PFINT_OICR_TSYN_TX_M) {
ena_mask &= ~PFINT_OICR_TSYN_TX_M;
if (ice_pf_state_is_nominal(pf) &&
pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) {
struct ice_ptp_tx *tx = &pf->ptp.port.tx;
unsigned long flags;
u8 idx;
spin_lock_irqsave(&tx->lock, flags);
idx = find_next_bit_wrap(tx->in_use, tx->len,
tx->last_ll_ts_idx_read + 1);
if (idx != tx->len)
ice_ptp_req_tx_single_tstamp(tx, idx);
spin_unlock_irqrestore(&tx->lock, flags);
} else if (ice_ptp_pf_handles_tx_interrupt(pf)) {
set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread);
ret = IRQ_WAKE_THREAD;
}
}
if (oicr & PFINT_OICR_TSYN_EVNT_M) {
u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
if (ice_pf_src_tmr_owned(pf)) {
/* Save EVENTs from GLTSYN register */
pf->ptp.ext_ts_irq |= gltsyn_stat &
(GLTSYN_STAT_EVENT0_M |
GLTSYN_STAT_EVENT1_M |
GLTSYN_STAT_EVENT2_M);
ice_ptp_extts_event(pf);
}
}
#define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
if (oicr & ICE_AUX_CRIT_ERR) {
pf->oicr_err_reg |= oicr;
set_bit(ICE_AUX_ERR_PENDING, pf->state);
ena_mask &= ~ICE_AUX_CRIT_ERR;
}
/* Report any remaining unexpected interrupts */
oicr &= ena_mask;
if (oicr) {
dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
/* If a critical error is pending there is no choice but to
* reset the device.
*/
if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
PFINT_OICR_ECC_ERR_M)) {
set_bit(ICE_PFR_REQ, pf->state);
}
}
ice_service_task_schedule(pf);
if (ret == IRQ_HANDLED)
ice_irq_dynamic_ena(hw, NULL, NULL);
return ret;
}
/**
* ice_misc_intr_thread_fn - misc interrupt thread function
* @irq: interrupt number
* @data: pointer to a q_vector
*/
static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
{
struct ice_pf *pf = data;
struct ice_hw *hw;
hw = &pf->hw;
if (ice_is_reset_in_progress(pf->state))
goto skip_irq;
if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) {
/* Process outstanding Tx timestamps. If there is more work,
* re-arm the interrupt to trigger again.
*/
if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) {
wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
ice_flush(hw);
}
}
skip_irq:
ice_irq_dynamic_ena(hw, NULL, NULL);
return IRQ_HANDLED;
}
/**
* ice_dis_ctrlq_interrupts - disable control queue interrupts
* @hw: pointer to HW structure
*/
static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
{
/* disable Admin queue Interrupt causes */
wr32(hw, PFINT_FW_CTL,
rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
/* disable Mailbox queue Interrupt causes */
wr32(hw, PFINT_MBX_CTL,
rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
wr32(hw, PFINT_SB_CTL,
rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
/* disable Control queue Interrupt causes */
wr32(hw, PFINT_OICR_CTL,
rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
ice_flush(hw);
}
/**
* ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup
* @pf: board private structure
*/
static void ice_free_irq_msix_ll_ts(struct ice_pf *pf)
{
int irq_num = pf->ll_ts_irq.virq;
synchronize_irq(irq_num);
devm_free_irq(ice_pf_to_dev(pf), irq_num, pf);
ice_free_irq(pf, pf->ll_ts_irq);
}
/**
* ice_free_irq_msix_misc - Unroll misc vector setup
* @pf: board private structure
*/
static void ice_free_irq_msix_misc(struct ice_pf *pf)
{
int misc_irq_num = pf->oicr_irq.virq;
struct ice_hw *hw = &pf->hw;
ice_dis_ctrlq_interrupts(hw);
/* disable OICR interrupt */
wr32(hw, PFINT_OICR_ENA, 0);
ice_flush(hw);
synchronize_irq(misc_irq_num);
devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf);
ice_free_irq(pf, pf->oicr_irq);
if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
ice_free_irq_msix_ll_ts(pf);
}
/**
* ice_ena_ctrlq_interrupts - enable control queue interrupts
* @hw: pointer to HW structure
* @reg_idx: HW vector index to associate the control queue interrupts with
*/
static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
{
u32 val;
val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
PFINT_OICR_CTL_CAUSE_ENA_M);
wr32(hw, PFINT_OICR_CTL, val);
/* enable Admin queue Interrupt causes */
val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
PFINT_FW_CTL_CAUSE_ENA_M);
wr32(hw, PFINT_FW_CTL, val);
/* enable Mailbox queue Interrupt causes */
val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
PFINT_MBX_CTL_CAUSE_ENA_M);
wr32(hw, PFINT_MBX_CTL, val);
if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) {
/* enable Sideband queue Interrupt causes */
val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
PFINT_SB_CTL_CAUSE_ENA_M);
wr32(hw, PFINT_SB_CTL, val);
}
ice_flush(hw);
}
/**
* ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
* @pf: board private structure
*
* This sets up the handler for MSIX 0, which is used to manage the
* non-queue interrupts, e.g. AdminQ and errors. This is not used
* when in MSI or Legacy interrupt mode.
*/
static int ice_req_irq_msix_misc(struct ice_pf *pf)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
u32 pf_intr_start_offset;
struct msi_map irq;
int err = 0;
if (!pf->int_name[0])
snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
dev_driver_string(dev), dev_name(dev));
if (!pf->int_name_ll_ts[0])
snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1,
"%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev));
/* Do not request IRQ but do enable OICR interrupt since settings are
* lost during reset. Note that this function is called only during
* rebuild path and not while reset is in progress.
*/
if (ice_is_reset_in_progress(pf->state))
goto skip_req_irq;
/* reserve one vector in irq_tracker for misc interrupts */
irq = ice_alloc_irq(pf, false);
if (irq.index < 0)
return irq.index;
pf->oicr_irq = irq;
err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr,
ice_misc_intr_thread_fn, 0,
pf->int_name, pf);
if (err) {
dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
pf->int_name, err);
ice_free_irq(pf, pf->oicr_irq);
return err;
}
/* reserve one vector in irq_tracker for ll_ts interrupt */
if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
goto skip_req_irq;
irq = ice_alloc_irq(pf, false);
if (irq.index < 0)
return irq.index;
pf->ll_ts_irq = irq;
err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0,
pf->int_name_ll_ts, pf);
if (err) {
dev_err(dev, "devm_request_irq for %s failed: %d\n",
pf->int_name_ll_ts, err);
ice_free_irq(pf, pf->ll_ts_irq);
return err;
}
skip_req_irq:
ice_ena_misc_vector(pf);
ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index);
/* This enables LL TS interrupt */
pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
wr32(hw, PFINT_SB_CTL,
((pf->ll_ts_irq.index + pf_intr_start_offset) &
PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M);
wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index),
ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
ice_flush(hw);
ice_irq_dynamic_ena(hw, NULL, NULL);
return 0;
}
/**
* ice_napi_add - register NAPI handler for the VSI
* @vsi: VSI for which NAPI handler is to be registered
*
* This function is only called in the driver's load path. Registering the NAPI
* handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
* reset/rebuild, etc.)
*/
static void ice_napi_add(struct ice_vsi *vsi)
{
int v_idx;
if (!vsi->netdev)
return;
ice_for_each_q_vector(vsi, v_idx) {
netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
ice_napi_poll);
__ice_q_vector_set_napi_queues(vsi->q_vectors[v_idx], false);
}
}
/**
* ice_set_ops - set netdev and ethtools ops for the given netdev
* @vsi: the VSI associated with the new netdev
*/
static void ice_set_ops(struct ice_vsi *vsi)
{
struct net_device *netdev = vsi->netdev;
struct ice_pf *pf = ice_netdev_to_pf(netdev);
if (ice_is_safe_mode(pf)) {
netdev->netdev_ops = &ice_netdev_safe_mode_ops;
ice_set_ethtool_safe_mode_ops(netdev);
return;
}
netdev->netdev_ops = &ice_netdev_ops;
netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
netdev->xdp_metadata_ops = &ice_xdp_md_ops;
ice_set_ethtool_ops(netdev);
if (vsi->type != ICE_VSI_PF)
return;
netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
NETDEV_XDP_ACT_XSK_ZEROCOPY |
NETDEV_XDP_ACT_RX_SG;
netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD;
}
/**
* ice_set_netdev_features - set features for the given netdev
* @netdev: netdev instance
*/
static void ice_set_netdev_features(struct net_device *netdev)
{
struct ice_pf *pf = ice_netdev_to_pf(netdev);
bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
netdev_features_t csumo_features;
netdev_features_t vlano_features;
netdev_features_t dflt_features;
netdev_features_t tso_features;
if (ice_is_safe_mode(pf)) {
/* safe mode */
netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
netdev->hw_features = netdev->features;
return;
}
dflt_features = NETIF_F_SG |
NETIF_F_HIGHDMA |
NETIF_F_NTUPLE |
NETIF_F_RXHASH;
csumo_features = NETIF_F_RXCSUM |
NETIF_F_IP_CSUM |
NETIF_F_SCTP_CRC |
NETIF_F_IPV6_CSUM;
vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_HW_VLAN_CTAG_RX;
/* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
if (is_dvm_ena)
vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
tso_features = NETIF_F_TSO |
NETIF_F_TSO_ECN |
NETIF_F_TSO6 |
NETIF_F_GSO_GRE |
NETIF_F_GSO_UDP_TUNNEL |
NETIF_F_GSO_GRE_CSUM |
NETIF_F_GSO_UDP_TUNNEL_CSUM |
NETIF_F_GSO_PARTIAL |
NETIF_F_GSO_IPXIP4 |
NETIF_F_GSO_IPXIP6 |
NETIF_F_GSO_UDP_L4;
netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
NETIF_F_GSO_GRE_CSUM;
/* set features that user can change */
netdev->hw_features = dflt_features | csumo_features |
vlano_features | tso_features;
/* add support for HW_CSUM on packets with MPLS header */
netdev->mpls_features = NETIF_F_HW_CSUM |
NETIF_F_TSO |
NETIF_F_TSO6;
/* enable features */
netdev->features |= netdev->hw_features;
netdev->hw_features |= NETIF_F_HW_TC;
netdev->hw_features |= NETIF_F_LOOPBACK;
/* encap and VLAN devices inherit default, csumo and tso features */
netdev->hw_enc_features |= dflt_features | csumo_features |
tso_features;
netdev->vlan_features |= dflt_features | csumo_features |
tso_features;
/* advertise support but don't enable by default since only one type of
* VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
* type turns on the other has to be turned off. This is enforced by the
* ice_fix_features() ndo callback.
*/
if (is_dvm_ena)
netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
NETIF_F_HW_VLAN_STAG_TX;
/* Leave CRC / FCS stripping enabled by default, but allow the value to
* be changed at runtime
*/
netdev->hw_features |= NETIF_F_RXFCS;
netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE);
}
/**
* ice_fill_rss_lut - Fill the RSS lookup table with default values
* @lut: Lookup table
* @rss_table_size: Lookup table size
* @rss_size: Range of queue number for hashing
*/
void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
{
u16 i;
for (i = 0; i < rss_table_size; i++)
lut[i] = i % rss_size;
}
/**
* ice_pf_vsi_setup - Set up a PF VSI
* @pf: board private structure
* @pi: pointer to the port_info instance
*
* Returns pointer to the successfully allocated VSI software struct
* on success, otherwise returns NULL on failure.
*/
static struct ice_vsi *
ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
{
struct ice_vsi_cfg_params params = {};
params.type = ICE_VSI_PF;
params.port_info = pi;
params.flags = ICE_VSI_FLAG_INIT;
return ice_vsi_setup(pf, &params);
}
static struct ice_vsi *
ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
struct ice_channel *ch)
{
struct ice_vsi_cfg_params params = {};
params.type = ICE_VSI_CHNL;
params.port_info = pi;
params.ch = ch;
params.flags = ICE_VSI_FLAG_INIT;
return ice_vsi_setup(pf, &params);
}
/**
* ice_ctrl_vsi_setup - Set up a control VSI
* @pf: board private structure
* @pi: pointer to the port_info instance
*
* Returns pointer to the successfully allocated VSI software struct
* on success, otherwise returns NULL on failure.
*/
static struct ice_vsi *
ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
{
struct ice_vsi_cfg_params params = {};
params.type = ICE_VSI_CTRL;
params.port_info = pi;
params.flags = ICE_VSI_FLAG_INIT;
return ice_vsi_setup(pf, &params);
}
/**
* ice_lb_vsi_setup - Set up a loopback VSI
* @pf: board private structure
* @pi: pointer to the port_info instance
*
* Returns pointer to the successfully allocated VSI software struct
* on success, otherwise returns NULL on failure.
*/
struct ice_vsi *
ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
{
struct ice_vsi_cfg_params params = {};
params.type = ICE_VSI_LB;
params.port_info = pi;
params.flags = ICE_VSI_FLAG_INIT;
return ice_vsi_setup(pf, &params);
}
/**
* ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
* @netdev: network interface to be adjusted
* @proto: VLAN TPID
* @vid: VLAN ID to be added
*
* net_device_ops implementation for adding VLAN IDs
*/
static int
ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi_vlan_ops *vlan_ops;
struct ice_vsi *vsi = np->vsi;
struct ice_vlan vlan;
int ret;
/* VLAN 0 is added by default during load/reset */
if (!vid)
return 0;
while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
usleep_range(1000, 2000);
/* Add multicast promisc rule for the VLAN ID to be added if
* all-multicast is currently enabled.
*/
if (vsi->current_netdev_flags & IFF_ALLMULTI) {
ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
ICE_MCAST_VLAN_PROMISC_BITS,
vid);
if (ret)
goto finish;
}
vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
* packets aren't pruned by the device's internal switch on Rx
*/
vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
ret = vlan_ops->add_vlan(vsi, &vlan);
if (ret)
goto finish;
/* If all-multicast is currently enabled and this VLAN ID is only one
* besides VLAN-0 we have to update look-up type of multicast promisc
* rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
*/
if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
ice_vsi_num_non_zero_vlans(vsi) == 1) {
ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
ICE_MCAST_PROMISC_BITS, 0);
ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
ICE_MCAST_VLAN_PROMISC_BITS, 0);
}
finish:
clear_bit(ICE_CFG_BUSY, vsi->state);
return ret;
}
/**
* ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
* @netdev: network interface to be adjusted
* @proto: VLAN TPID
* @vid: VLAN ID to be removed
*
* net_device_ops implementation for removing VLAN IDs
*/
static int
ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi_vlan_ops *vlan_ops;
struct ice_vsi *vsi = np->vsi;
struct ice_vlan vlan;
int ret;
/* don't allow removal of VLAN 0 */
if (!vid)
return 0;
while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
usleep_range(1000, 2000);
ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
ICE_MCAST_VLAN_PROMISC_BITS, vid);
if (ret) {
netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
vsi->vsi_num);
vsi->current_netdev_flags |= IFF_ALLMULTI;
}
vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
/* Make sure VLAN delete is successful before updating VLAN
* information
*/
vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
ret = vlan_ops->del_vlan(vsi, &vlan);
if (ret)
goto finish;
/* Remove multicast promisc rule for the removed VLAN ID if
* all-multicast is enabled.
*/
if (vsi->current_netdev_flags & IFF_ALLMULTI)
ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
ICE_MCAST_VLAN_PROMISC_BITS, vid);
if (!ice_vsi_has_non_zero_vlans(vsi)) {
/* Update look-up type of multicast promisc rule for VLAN 0
* from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
* all-multicast is enabled and VLAN 0 is the only VLAN rule.
*/
if (vsi->current_netdev_flags & IFF_ALLMULTI) {
ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
ICE_MCAST_VLAN_PROMISC_BITS,
0);
ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
ICE_MCAST_PROMISC_BITS, 0);
}
}
finish:
clear_bit(ICE_CFG_BUSY, vsi->state);
return ret;
}
/**
* ice_rep_indr_tc_block_unbind
* @cb_priv: indirection block private data
*/
static void ice_rep_indr_tc_block_unbind(void *cb_priv)
{
struct ice_indr_block_priv *indr_priv = cb_priv;
list_del(&indr_priv->list);
kfree(indr_priv);
}
/**
* ice_tc_indir_block_unregister - Unregister TC indirect block notifications
* @vsi: VSI struct which has the netdev
*/
static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
{
struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
ice_rep_indr_tc_block_unbind);
}
/**
* ice_tc_indir_block_register - Register TC indirect block notifications
* @vsi: VSI struct which has the netdev
*
* Returns 0 on success, negative value on failure
*/
static int ice_tc_indir_block_register(struct ice_vsi *vsi)
{
struct ice_netdev_priv *np;
if (!vsi || !vsi->netdev)
return -EINVAL;
np = netdev_priv(vsi->netdev);
INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
}
/**
* ice_get_avail_q_count - Get count of queues in use
* @pf_qmap: bitmap to get queue use count from
* @lock: pointer to a mutex that protects access to pf_qmap
* @size: size of the bitmap
*/
static u16
ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
{
unsigned long bit;
u16 count = 0;
mutex_lock(lock);
for_each_clear_bit(bit, pf_qmap, size)
count++;
mutex_unlock(lock);
return count;
}
/**
* ice_get_avail_txq_count - Get count of Tx queues in use
* @pf: pointer to an ice_pf instance
*/
u16 ice_get_avail_txq_count(struct ice_pf *pf)
{
return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
pf->max_pf_txqs);
}
/**
* ice_get_avail_rxq_count - Get count of Rx queues in use
* @pf: pointer to an ice_pf instance
*/
u16 ice_get_avail_rxq_count(struct ice_pf *pf)
{
return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
pf->max_pf_rxqs);
}
/**
* ice_deinit_pf - Unrolls initialziations done by ice_init_pf
* @pf: board private structure to initialize
*/
static void ice_deinit_pf(struct ice_pf *pf)
{
ice_service_task_stop(pf);
mutex_destroy(&pf->lag_mutex);
mutex_destroy(&pf->adev_mutex);
mutex_destroy(&pf->sw_mutex);
mutex_destroy(&pf->tc_mutex);
mutex_destroy(&pf->avail_q_mutex);
mutex_destroy(&pf->vfs.table_lock);
if (pf->avail_txqs) {
bitmap_free(pf->avail_txqs);
pf->avail_txqs = NULL;
}
if (pf->avail_rxqs) {
bitmap_free(pf->avail_rxqs);
pf->avail_rxqs = NULL;
}
if (pf->ptp.clock)
ptp_clock_unregister(pf->ptp.clock);
}
/**
* ice_set_pf_caps - set PFs capability flags
* @pf: pointer to the PF instance
*/
static void ice_set_pf_caps(struct ice_pf *pf)
{
struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
if (func_caps->common_cap.rdma)
set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
if (func_caps->common_cap.dcb)
set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
if (func_caps->common_cap.sr_iov_1_1) {
set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
ICE_MAX_SRIOV_VFS);
}
clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
if (func_caps->common_cap.rss_table_size)
set_bit(ICE_FLAG_RSS_ENA, pf->flags);
clear_bit(ICE_FLAG_FD_ENA, pf->flags);
if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
u16 unused;
/* ctrl_vsi_idx will be set to a valid value when flow director
* is setup by ice_init_fdir
*/
pf->ctrl_vsi_idx = ICE_NO_VSI;
set_bit(ICE_FLAG_FD_ENA, pf->flags);
/* force guaranteed filter pool for PF */
ice_alloc_fd_guar_item(&pf->hw, &unused,
func_caps->fd_fltr_guar);
/* force shared filter pool for PF */
ice_alloc_fd_shrd_item(&pf->hw, &unused,
func_caps->fd_fltr_best_effort);
}
clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
if (func_caps->common_cap.ieee_1588 &&
!(pf->hw.mac_type == ICE_MAC_E830))
set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
pf->max_pf_txqs = func_caps->common_cap.num_txq;
pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
}
/**
* ice_init_pf - Initialize general software structures (struct ice_pf)
* @pf: board private structure to initialize
*/
static int ice_init_pf(struct ice_pf *pf)
{
ice_set_pf_caps(pf);
mutex_init(&pf->sw_mutex);
mutex_init(&pf->tc_mutex);
mutex_init(&pf->adev_mutex);
mutex_init(&pf->lag_mutex);
INIT_HLIST_HEAD(&pf->aq_wait_list);
spin_lock_init(&pf->aq_wait_lock);
init_waitqueue_head(&pf->aq_wait_queue);
init_waitqueue_head(&pf->reset_wait_queue);
/* setup service timer and periodic service task */
timer_setup(&pf->serv_tmr, ice_service_timer, 0);
pf->serv_tmr_period = HZ;
INIT_WORK(&pf->serv_task, ice_service_task);
clear_bit(ICE_SERVICE_SCHED, pf->state);
mutex_init(&pf->avail_q_mutex);
pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
if (!pf->avail_txqs)
return -ENOMEM;
pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
if (!pf->avail_rxqs) {
bitmap_free(pf->avail_txqs);
pf->avail_txqs = NULL;
return -ENOMEM;
}
mutex_init(&pf->vfs.table_lock);
hash_init(pf->vfs.table);
ice_mbx_init_snapshot(&pf->hw);
return 0;
}
/**
* ice_is_wol_supported - check if WoL is supported
* @hw: pointer to hardware info
*
* Check if WoL is supported based on the HW configuration.
* Returns true if NVM supports and enables WoL for this port, false otherwise
*/
bool ice_is_wol_supported(struct ice_hw *hw)
{
u16 wol_ctrl;
/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
* word) indicates WoL is not supported on the corresponding PF ID.
*/
if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
return false;
return !(BIT(hw->port_info->lport) & wol_ctrl);
}
/**
* ice_vsi_recfg_qs - Change the number of queues on a VSI
* @vsi: VSI being changed
* @new_rx: new number of Rx queues
* @new_tx: new number of Tx queues
* @locked: is adev device_lock held
*
* Only change the number of queues if new_tx, or new_rx is non-0.
*
* Returns 0 on success.
*/
int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
{
struct ice_pf *pf = vsi->back;
int i, err = 0, timeout = 50;
if (!new_rx && !new_tx)
return -EINVAL;
while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
timeout--;
if (!timeout)
return -EBUSY;
usleep_range(1000, 2000);
}
if (new_tx)
vsi->req_txq = (u16)new_tx;
if (new_rx)
vsi->req_rxq = (u16)new_rx;
/* set for the next time the netdev is started */
if (!netif_running(vsi->netdev)) {
err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
if (err)
goto rebuild_err;
dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
goto done;
}
ice_vsi_close(vsi);
err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
if (err)
goto rebuild_err;
ice_for_each_traffic_class(i) {
if (vsi->tc_cfg.ena_tc & BIT(i))
netdev_set_tc_queue(vsi->netdev,
vsi->tc_cfg.tc_info[i].netdev_tc,
vsi->tc_cfg.tc_info[i].qcount_tx,
vsi->tc_cfg.tc_info[i].qoffset);
}
ice_pf_dcb_recfg(pf, locked);
ice_vsi_open(vsi);
goto done;
rebuild_err:
dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n",
err);
done:
clear_bit(ICE_CFG_BUSY, pf->state);
return err;
}
/**
* ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
* @pf: PF to configure
*
* No VLAN offloads/filtering are advertised in safe mode so make sure the PF
* VSI can still Tx/Rx VLAN tagged packets.
*/
static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
{
struct ice_vsi *vsi = ice_get_main_vsi(pf);
struct ice_vsi_ctx *ctxt;
struct ice_hw *hw;
int status;
if (!vsi)
return;
ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
if (!ctxt)
return;
hw = &pf->hw;
ctxt->info = vsi->info;
ctxt->info.valid_sections =
cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
ICE_AQ_VSI_PROP_SECURITY_VALID |
ICE_AQ_VSI_PROP_SW_VALID);
/* disable VLAN anti-spoof */
ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
/* disable VLAN pruning and keep all other settings */
ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
/* allow all VLANs on Tx and don't strip on Rx */
ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
if (status) {
dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
status, ice_aq_str(hw->adminq.sq_last_status));
} else {
vsi->info.sec_flags = ctxt->info.sec_flags;
vsi->info.sw_flags2 = ctxt->info.sw_flags2;
vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
}
kfree(ctxt);
}
/**
* ice_log_pkg_init - log result of DDP package load
* @hw: pointer to hardware info
* @state: state of package load
*/
static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
{
struct ice_pf *pf = hw->back;
struct device *dev;
dev = ice_pf_to_dev(pf);
switch (state) {
case ICE_DDP_PKG_SUCCESS:
dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
hw->active_pkg_name,
hw->active_pkg_ver.major,
hw->active_pkg_ver.minor,
hw->active_pkg_ver.update,
hw->active_pkg_ver.draft);
break;
case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
hw->active_pkg_name,
hw->active_pkg_ver.major,
hw->active_pkg_ver.minor,
hw->active_pkg_ver.update,
hw->active_pkg_ver.draft);
break;
case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
hw->active_pkg_name,
hw->active_pkg_ver.major,
hw->active_pkg_ver.minor,
ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
break;
case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
hw->active_pkg_name,
hw->active_pkg_ver.major,
hw->active_pkg_ver.minor,
hw->active_pkg_ver.update,
hw->active_pkg_ver.draft,
hw->pkg_name,
hw->pkg_ver.major,
hw->pkg_ver.minor,
hw->pkg_ver.update,
hw->pkg_ver.draft);
break;
case ICE_DDP_PKG_FW_MISMATCH:
dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
break;
case ICE_DDP_PKG_INVALID_FILE:
dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
break;
case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
break;
case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
break;
case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
break;
case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
break;
case ICE_DDP_PKG_LOAD_ERROR:
dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
/* poll for reset to complete */
if (ice_check_reset(hw))
dev_err(dev, "Error resetting device. Please reload the driver\n");
break;
case ICE_DDP_PKG_ERR:
default:
dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n");
break;
}
}
/**
* ice_load_pkg - load/reload the DDP Package file
* @firmware: firmware structure when firmware requested or NULL for reload
* @pf: pointer to the PF instance
*
* Called on probe and post CORER/GLOBR rebuild to load DDP Package and
* initialize HW tables.
*/
static void
ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
{
enum ice_ddp_state state = ICE_DDP_PKG_ERR;
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
/* Load DDP Package */
if (firmware && !hw->pkg_copy) {
state = ice_copy_and_init_pkg(hw, firmware->data,
firmware->size);
ice_log_pkg_init(hw, state);
} else if (!firmware && hw->pkg_copy) {
/* Reload package during rebuild after CORER/GLOBR reset */
state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
ice_log_pkg_init(hw, state);
} else {
dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
}
if (!ice_is_init_pkg_successful(state)) {
/* Safe Mode */
clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
return;
}
/* Successful download package is the precondition for advanced
* features, hence setting the ICE_FLAG_ADV_FEATURES flag
*/
set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
}
/**
* ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
* @pf: pointer to the PF structure
*
* There is no error returned here because the driver should be able to handle
* 128 Byte cache lines, so we only print a warning in case issues are seen,
* specifically with Tx.
*/
static void ice_verify_cacheline_size(struct ice_pf *pf)
{
if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
ICE_CACHE_LINE_BYTES);
}
/**
* ice_send_version - update firmware with driver version
* @pf: PF struct
*
* Returns 0 on success, else error code
*/
static int ice_send_version(struct ice_pf *pf)
{
struct ice_driver_ver dv;
dv.major_ver = 0xff;
dv.minor_ver = 0xff;
dv.build_ver = 0xff;
dv.subbuild_ver = 0;
strscpy((char *)dv.driver_string, UTS_RELEASE,
sizeof(dv.driver_string));
return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
}
/**
* ice_init_fdir - Initialize flow director VSI and configuration
* @pf: pointer to the PF instance
*
* returns 0 on success, negative on error
*/
static int ice_init_fdir(struct ice_pf *pf)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_vsi *ctrl_vsi;
int err;
/* Side Band Flow Director needs to have a control VSI.
* Allocate it and store it in the PF.
*/
ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
if (!ctrl_vsi) {
dev_dbg(dev, "could not create control VSI\n");
return -ENOMEM;
}
err = ice_vsi_open_ctrl(ctrl_vsi);
if (err) {
dev_dbg(dev, "could not open control VSI\n");
goto err_vsi_open;
}
mutex_init(&pf->hw.fdir_fltr_lock);
err = ice_fdir_create_dflt_rules(pf);
if (err)
goto err_fdir_rule;
return 0;
err_fdir_rule:
ice_fdir_release_flows(&pf->hw);
ice_vsi_close(ctrl_vsi);
err_vsi_open:
ice_vsi_release(ctrl_vsi);
if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
pf->vsi[pf->ctrl_vsi_idx] = NULL;
pf->ctrl_vsi_idx = ICE_NO_VSI;
}
return err;
}
static void ice_deinit_fdir(struct ice_pf *pf)
{
struct ice_vsi *vsi = ice_get_ctrl_vsi(pf);
if (!vsi)
return;
ice_vsi_manage_fdir(vsi, false);
ice_vsi_release(vsi);
if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
pf->vsi[pf->ctrl_vsi_idx] = NULL;
pf->ctrl_vsi_idx = ICE_NO_VSI;
}
mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
}
/**
* ice_get_opt_fw_name - return optional firmware file name or NULL
* @pf: pointer to the PF instance
*/
static char *ice_get_opt_fw_name(struct ice_pf *pf)
{
/* Optional firmware name same as default with additional dash
* followed by a EUI-64 identifier (PCIe Device Serial Number)
*/
struct pci_dev *pdev = pf->pdev;
char *opt_fw_filename;
u64 dsn;
/* Determine the name of the optional file using the DSN (two
* dwords following the start of the DSN Capability).
*/
dsn = pci_get_dsn(pdev);
if (!dsn)
return NULL;
opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
if (!opt_fw_filename)
return NULL;
snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
ICE_DDP_PKG_PATH, dsn);
return opt_fw_filename;
}
/**
* ice_request_fw - Device initialization routine
* @pf: pointer to the PF instance
* @firmware: double pointer to firmware struct
*
* Return: zero when successful, negative values otherwise.
*/
static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware)
{
char *opt_fw_filename = ice_get_opt_fw_name(pf);
struct device *dev = ice_pf_to_dev(pf);
int err = 0;
/* optional device-specific DDP (if present) overrides the default DDP
* package file. kernel logs a debug message if the file doesn't exist,
* and warning messages for other errors.
*/
if (opt_fw_filename) {
err = firmware_request_nowarn(firmware, opt_fw_filename, dev);
kfree(opt_fw_filename);
if (!err)
return err;
}
err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev);
if (err)
dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
return err;
}
/**
* ice_init_tx_topology - performs Tx topology initialization
* @hw: pointer to the hardware structure
* @firmware: pointer to firmware structure
*
* Return: zero when init was successful, negative values otherwise.
*/
static int
ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware)
{
u8 num_tx_sched_layers = hw->num_tx_sched_layers;
struct ice_pf *pf = hw->back;
struct device *dev;
u8 *buf_copy;
int err;
dev = ice_pf_to_dev(pf);
/* ice_cfg_tx_topo buf argument is not a constant,
* so we have to make a copy
*/
buf_copy = kmemdup(firmware->data, firmware->size, GFP_KERNEL);
err = ice_cfg_tx_topo(hw, buf_copy, firmware->size);
if (!err) {
if (hw->num_tx_sched_layers > num_tx_sched_layers)
dev_info(dev, "Tx scheduling layers switching feature disabled\n");
else
dev_info(dev, "Tx scheduling layers switching feature enabled\n");
/* if there was a change in topology ice_cfg_tx_topo triggered
* a CORER and we need to re-init hw
*/
ice_deinit_hw(hw);
err = ice_init_hw(hw);
return err;
} else if (err == -EIO) {
dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n");
}
return 0;
}
/**
* ice_init_ddp_config - DDP related configuration
* @hw: pointer to the hardware structure
* @pf: pointer to pf structure
*
* This function loads DDP file from the disk, then initializes Tx
* topology. At the end DDP package is loaded on the card.
*
* Return: zero when init was successful, negative values otherwise.
*/
static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf)
{
struct device *dev = ice_pf_to_dev(pf);
const struct firmware *firmware = NULL;
int err;
err = ice_request_fw(pf, &firmware);
if (err) {
dev_err(dev, "Fail during requesting FW: %d\n", err);
return err;
}
err = ice_init_tx_topology(hw, firmware);
if (err) {
dev_err(dev, "Fail during initialization of Tx topology: %d\n",
err);
release_firmware(firmware);
return err;
}
/* Download firmware to device */
ice_load_pkg(firmware, pf);
release_firmware(firmware);
return 0;
}
/**
* ice_print_wake_reason - show the wake up cause in the log
* @pf: pointer to the PF struct
*/
static void ice_print_wake_reason(struct ice_pf *pf)
{
u32 wus = pf->wakeup_reason;
const char *wake_str;
/* if no wake event, nothing to print */
if (!wus)
return;
if (wus & PFPM_WUS_LNKC_M)
wake_str = "Link\n";
else if (wus & PFPM_WUS_MAG_M)
wake_str = "Magic Packet\n";
else if (wus & PFPM_WUS_MNG_M)
wake_str = "Management\n";
else if (wus & PFPM_WUS_FW_RST_WK_M)
wake_str = "Firmware Reset\n";
else
wake_str = "Unknown\n";
dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
}
/**
* ice_pf_fwlog_update_module - update 1 module
* @pf: pointer to the PF struct
* @log_level: log_level to use for the @module
* @module: module to update
*/
void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module)
{
struct ice_hw *hw = &pf->hw;
hw->fwlog_cfg.module_entries[module].log_level = log_level;
}
/**
* ice_register_netdev - register netdev
* @vsi: pointer to the VSI struct
*/
static int ice_register_netdev(struct ice_vsi *vsi)
{
int err;
if (!vsi || !vsi->netdev)
return -EIO;
err = register_netdev(vsi->netdev);
if (err)
return err;
set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
netif_carrier_off(vsi->netdev);
netif_tx_stop_all_queues(vsi->netdev);
return 0;
}
static void ice_unregister_netdev(struct ice_vsi *vsi)
{
if (!vsi || !vsi->netdev)
return;
unregister_netdev(vsi->netdev);
clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
}
/**
* ice_cfg_netdev - Allocate, configure and register a netdev
* @vsi: the VSI associated with the new netdev
*
* Returns 0 on success, negative value on failure
*/
static int ice_cfg_netdev(struct ice_vsi *vsi)
{
struct ice_netdev_priv *np;
struct net_device *netdev;
u8 mac_addr[ETH_ALEN];
netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
vsi->alloc_rxq);
if (!netdev)
return -ENOMEM;
set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
vsi->netdev = netdev;
np = netdev_priv(netdev);
np->vsi = vsi;
ice_set_netdev_features(netdev);
ice_set_ops(vsi);
if (vsi->type == ICE_VSI_PF) {
SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
eth_hw_addr_set(netdev, mac_addr);
}
netdev->priv_flags |= IFF_UNICAST_FLT;
/* Setup netdev TC information */
ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
netdev->max_mtu = ICE_MAX_MTU;
return 0;
}
static void ice_decfg_netdev(struct ice_vsi *vsi)
{
clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
free_netdev(vsi->netdev);
vsi->netdev = NULL;
}
/**
* ice_wait_for_fw - wait for full FW readiness
* @hw: pointer to the hardware structure
* @timeout: milliseconds that can elapse before timing out
*/
static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout)
{
int fw_loading;
u32 elapsed = 0;
while (elapsed <= timeout) {
fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M;
/* firmware was not yet loaded, we have to wait more */
if (fw_loading) {
elapsed += 100;
msleep(100);
continue;
}
return 0;
}
return -ETIMEDOUT;
}
int ice_init_dev(struct ice_pf *pf)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
int err;
err = ice_init_hw(hw);
if (err) {
dev_err(dev, "ice_init_hw failed: %d\n", err);
return err;
}
/* Some cards require longer initialization times
* due to necessity of loading FW from an external source.
* This can take even half a minute.
*/
if (ice_is_pf_c827(hw)) {
err = ice_wait_for_fw(hw, 30000);
if (err) {
dev_err(dev, "ice_wait_for_fw timed out");
return err;
}
}
ice_init_feature_support(pf);
err = ice_init_ddp_config(hw, pf);
if (err)
return err;
/* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be
* set in pf->state, which will cause ice_is_safe_mode to return
* true
*/
if (ice_is_safe_mode(pf)) {
/* we already got function/device capabilities but these don't
* reflect what the driver needs to do in safe mode. Instead of
* adding conditional logic everywhere to ignore these
* device/function capabilities, override them.
*/
ice_set_safe_mode_caps(hw);
}
err = ice_init_pf(pf);
if (err) {
dev_err(dev, "ice_init_pf failed: %d\n", err);
goto err_init_pf;
}
pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
pf->hw.udp_tunnel_nic.tables[0].n_entries =
pf->hw.tnl.valid_count[TNL_VXLAN];
pf->hw.udp_tunnel_nic.tables[0].tunnel_types =
UDP_TUNNEL_TYPE_VXLAN;
}
if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
pf->hw.udp_tunnel_nic.tables[1].n_entries =
pf->hw.tnl.valid_count[TNL_GENEVE];
pf->hw.udp_tunnel_nic.tables[1].tunnel_types =
UDP_TUNNEL_TYPE_GENEVE;
}
err = ice_init_interrupt_scheme(pf);
if (err) {
dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
err = -EIO;
goto err_init_interrupt_scheme;
}
/* In case of MSIX we are going to setup the misc vector right here
* to handle admin queue events etc. In case of legacy and MSI
* the misc functionality and queue processing is combined in
* the same vector and that gets setup at open.
*/
err = ice_req_irq_msix_misc(pf);
if (err) {
dev_err(dev, "setup of misc vector failed: %d\n", err);
goto err_req_irq_msix_misc;
}
return 0;
err_req_irq_msix_misc:
ice_clear_interrupt_scheme(pf);
err_init_interrupt_scheme:
ice_deinit_pf(pf);
err_init_pf:
ice_deinit_hw(hw);
return err;
}
void ice_deinit_dev(struct ice_pf *pf)
{
ice_free_irq_msix_misc(pf);
ice_deinit_pf(pf);
ice_deinit_hw(&pf->hw);
/* Service task is already stopped, so call reset directly. */
ice_reset(&pf->hw, ICE_RESET_PFR);
pci_wait_for_pending_transaction(pf->pdev);
ice_clear_interrupt_scheme(pf);
}
static void ice_init_features(struct ice_pf *pf)
{
struct device *dev = ice_pf_to_dev(pf);
if (ice_is_safe_mode(pf))
return;
/* initialize DDP driven features */
if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
ice_ptp_init(pf);
if (ice_is_feature_supported(pf, ICE_F_GNSS))
ice_gnss_init(pf);
if (ice_is_feature_supported(pf, ICE_F_CGU) ||
ice_is_feature_supported(pf, ICE_F_PHY_RCLK))
ice_dpll_init(pf);
/* Note: Flow director init failure is non-fatal to load */
if (ice_init_fdir(pf))
dev_err(dev, "could not initialize flow director\n");
/* Note: DCB init failure is non-fatal to load */
if (ice_init_pf_dcb(pf, false)) {
clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
} else {
ice_cfg_lldp_mib_change(&pf->hw, true);
}
if (ice_init_lag(pf))
dev_warn(dev, "Failed to init link aggregation support\n");
ice_hwmon_init(pf);
}
static void ice_deinit_features(struct ice_pf *pf)
{
if (ice_is_safe_mode(pf))
return;
ice_deinit_lag(pf);
if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags))
ice_cfg_lldp_mib_change(&pf->hw, false);
ice_deinit_fdir(pf);
if (ice_is_feature_supported(pf, ICE_F_GNSS))
ice_gnss_exit(pf);
if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
ice_ptp_release(pf);
if (test_bit(ICE_FLAG_DPLL, pf->flags))
ice_dpll_deinit(pf);
if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV)
xa_destroy(&pf->eswitch.reprs);
}
static void ice_init_wakeup(struct ice_pf *pf)
{
/* Save wakeup reason register for later use */
pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS);
/* check for a power management event */
ice_print_wake_reason(pf);
/* clear wake status, all bits */
wr32(&pf->hw, PFPM_WUS, U32_MAX);
/* Disable WoL at init, wait for user to enable */
device_set_wakeup_enable(ice_pf_to_dev(pf), false);
}
static int ice_init_link(struct ice_pf *pf)
{
struct device *dev = ice_pf_to_dev(pf);
int err;
err = ice_init_link_events(pf->hw.port_info);
if (err) {
dev_err(dev, "ice_init_link_events failed: %d\n", err);
return err;
}
/* not a fatal error if this fails */
err = ice_init_nvm_phy_type(pf->hw.port_info);
if (err)
dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
/* not a fatal error if this fails */
err = ice_update_link_info(pf->hw.port_info);
if (err)
dev_err(dev, "ice_update_link_info failed: %d\n", err);
ice_init_link_dflt_override(pf->hw.port_info);
ice_check_link_cfg_err(pf,
pf->hw.port_info->phy.link_info.link_cfg_err);
/* if media available, initialize PHY settings */
if (pf->hw.port_info->phy.link_info.link_info &
ICE_AQ_MEDIA_AVAILABLE) {
/* not a fatal error if this fails */
err = ice_init_phy_user_cfg(pf->hw.port_info);
if (err)
dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
struct ice_vsi *vsi = ice_get_main_vsi(pf);
if (vsi)
ice_configure_phy(vsi);
}
} else {
set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
}
return err;
}
static int ice_init_pf_sw(struct ice_pf *pf)
{
bool dvm = ice_is_dvm_ena(&pf->hw);
struct ice_vsi *vsi;
int err;
/* create switch struct for the switch element created by FW on boot */
pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL);
if (!pf->first_sw)
return -ENOMEM;
if (pf->hw.evb_veb)
pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
else
pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
pf->first_sw->pf = pf;
/* record the sw_id available for later use */
pf->first_sw->sw_id = pf->hw.port_info->sw_id;
err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
if (err)
goto err_aq_set_port_params;
vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
if (!vsi) {
err = -ENOMEM;
goto err_pf_vsi_setup;
}
return 0;
err_pf_vsi_setup:
err_aq_set_port_params:
kfree(pf->first_sw);
return err;
}
static void ice_deinit_pf_sw(struct ice_pf *pf)
{
struct ice_vsi *vsi = ice_get_main_vsi(pf);
if (!vsi)
return;
ice_vsi_release(vsi);
kfree(pf->first_sw);
}
static int ice_alloc_vsis(struct ice_pf *pf)
{
struct device *dev = ice_pf_to_dev(pf);
pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi;
if (!pf->num_alloc_vsi)
return -EIO;
if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
dev_warn(dev,
"limiting the VSI count due to UDP tunnel limitation %d > %d\n",
pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
}
pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
GFP_KERNEL);
if (!pf->vsi)
return -ENOMEM;
pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
sizeof(*pf->vsi_stats), GFP_KERNEL);
if (!pf->vsi_stats) {
devm_kfree(dev, pf->vsi);
return -ENOMEM;
}
return 0;
}
static void ice_dealloc_vsis(struct ice_pf *pf)
{
devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats);
pf->vsi_stats = NULL;
pf->num_alloc_vsi = 0;
devm_kfree(ice_pf_to_dev(pf), pf->vsi);
pf->vsi = NULL;
}
static int ice_init_devlink(struct ice_pf *pf)
{
int err;
err = ice_devlink_register_params(pf);
if (err)
return err;
ice_devlink_init_regions(pf);
ice_devlink_register(pf);
return 0;
}
static void ice_deinit_devlink(struct ice_pf *pf)
{
ice_devlink_unregister(pf);
ice_devlink_destroy_regions(pf);
ice_devlink_unregister_params(pf);
}
static int ice_init(struct ice_pf *pf)
{
int err;
err = ice_init_dev(pf);
if (err)
return err;
err = ice_alloc_vsis(pf);
if (err)
goto err_alloc_vsis;
err = ice_init_pf_sw(pf);
if (err)
goto err_init_pf_sw;
ice_init_wakeup(pf);
err = ice_init_link(pf);
if (err)
goto err_init_link;
err = ice_send_version(pf);
if (err)
goto err_init_link;
ice_verify_cacheline_size(pf);
if (ice_is_safe_mode(pf))
ice_set_safe_mode_vlan_cfg(pf);
else
/* print PCI link speed and width */
pcie_print_link_status(pf->pdev);
/* ready to go, so clear down state bit */
clear_bit(ICE_DOWN, pf->state);
clear_bit(ICE_SERVICE_DIS, pf->state);
/* since everything is good, start the service timer */
mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
return 0;
err_init_link:
ice_deinit_pf_sw(pf);
err_init_pf_sw:
ice_dealloc_vsis(pf);
err_alloc_vsis:
ice_deinit_dev(pf);
return err;
}
static void ice_deinit(struct ice_pf *pf)
{
set_bit(ICE_SERVICE_DIS, pf->state);
set_bit(ICE_DOWN, pf->state);
ice_deinit_pf_sw(pf);
ice_dealloc_vsis(pf);
ice_deinit_dev(pf);
}
/**
* ice_load - load pf by init hw and starting VSI
* @pf: pointer to the pf instance
*
* This function has to be called under devl_lock.
*/
int ice_load(struct ice_pf *pf)
{
struct ice_vsi *vsi;
int err;
devl_assert_locked(priv_to_devlink(pf));
vsi = ice_get_main_vsi(pf);
/* init channel list */
INIT_LIST_HEAD(&vsi->ch_list);
err = ice_cfg_netdev(vsi);
if (err)
return err;
/* Setup DCB netlink interface */
ice_dcbnl_setup(vsi);
err = ice_init_mac_fltr(pf);
if (err)
goto err_init_mac_fltr;
err = ice_devlink_create_pf_port(pf);
if (err)
goto err_devlink_create_pf_port;
SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
err = ice_register_netdev(vsi);
if (err)
goto err_register_netdev;
err = ice_tc_indir_block_register(vsi);
if (err)
goto err_tc_indir_block_register;
ice_napi_add(vsi);
err = ice_init_rdma(pf);
if (err)
goto err_init_rdma;
ice_init_features(pf);
ice_service_task_restart(pf);
clear_bit(ICE_DOWN, pf->state);
return 0;
err_init_rdma:
ice_tc_indir_block_unregister(vsi);
err_tc_indir_block_register:
ice_unregister_netdev(vsi);
err_register_netdev:
ice_devlink_destroy_pf_port(pf);
err_devlink_create_pf_port:
err_init_mac_fltr:
ice_decfg_netdev(vsi);
return err;
}
/**
* ice_unload - unload pf by stopping VSI and deinit hw
* @pf: pointer to the pf instance
*
* This function has to be called under devl_lock.
*/
void ice_unload(struct ice_pf *pf)
{
struct ice_vsi *vsi = ice_get_main_vsi(pf);
devl_assert_locked(priv_to_devlink(pf));
ice_deinit_features(pf);
ice_deinit_rdma(pf);
ice_tc_indir_block_unregister(vsi);
ice_unregister_netdev(vsi);
ice_devlink_destroy_pf_port(pf);
ice_decfg_netdev(vsi);
}
/**
* ice_probe - Device initialization routine
* @pdev: PCI device information struct
* @ent: entry in ice_pci_tbl
*
* Returns 0 on success, negative on failure
*/
static int
ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
{
struct device *dev = &pdev->dev;
struct ice_adapter *adapter;
struct ice_pf *pf;
struct ice_hw *hw;
int err;
if (pdev->is_virtfn) {
dev_err(dev, "can't probe a virtual function\n");
return -EINVAL;
}
/* when under a kdump kernel initiate a reset before enabling the
* device in order to clear out any pending DMA transactions. These
* transactions can cause some systems to machine check when doing
* the pcim_enable_device() below.
*/
if (is_kdump_kernel()) {
pci_save_state(pdev);
pci_clear_master(pdev);
err = pcie_flr(pdev);
if (err)
return err;
pci_restore_state(pdev);
}
/* this driver uses devres, see
* Documentation/driver-api/driver-model/devres.rst
*/
err = pcim_enable_device(pdev);
if (err)
return err;
err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
if (err) {
dev_err(dev, "BAR0 I/O map error %d\n", err);
return err;
}
pf = ice_allocate_pf(dev);
if (!pf)
return -ENOMEM;
/* initialize Auxiliary index to invalid value */
pf->aux_idx = -1;
/* set up for high or low DMA */
err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
if (err) {
dev_err(dev, "DMA configuration failed: 0x%x\n", err);
return err;
}
pci_set_master(pdev);
adapter = ice_adapter_get(pdev);
if (IS_ERR(adapter))
return PTR_ERR(adapter);
pf->pdev = pdev;
pf->adapter = adapter;
pci_set_drvdata(pdev, pf);
set_bit(ICE_DOWN, pf->state);
/* Disable service task until DOWN bit is cleared */
set_bit(ICE_SERVICE_DIS, pf->state);
hw = &pf->hw;
hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
pci_save_state(pdev);
hw->back = pf;
hw->port_info = NULL;
hw->vendor_id = pdev->vendor;
hw->device_id = pdev->device;
pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
hw->subsystem_vendor_id = pdev->subsystem_vendor;
hw->subsystem_device_id = pdev->subsystem_device;
hw->bus.device = PCI_SLOT(pdev->devfn);
hw->bus.func = PCI_FUNC(pdev->devfn);
ice_set_ctrlq_len(hw);
pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
#ifndef CONFIG_DYNAMIC_DEBUG
if (debug < -1)
hw->debug_mask = debug;
#endif
err = ice_init(pf);
if (err)
goto err_init;
devl_lock(priv_to_devlink(pf));
err = ice_load(pf);
if (err)
goto err_load;
err = ice_init_devlink(pf);
if (err)
goto err_init_devlink;
devl_unlock(priv_to_devlink(pf));
return 0;
err_init_devlink:
ice_unload(pf);
err_load:
devl_unlock(priv_to_devlink(pf));
ice_deinit(pf);
err_init:
ice_adapter_put(pdev);
pci_disable_device(pdev);
return err;
}
/**
* ice_set_wake - enable or disable Wake on LAN
* @pf: pointer to the PF struct
*
* Simple helper for WoL control
*/
static void ice_set_wake(struct ice_pf *pf)
{
struct ice_hw *hw = &pf->hw;
bool wol = pf->wol_ena;
/* clear wake state, otherwise new wake events won't fire */
wr32(hw, PFPM_WUS, U32_MAX);
/* enable / disable APM wake up, no RMW needed */
wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
/* set magic packet filter enabled */
wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
}
/**
* ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
* @pf: pointer to the PF struct
*
* Issue firmware command to enable multicast magic wake, making
* sure that any locally administered address (LAA) is used for
* wake, and that PF reset doesn't undo the LAA.
*/
static void ice_setup_mc_magic_wake(struct ice_pf *pf)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
u8 mac_addr[ETH_ALEN];
struct ice_vsi *vsi;
int status;
u8 flags;
if (!pf->wol_ena)
return;
vsi = ice_get_main_vsi(pf);
if (!vsi)
return;
/* Get current MAC address in case it's an LAA */
if (vsi->netdev)
ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
else
ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
if (status)
dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
status, ice_aq_str(hw->adminq.sq_last_status));
}
/**
* ice_remove - Device removal routine
* @pdev: PCI device information struct
*/
static void ice_remove(struct pci_dev *pdev)
{
struct ice_pf *pf = pci_get_drvdata(pdev);
int i;
for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
if (!ice_is_reset_in_progress(pf->state))
break;
msleep(100);
}
if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
set_bit(ICE_VF_RESETS_DISABLED, pf->state);
ice_free_vfs(pf);
}
ice_hwmon_exit(pf);
ice_service_task_stop(pf);
ice_aq_cancel_waiting_tasks(pf);
set_bit(ICE_DOWN, pf->state);
if (!ice_is_safe_mode(pf))
ice_remove_arfs(pf);
devl_lock(priv_to_devlink(pf));
ice_deinit_devlink(pf);
ice_unload(pf);
devl_unlock(priv_to_devlink(pf));
ice_deinit(pf);
ice_vsi_release_all(pf);
ice_setup_mc_magic_wake(pf);
ice_set_wake(pf);
ice_adapter_put(pdev);
pci_disable_device(pdev);
}
/**
* ice_shutdown - PCI callback for shutting down device
* @pdev: PCI device information struct
*/
static void ice_shutdown(struct pci_dev *pdev)
{
struct ice_pf *pf = pci_get_drvdata(pdev);
ice_remove(pdev);
if (system_state == SYSTEM_POWER_OFF) {
pci_wake_from_d3(pdev, pf->wol_ena);
pci_set_power_state(pdev, PCI_D3hot);
}
}
/**
* ice_prepare_for_shutdown - prep for PCI shutdown
* @pf: board private structure
*
* Inform or close all dependent features in prep for PCI device shutdown
*/
static void ice_prepare_for_shutdown(struct ice_pf *pf)
{
struct ice_hw *hw = &pf->hw;
u32 v;
/* Notify VFs of impending reset */
if (ice_check_sq_alive(hw, &hw->mailboxq))
ice_vc_notify_reset(pf);
dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
/* disable the VSIs and their queues that are not already DOWN */
ice_pf_dis_all_vsi(pf, false);
ice_for_each_vsi(pf, v)
if (pf->vsi[v])
pf->vsi[v]->vsi_num = 0;
ice_shutdown_all_ctrlq(hw, true);
}
/**
* ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
* @pf: board private structure to reinitialize
*
* This routine reinitialize interrupt scheme that was cleared during
* power management suspend callback.
*
* This should be called during resume routine to re-allocate the q_vectors
* and reacquire interrupts.
*/
static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
{
struct device *dev = ice_pf_to_dev(pf);
int ret, v;
/* Since we clear MSIX flag during suspend, we need to
* set it back during resume...
*/
ret = ice_init_interrupt_scheme(pf);
if (ret) {
dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
return ret;
}
/* Remap vectors and rings, after successful re-init interrupts */
ice_for_each_vsi(pf, v) {
if (!pf->vsi[v])
continue;
ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
if (ret)
goto err_reinit;
ice_vsi_map_rings_to_vectors(pf->vsi[v]);
ice_vsi_set_napi_queues(pf->vsi[v]);
}
ret = ice_req_irq_msix_misc(pf);
if (ret) {
dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
ret);
goto err_reinit;
}
return 0;
err_reinit:
while (v--)
if (pf->vsi[v])
ice_vsi_free_q_vectors(pf->vsi[v]);
return ret;
}
/**
* ice_suspend
* @dev: generic device information structure
*
* Power Management callback to quiesce the device and prepare
* for D3 transition.
*/
static int ice_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct ice_pf *pf;
int disabled, v;
pf = pci_get_drvdata(pdev);
if (!ice_pf_state_is_nominal(pf)) {
dev_err(dev, "Device is not ready, no need to suspend it\n");
return -EBUSY;
}
/* Stop watchdog tasks until resume completion.
* Even though it is most likely that the service task is
* disabled if the device is suspended or down, the service task's
* state is controlled by a different state bit, and we should
* store and honor whatever state that bit is in at this point.
*/
disabled = ice_service_task_stop(pf);
ice_deinit_rdma(pf);
/* Already suspended?, then there is nothing to do */
if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
if (!disabled)
ice_service_task_restart(pf);
return 0;
}
if (test_bit(ICE_DOWN, pf->state) ||
ice_is_reset_in_progress(pf->state)) {
dev_err(dev, "can't suspend device in reset or already down\n");
if (!disabled)
ice_service_task_restart(pf);
return 0;
}
ice_setup_mc_magic_wake(pf);
ice_prepare_for_shutdown(pf);
ice_set_wake(pf);
/* Free vectors, clear the interrupt scheme and release IRQs
* for proper hibernation, especially with large number of CPUs.
* Otherwise hibernation might fail when mapping all the vectors back
* to CPU0.
*/
ice_free_irq_msix_misc(pf);
ice_for_each_vsi(pf, v) {
if (!pf->vsi[v])
continue;
ice_vsi_free_q_vectors(pf->vsi[v]);
}
ice_clear_interrupt_scheme(pf);
pci_save_state(pdev);
pci_wake_from_d3(pdev, pf->wol_ena);
pci_set_power_state(pdev, PCI_D3hot);
return 0;
}
/**
* ice_resume - PM callback for waking up from D3
* @dev: generic device information structure
*/
static int ice_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
enum ice_reset_req reset_type;
struct ice_pf *pf;
struct ice_hw *hw;
int ret;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
pci_save_state(pdev);
if (!pci_device_is_present(pdev))
return -ENODEV;
ret = pci_enable_device_mem(pdev);
if (ret) {
dev_err(dev, "Cannot enable device after suspend\n");
return ret;
}
pf = pci_get_drvdata(pdev);
hw = &pf->hw;
pf->wakeup_reason = rd32(hw, PFPM_WUS);
ice_print_wake_reason(pf);
/* We cleared the interrupt scheme when we suspended, so we need to
* restore it now to resume device functionality.
*/
ret = ice_reinit_interrupt_scheme(pf);
if (ret)
dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
ret = ice_init_rdma(pf);
if (ret)
dev_err(dev, "Reinitialize RDMA during resume failed: %d\n",
ret);
clear_bit(ICE_DOWN, pf->state);
/* Now perform PF reset and rebuild */
reset_type = ICE_RESET_PFR;
/* re-enable service task for reset, but allow reset to schedule it */
clear_bit(ICE_SERVICE_DIS, pf->state);
if (ice_schedule_reset(pf, reset_type))
dev_err(dev, "Reset during resume failed.\n");
clear_bit(ICE_SUSPENDED, pf->state);
ice_service_task_restart(pf);
/* Restart the service task */
mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
return 0;
}
/**
* ice_pci_err_detected - warning that PCI error has been detected
* @pdev: PCI device information struct
* @err: the type of PCI error
*
* Called to warn that something happened on the PCI bus and the error handling
* is in progress. Allows the driver to gracefully prepare/handle PCI errors.
*/
static pci_ers_result_t
ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
{
struct ice_pf *pf = pci_get_drvdata(pdev);
if (!pf) {
dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
__func__, err);
return PCI_ERS_RESULT_DISCONNECT;
}
if (!test_bit(ICE_SUSPENDED, pf->state)) {
ice_service_task_stop(pf);
if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
set_bit(ICE_PFR_REQ, pf->state);
ice_prepare_for_reset(pf, ICE_RESET_PFR);
}
}
return PCI_ERS_RESULT_NEED_RESET;
}
/**
* ice_pci_err_slot_reset - a PCI slot reset has just happened
* @pdev: PCI device information struct
*
* Called to determine if the driver can recover from the PCI slot reset by
* using a register read to determine if the device is recoverable.
*/
static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
{
struct ice_pf *pf = pci_get_drvdata(pdev);
pci_ers_result_t result;
int err;
u32 reg;
err = pci_enable_device_mem(pdev);
if (err) {
dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
err);
result = PCI_ERS_RESULT_DISCONNECT;
} else {
pci_set_master(pdev);
pci_restore_state(pdev);
pci_save_state(pdev);
pci_wake_from_d3(pdev, false);
/* Check for life */
reg = rd32(&pf->hw, GLGEN_RTRIG);
if (!reg)
result = PCI_ERS_RESULT_RECOVERED;
else
result = PCI_ERS_RESULT_DISCONNECT;
}
return result;
}
/**
* ice_pci_err_resume - restart operations after PCI error recovery
* @pdev: PCI device information struct
*
* Called to allow the driver to bring things back up after PCI error and/or
* reset recovery have finished
*/
static void ice_pci_err_resume(struct pci_dev *pdev)
{
struct ice_pf *pf = pci_get_drvdata(pdev);
if (!pf) {
dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
__func__);
return;
}
if (test_bit(ICE_SUSPENDED, pf->state)) {
dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
__func__);
return;
}
ice_restore_all_vfs_msi_state(pf);
ice_do_reset(pf, ICE_RESET_PFR);
ice_service_task_restart(pf);
mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
}
/**
* ice_pci_err_reset_prepare - prepare device driver for PCI reset
* @pdev: PCI device information struct
*/
static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
{
struct ice_pf *pf = pci_get_drvdata(pdev);
if (!test_bit(ICE_SUSPENDED, pf->state)) {
ice_service_task_stop(pf);
if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
set_bit(ICE_PFR_REQ, pf->state);
ice_prepare_for_reset(pf, ICE_RESET_PFR);
}
}
}
/**
* ice_pci_err_reset_done - PCI reset done, device driver reset can begin
* @pdev: PCI device information struct
*/
static void ice_pci_err_reset_done(struct pci_dev *pdev)
{
ice_pci_err_resume(pdev);
}
/* ice_pci_tbl - PCI Device ID Table
*
* Wildcard entries (PCI_ANY_ID) should come last
* Last entry must be all 0s
*
* { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
* Class, Class Mask, private data (not used) }
*/
static const struct pci_device_id ice_pci_tbl[] = {
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), },
/* required last entry */
{}
};
MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
static const struct pci_error_handlers ice_pci_err_handler = {
.error_detected = ice_pci_err_detected,
.slot_reset = ice_pci_err_slot_reset,
.reset_prepare = ice_pci_err_reset_prepare,
.reset_done = ice_pci_err_reset_done,
.resume = ice_pci_err_resume
};
static struct pci_driver ice_driver = {
.name = KBUILD_MODNAME,
.id_table = ice_pci_tbl,
.probe = ice_probe,
.remove = ice_remove,
.driver.pm = pm_sleep_ptr(&ice_pm_ops),
.shutdown = ice_shutdown,
.sriov_configure = ice_sriov_configure,
.sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix,
.sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count,
.err_handler = &ice_pci_err_handler
};
/**
* ice_module_init - Driver registration routine
*
* ice_module_init is the first routine called when the driver is
* loaded. All it does is register with the PCI subsystem.
*/
static int __init ice_module_init(void)
{
int status = -ENOMEM;
pr_info("%s\n", ice_driver_string);
pr_info("%s\n", ice_copyright);
ice_adv_lnk_speed_maps_init();
ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME);
if (!ice_wq) {
pr_err("Failed to create workqueue\n");
return status;
}
ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0);
if (!ice_lag_wq) {
pr_err("Failed to create LAG workqueue\n");
goto err_dest_wq;
}
ice_debugfs_init();
status = pci_register_driver(&ice_driver);
if (status) {
pr_err("failed to register PCI driver, err %d\n", status);
goto err_dest_lag_wq;
}
return 0;
err_dest_lag_wq:
destroy_workqueue(ice_lag_wq);
ice_debugfs_exit();
err_dest_wq:
destroy_workqueue(ice_wq);
return status;
}
module_init(ice_module_init);
/**
* ice_module_exit - Driver exit cleanup routine
*
* ice_module_exit is called just before the driver is removed
* from memory.
*/
static void __exit ice_module_exit(void)
{
pci_unregister_driver(&ice_driver);
ice_debugfs_exit();
destroy_workqueue(ice_wq);
destroy_workqueue(ice_lag_wq);
pr_info("module unloaded\n");
}
module_exit(ice_module_exit);
/**
* ice_set_mac_address - NDO callback to set MAC address
* @netdev: network interface device structure
* @pi: pointer to an address structure
*
* Returns 0 on success, negative on failure
*/
static int ice_set_mac_address(struct net_device *netdev, void *pi)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
struct sockaddr *addr = pi;
u8 old_mac[ETH_ALEN];
u8 flags = 0;
u8 *mac;
int err;
mac = (u8 *)addr->sa_data;
if (!is_valid_ether_addr(mac))
return -EADDRNOTAVAIL;
if (test_bit(ICE_DOWN, pf->state) ||
ice_is_reset_in_progress(pf->state)) {
netdev_err(netdev, "can't set mac %pM. device not ready\n",
mac);
return -EBUSY;
}
if (ice_chnl_dmac_fltr_cnt(pf)) {
netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
mac);
return -EAGAIN;
}
netif_addr_lock_bh(netdev);
ether_addr_copy(old_mac, netdev->dev_addr);
/* change the netdev's MAC address */
eth_hw_addr_set(netdev, mac);
netif_addr_unlock_bh(netdev);
/* Clean up old MAC filter. Not an error if old filter doesn't exist */
err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
if (err && err != -ENOENT) {
err = -EADDRNOTAVAIL;
goto err_update_filters;
}
/* Add filter for new MAC. If filter exists, return success */
err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
if (err == -EEXIST) {
/* Although this MAC filter is already present in hardware it's
* possible in some cases (e.g. bonding) that dev_addr was
* modified outside of the driver and needs to be restored back
* to this value.
*/
netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
return 0;
} else if (err) {
/* error if the new filter addition failed */
err = -EADDRNOTAVAIL;
}
err_update_filters:
if (err) {
netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
mac);
netif_addr_lock_bh(netdev);
eth_hw_addr_set(netdev, old_mac);
netif_addr_unlock_bh(netdev);
return err;
}
netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
netdev->dev_addr);
/* write new MAC address to the firmware */
flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
if (err) {
netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
mac, err);
}
return 0;
}
/**
* ice_set_rx_mode - NDO callback to set the netdev filters
* @netdev: network interface device structure
*/
static void ice_set_rx_mode(struct net_device *netdev)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
if (!vsi || ice_is_switchdev_running(vsi->back))
return;
/* Set the flags to synchronize filters
* ndo_set_rx_mode may be triggered even without a change in netdev
* flags
*/
set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
/* schedule our worker thread which will take care of
* applying the new filter changes
*/
ice_service_task_schedule(vsi->back);
}
/**
* ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
* @netdev: network interface device structure
* @queue_index: Queue ID
* @maxrate: maximum bandwidth in Mbps
*/
static int
ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
u16 q_handle;
int status;
u8 tc;
/* Validate maxrate requested is within permitted range */
if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
maxrate, queue_index);
return -EINVAL;
}
q_handle = vsi->tx_rings[queue_index]->q_handle;
tc = ice_dcb_get_tc(vsi, queue_index);
vsi = ice_locate_vsi_using_queue(vsi, queue_index);
if (!vsi) {
netdev_err(netdev, "Invalid VSI for given queue %d\n",
queue_index);
return -EINVAL;
}
/* Set BW back to default, when user set maxrate to 0 */
if (!maxrate)
status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
q_handle, ICE_MAX_BW);
else
status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
q_handle, ICE_MAX_BW, maxrate * 1000);
if (status)
netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
status);
return status;
}
/**
* ice_fdb_add - add an entry to the hardware database
* @ndm: the input from the stack
* @tb: pointer to array of nladdr (unused)
* @dev: the net device pointer
* @addr: the MAC address entry being added
* @vid: VLAN ID
* @flags: instructions from stack about fdb operation
* @extack: netlink extended ack
*/
static int
ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
struct net_device *dev, const unsigned char *addr, u16 vid,
u16 flags, struct netlink_ext_ack __always_unused *extack)
{
int err;
if (vid) {
netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
return -EINVAL;
}
if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
netdev_err(dev, "FDB only supports static addresses\n");
return -EINVAL;
}
if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
err = dev_uc_add_excl(dev, addr);
else if (is_multicast_ether_addr(addr))
err = dev_mc_add_excl(dev, addr);
else
err = -EINVAL;
/* Only return duplicate errors if NLM_F_EXCL is set */
if (err == -EEXIST && !(flags & NLM_F_EXCL))
err = 0;
return err;
}
/**
* ice_fdb_del - delete an entry from the hardware database
* @ndm: the input from the stack
* @tb: pointer to array of nladdr (unused)
* @dev: the net device pointer
* @addr: the MAC address entry being added
* @vid: VLAN ID
* @extack: netlink extended ack
*/
static int
ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
struct net_device *dev, const unsigned char *addr,
__always_unused u16 vid, struct netlink_ext_ack *extack)
{
int err;
if (ndm->ndm_state & NUD_PERMANENT) {
netdev_err(dev, "FDB only supports static addresses\n");
return -EINVAL;
}
if (is_unicast_ether_addr(addr))
err = dev_uc_del(dev, addr);
else if (is_multicast_ether_addr(addr))
err = dev_mc_del(dev, addr);
else
err = -EINVAL;
return err;
}
#define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
NETIF_F_HW_VLAN_CTAG_TX | \
NETIF_F_HW_VLAN_STAG_RX | \
NETIF_F_HW_VLAN_STAG_TX)
#define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
NETIF_F_HW_VLAN_STAG_RX)
#define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \
NETIF_F_HW_VLAN_STAG_FILTER)
/**
* ice_fix_features - fix the netdev features flags based on device limitations
* @netdev: ptr to the netdev that flags are being fixed on
* @features: features that need to be checked and possibly fixed
*
* Make sure any fixups are made to features in this callback. This enables the
* driver to not have to check unsupported configurations throughout the driver
* because that's the responsiblity of this callback.
*
* Single VLAN Mode (SVM) Supported Features:
* NETIF_F_HW_VLAN_CTAG_FILTER
* NETIF_F_HW_VLAN_CTAG_RX
* NETIF_F_HW_VLAN_CTAG_TX
*
* Double VLAN Mode (DVM) Supported Features:
* NETIF_F_HW_VLAN_CTAG_FILTER
* NETIF_F_HW_VLAN_CTAG_RX
* NETIF_F_HW_VLAN_CTAG_TX
*
* NETIF_F_HW_VLAN_STAG_FILTER
* NETIF_HW_VLAN_STAG_RX
* NETIF_HW_VLAN_STAG_TX
*
* Features that need fixing:
* Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
* These are mutually exlusive as the VSI context cannot support multiple
* VLAN ethertypes simultaneously for stripping and/or insertion. If this
* is not done, then default to clearing the requested STAG offload
* settings.
*
* All supported filtering has to be enabled or disabled together. For
* example, in DVM, CTAG and STAG filtering have to be enabled and disabled
* together. If this is not done, then default to VLAN filtering disabled.
* These are mutually exclusive as there is currently no way to
* enable/disable VLAN filtering based on VLAN ethertype when using VLAN
* prune rules.
*/
static netdev_features_t
ice_fix_features(struct net_device *netdev, netdev_features_t features)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
netdev_features_t req_vlan_fltr, cur_vlan_fltr;
bool cur_ctag, cur_stag, req_ctag, req_stag;
cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
if (req_vlan_fltr != cur_vlan_fltr) {
if (ice_is_dvm_ena(&np->vsi->back->hw)) {
if (req_ctag && req_stag) {
features |= NETIF_VLAN_FILTERING_FEATURES;
} else if (!req_ctag && !req_stag) {
features &= ~NETIF_VLAN_FILTERING_FEATURES;
} else if ((!cur_ctag && req_ctag && !cur_stag) ||
(!cur_stag && req_stag && !cur_ctag)) {
features |= NETIF_VLAN_FILTERING_FEATURES;
netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
} else if ((cur_ctag && !req_ctag && cur_stag) ||
(cur_stag && !req_stag && cur_ctag)) {
features &= ~NETIF_VLAN_FILTERING_FEATURES;
netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
}
} else {
if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
features |= NETIF_F_HW_VLAN_CTAG_FILTER;
}
}
if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
features &= ~(NETIF_F_HW_VLAN_STAG_RX |
NETIF_F_HW_VLAN_STAG_TX);
}
if (!(netdev->features & NETIF_F_RXFCS) &&
(features & NETIF_F_RXFCS) &&
(features & NETIF_VLAN_STRIPPING_FEATURES) &&
!ice_vsi_has_non_zero_vlans(np->vsi)) {
netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
features &= ~NETIF_VLAN_STRIPPING_FEATURES;
}
return features;
}
/**
* ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto
* @vsi: PF's VSI
* @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order
*
* Store current stripped VLAN proto in ring packet context,
* so it can be accessed more efficiently by packet processing code.
*/
static void
ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype)
{
u16 i;
ice_for_each_alloc_rxq(vsi, i)
vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype;
}
/**
* ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
* @vsi: PF's VSI
* @features: features used to determine VLAN offload settings
*
* First, determine the vlan_ethertype based on the VLAN offload bits in
* features. Then determine if stripping and insertion should be enabled or
* disabled. Finally enable or disable VLAN stripping and insertion.
*/
static int
ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
{
bool enable_stripping = true, enable_insertion = true;
struct ice_vsi_vlan_ops *vlan_ops;
int strip_err = 0, insert_err = 0;
u16 vlan_ethertype = 0;
vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
vlan_ethertype = ETH_P_8021AD;
else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
vlan_ethertype = ETH_P_8021Q;
if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
enable_stripping = false;
if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
enable_insertion = false;
if (enable_stripping)
strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
else
strip_err = vlan_ops->dis_stripping(vsi);
if (enable_insertion)
insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
else
insert_err = vlan_ops->dis_insertion(vsi);
if (strip_err || insert_err)
return -EIO;
ice_set_rx_rings_vlan_proto(vsi, enable_stripping ?
htons(vlan_ethertype) : 0);
return 0;
}
/**
* ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
* @vsi: PF's VSI
* @features: features used to determine VLAN filtering settings
*
* Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
* features.
*/
static int
ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
{
struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
int err = 0;
/* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
* if either bit is set
*/
if (features &
(NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER))
err = vlan_ops->ena_rx_filtering(vsi);
else
err = vlan_ops->dis_rx_filtering(vsi);
return err;
}
/**
* ice_set_vlan_features - set VLAN settings based on suggested feature set
* @netdev: ptr to the netdev being adjusted
* @features: the feature set that the stack is suggesting
*
* Only update VLAN settings if the requested_vlan_features are different than
* the current_vlan_features.
*/
static int
ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
{
netdev_features_t current_vlan_features, requested_vlan_features;
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
int err;
current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
if (current_vlan_features ^ requested_vlan_features) {
if ((features & NETIF_F_RXFCS) &&
(features & NETIF_VLAN_STRIPPING_FEATURES)) {
dev_err(ice_pf_to_dev(vsi->back),
"To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
return -EIO;
}
err = ice_set_vlan_offload_features(vsi, features);
if (err)
return err;
}
current_vlan_features = netdev->features &
NETIF_VLAN_FILTERING_FEATURES;
requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
if (current_vlan_features ^ requested_vlan_features) {
err = ice_set_vlan_filtering_features(vsi, features);
if (err)
return err;
}
return 0;
}
/**
* ice_set_loopback - turn on/off loopback mode on underlying PF
* @vsi: ptr to VSI
* @ena: flag to indicate the on/off setting
*/
static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
{
bool if_running = netif_running(vsi->netdev);
int ret;
if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
ret = ice_down(vsi);
if (ret) {
netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
return ret;
}
}
ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
if (ret)
netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
if (if_running)
ret = ice_up(vsi);
return ret;
}
/**
* ice_set_features - set the netdev feature flags
* @netdev: ptr to the netdev being adjusted
* @features: the feature set that the stack is suggesting
*/
static int
ice_set_features(struct net_device *netdev, netdev_features_t features)
{
netdev_features_t changed = netdev->features ^ features;
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
struct ice_pf *pf = vsi->back;
int ret = 0;
/* Don't set any netdev advanced features with device in Safe Mode */
if (ice_is_safe_mode(pf)) {
dev_err(ice_pf_to_dev(pf),
"Device is in Safe Mode - not enabling advanced netdev features\n");
return ret;
}
/* Do not change setting during reset */
if (ice_is_reset_in_progress(pf->state)) {
dev_err(ice_pf_to_dev(pf),
"Device is resetting, changing advanced netdev features temporarily unavailable.\n");
return -EBUSY;
}
/* Multiple features can be changed in one call so keep features in
* separate if/else statements to guarantee each feature is checked
*/
if (changed & NETIF_F_RXHASH)
ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
ret = ice_set_vlan_features(netdev, features);
if (ret)
return ret;
/* Turn on receive of FCS aka CRC, and after setting this
* flag the packet data will have the 4 byte CRC appended
*/
if (changed & NETIF_F_RXFCS) {
if ((features & NETIF_F_RXFCS) &&
(features & NETIF_VLAN_STRIPPING_FEATURES)) {
dev_err(ice_pf_to_dev(vsi->back),
"To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
return -EIO;
}
ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
ret = ice_down_up(vsi);
if (ret)
return ret;
}
if (changed & NETIF_F_NTUPLE) {
bool ena = !!(features & NETIF_F_NTUPLE);
ice_vsi_manage_fdir(vsi, ena);
ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
}
/* don't turn off hw_tc_offload when ADQ is already enabled */
if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
return -EACCES;
}
if (changed & NETIF_F_HW_TC) {
bool ena = !!(features & NETIF_F_HW_TC);
ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) :
clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
}
if (changed & NETIF_F_LOOPBACK)
ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
return ret;
}
/**
* ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
* @vsi: VSI to setup VLAN properties for
*/
static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
{
int err;
err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
if (err)
return err;
err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
if (err)
return err;
return ice_vsi_add_vlan_zero(vsi);
}
/**
* ice_vsi_cfg_lan - Setup the VSI lan related config
* @vsi: the VSI being configured
*
* Return 0 on success and negative value on error
*/
int ice_vsi_cfg_lan(struct ice_vsi *vsi)
{
int err;
if (vsi->netdev && vsi->type == ICE_VSI_PF) {
ice_set_rx_mode(vsi->netdev);
err = ice_vsi_vlan_setup(vsi);
if (err)
return err;
}
ice_vsi_cfg_dcb_rings(vsi);
err = ice_vsi_cfg_lan_txqs(vsi);
if (!err && ice_is_xdp_ena_vsi(vsi))
err = ice_vsi_cfg_xdp_txqs(vsi);
if (!err)
err = ice_vsi_cfg_rxqs(vsi);
return err;
}
/* THEORY OF MODERATION:
* The ice driver hardware works differently than the hardware that DIMLIB was
* originally made for. ice hardware doesn't have packet count limits that
* can trigger an interrupt, but it *does* have interrupt rate limit support,
* which is hard-coded to a limit of 250,000 ints/second.
* If not using dynamic moderation, the INTRL value can be modified
* by ethtool rx-usecs-high.
*/
struct ice_dim {
/* the throttle rate for interrupts, basically worst case delay before
* an initial interrupt fires, value is stored in microseconds.
*/
u16 itr;
};
/* Make a different profile for Rx that doesn't allow quite so aggressive
* moderation at the high end (it maxes out at 126us or about 8k interrupts a
* second.
*/
static const struct ice_dim rx_profile[] = {
{2}, /* 500,000 ints/s, capped at 250K by INTRL */
{8}, /* 125,000 ints/s */
{16}, /* 62,500 ints/s */
{62}, /* 16,129 ints/s */
{126} /* 7,936 ints/s */
};
/* The transmit profile, which has the same sorts of values
* as the previous struct
*/
static const struct ice_dim tx_profile[] = {
{2}, /* 500,000 ints/s, capped at 250K by INTRL */
{8}, /* 125,000 ints/s */
{40}, /* 16,125 ints/s */
{128}, /* 7,812 ints/s */
{256} /* 3,906 ints/s */
};
static void ice_tx_dim_work(struct work_struct *work)
{
struct ice_ring_container *rc;
struct dim *dim;
u16 itr;
dim = container_of(work, struct dim, work);
rc = dim->priv;
WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
/* look up the values in our local table */
itr = tx_profile[dim->profile_ix].itr;
ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
ice_write_itr(rc, itr);
dim->state = DIM_START_MEASURE;
}
static void ice_rx_dim_work(struct work_struct *work)
{
struct ice_ring_container *rc;
struct dim *dim;
u16 itr;
dim = container_of(work, struct dim, work);
rc = dim->priv;
WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
/* look up the values in our local table */
itr = rx_profile[dim->profile_ix].itr;
ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
ice_write_itr(rc, itr);
dim->state = DIM_START_MEASURE;
}
#define ICE_DIM_DEFAULT_PROFILE_IX 1
/**
* ice_init_moderation - set up interrupt moderation
* @q_vector: the vector containing rings to be configured
*
* Set up interrupt moderation registers, with the intent to do the right thing
* when called from reset or from probe, and whether or not dynamic moderation
* is enabled or not. Take special care to write all the registers in both
* dynamic moderation mode or not in order to make sure hardware is in a known
* state.
*/
static void ice_init_moderation(struct ice_q_vector *q_vector)
{
struct ice_ring_container *rc;
bool tx_dynamic, rx_dynamic;
rc = &q_vector->tx;
INIT_WORK(&rc->dim.work, ice_tx_dim_work);
rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
rc->dim.priv = rc;
tx_dynamic = ITR_IS_DYNAMIC(rc);
/* set the initial TX ITR to match the above */
ice_write_itr(rc, tx_dynamic ?
tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
rc = &q_vector->rx;
INIT_WORK(&rc->dim.work, ice_rx_dim_work);
rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
rc->dim.priv = rc;
rx_dynamic = ITR_IS_DYNAMIC(rc);
/* set the initial RX ITR to match the above */
ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
rc->itr_setting);
ice_set_q_vector_intrl(q_vector);
}
/**
* ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
* @vsi: the VSI being configured
*/
static void ice_napi_enable_all(struct ice_vsi *vsi)
{
int q_idx;
if (!vsi->netdev)
return;
ice_for_each_q_vector(vsi, q_idx) {
struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
ice_init_moderation(q_vector);
if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
napi_enable(&q_vector->napi);
}
}
/**
* ice_up_complete - Finish the last steps of bringing up a connection
* @vsi: The VSI being configured
*
* Return 0 on success and negative value on error
*/
static int ice_up_complete(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
int err;
ice_vsi_cfg_msix(vsi);
/* Enable only Rx rings, Tx rings were enabled by the FW when the
* Tx queue group list was configured and the context bits were
* programmed using ice_vsi_cfg_txqs
*/
err = ice_vsi_start_all_rx_rings(vsi);
if (err)
return err;
clear_bit(ICE_VSI_DOWN, vsi->state);
ice_napi_enable_all(vsi);
ice_vsi_ena_irq(vsi);
if (vsi->port_info &&
(vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
vsi->netdev && vsi->type == ICE_VSI_PF) {
ice_print_link_msg(vsi, true);
netif_tx_start_all_queues(vsi->netdev);
netif_carrier_on(vsi->netdev);
ice_ptp_link_change(pf, pf->hw.pf_id, true);
}
/* Perform an initial read of the statistics registers now to
* set the baseline so counters are ready when interface is up
*/
ice_update_eth_stats(vsi);
if (vsi->type == ICE_VSI_PF)
ice_service_task_schedule(pf);
return 0;
}
/**
* ice_up - Bring the connection back up after being down
* @vsi: VSI being configured
*/
int ice_up(struct ice_vsi *vsi)
{
int err;
err = ice_vsi_cfg_lan(vsi);
if (!err)
err = ice_up_complete(vsi);
return err;
}
/**
* ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
* @syncp: pointer to u64_stats_sync
* @stats: stats that pkts and bytes count will be taken from
* @pkts: packets stats counter
* @bytes: bytes stats counter
*
* This function fetches stats from the ring considering the atomic operations
* that needs to be performed to read u64 values in 32 bit machine.
*/
void
ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
struct ice_q_stats stats, u64 *pkts, u64 *bytes)
{
unsigned int start;
do {
start = u64_stats_fetch_begin(syncp);
*pkts = stats.pkts;
*bytes = stats.bytes;
} while (u64_stats_fetch_retry(syncp, start));
}
/**
* ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
* @vsi: the VSI to be updated
* @vsi_stats: the stats struct to be updated
* @rings: rings to work on
* @count: number of rings
*/
static void
ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
struct rtnl_link_stats64 *vsi_stats,
struct ice_tx_ring **rings, u16 count)
{
u16 i;
for (i = 0; i < count; i++) {
struct ice_tx_ring *ring;
u64 pkts = 0, bytes = 0;
ring = READ_ONCE(rings[i]);
if (!ring || !ring->ring_stats)
continue;
ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
ring->ring_stats->stats, &pkts,
&bytes);
vsi_stats->tx_packets += pkts;
vsi_stats->tx_bytes += bytes;
vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
}
}
/**
* ice_update_vsi_ring_stats - Update VSI stats counters
* @vsi: the VSI to be updated
*/
static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
{
struct rtnl_link_stats64 *net_stats, *stats_prev;
struct rtnl_link_stats64 *vsi_stats;
struct ice_pf *pf = vsi->back;
u64 pkts, bytes;
int i;
vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
if (!vsi_stats)
return;
/* reset non-netdev (extended) stats */
vsi->tx_restart = 0;
vsi->tx_busy = 0;
vsi->tx_linearize = 0;
vsi->rx_buf_failed = 0;
vsi->rx_page_failed = 0;
rcu_read_lock();
/* update Tx rings counters */
ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
vsi->num_txq);
/* update Rx rings counters */
ice_for_each_rxq(vsi, i) {
struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
struct ice_ring_stats *ring_stats;
ring_stats = ring->ring_stats;
ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
ring_stats->stats, &pkts,
&bytes);
vsi_stats->rx_packets += pkts;
vsi_stats->rx_bytes += bytes;
vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
}
/* update XDP Tx rings counters */
if (ice_is_xdp_ena_vsi(vsi))
ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
vsi->num_xdp_txq);
rcu_read_unlock();
net_stats = &vsi->net_stats;
stats_prev = &vsi->net_stats_prev;
/* Update netdev counters, but keep in mind that values could start at
* random value after PF reset. And as we increase the reported stat by
* diff of Prev-Cur, we need to be sure that Prev is valid. If it's not,
* let's skip this round.
*/
if (likely(pf->stat_prev_loaded)) {
net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
}
stats_prev->tx_packets = vsi_stats->tx_packets;
stats_prev->tx_bytes = vsi_stats->tx_bytes;
stats_prev->rx_packets = vsi_stats->rx_packets;
stats_prev->rx_bytes = vsi_stats->rx_bytes;
kfree(vsi_stats);
}
/**
* ice_update_vsi_stats - Update VSI stats counters
* @vsi: the VSI to be updated
*/
void ice_update_vsi_stats(struct ice_vsi *vsi)
{
struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
struct ice_eth_stats *cur_es = &vsi->eth_stats;
struct ice_pf *pf = vsi->back;
if (test_bit(ICE_VSI_DOWN, vsi->state) ||
test_bit(ICE_CFG_BUSY, pf->state))
return;
/* get stats as recorded by Tx/Rx rings */
ice_update_vsi_ring_stats(vsi);
/* get VSI stats as recorded by the hardware */
ice_update_eth_stats(vsi);
cur_ns->tx_errors = cur_es->tx_errors;
cur_ns->rx_dropped = cur_es->rx_discards;
cur_ns->tx_dropped = cur_es->tx_discards;
cur_ns->multicast = cur_es->rx_multicast;
/* update some more netdev stats if this is main VSI */
if (vsi->type == ICE_VSI_PF) {
cur_ns->rx_crc_errors = pf->stats.crc_errors;
cur_ns->rx_errors = pf->stats.crc_errors +
pf->stats.illegal_bytes +
pf->stats.rx_undersize +
pf->hw_csum_rx_error +
pf->stats.rx_jabber +
pf->stats.rx_fragments +
pf->stats.rx_oversize;
/* record drops from the port level */
cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
}
}
/**
* ice_update_pf_stats - Update PF port stats counters
* @pf: PF whose stats needs to be updated
*/
void ice_update_pf_stats(struct ice_pf *pf)
{
struct ice_hw_port_stats *prev_ps, *cur_ps;
struct ice_hw *hw = &pf->hw;
u16 fd_ctr_base;
u8 port;
port = hw->port_info->lport;
prev_ps = &pf->stats_prev;
cur_ps = &pf->stats;
if (ice_is_reset_in_progress(pf->state))
pf->stat_prev_loaded = false;
ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
&prev_ps->eth.rx_bytes,
&cur_ps->eth.rx_bytes);
ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
&prev_ps->eth.rx_unicast,
&cur_ps->eth.rx_unicast);
ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
&prev_ps->eth.rx_multicast,
&cur_ps->eth.rx_multicast);
ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
&prev_ps->eth.rx_broadcast,
&cur_ps->eth.rx_broadcast);
ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
&prev_ps->eth.rx_discards,
&cur_ps->eth.rx_discards);
ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
&prev_ps->eth.tx_bytes,
&cur_ps->eth.tx_bytes);
ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
&prev_ps->eth.tx_unicast,
&cur_ps->eth.tx_unicast);
ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
&prev_ps->eth.tx_multicast,
&cur_ps->eth.tx_multicast);
ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
&prev_ps->eth.tx_broadcast,
&cur_ps->eth.tx_broadcast);
ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
&prev_ps->tx_dropped_link_down,
&cur_ps->tx_dropped_link_down);
ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
&prev_ps->rx_size_64, &cur_ps->rx_size_64);
ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
&prev_ps->rx_size_127, &cur_ps->rx_size_127);
ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
&prev_ps->rx_size_255, &cur_ps->rx_size_255);
ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
&prev_ps->rx_size_511, &cur_ps->rx_size_511);
ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
&prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
&prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
&prev_ps->rx_size_big, &cur_ps->rx_size_big);
ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
&prev_ps->tx_size_64, &cur_ps->tx_size_64);
ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
&prev_ps->tx_size_127, &cur_ps->tx_size_127);
ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
&prev_ps->tx_size_255, &cur_ps->tx_size_255);
ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
&prev_ps->tx_size_511, &cur_ps->tx_size_511);
ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
&prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
&prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
&prev_ps->tx_size_big, &cur_ps->tx_size_big);
fd_ctr_base = hw->fd_ctr_base;
ice_stat_update40(hw,
GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
pf->stat_prev_loaded, &prev_ps->fd_sb_match,
&cur_ps->fd_sb_match);
ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
&prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
&prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
&prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
&prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
ice_update_dcb_stats(pf);
ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
&prev_ps->crc_errors, &cur_ps->crc_errors);
ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
&prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
&prev_ps->mac_local_faults,
&cur_ps->mac_local_faults);
ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
&prev_ps->mac_remote_faults,
&cur_ps->mac_remote_faults);
ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
&prev_ps->rx_undersize, &cur_ps->rx_undersize);
ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
&prev_ps->rx_fragments, &cur_ps->rx_fragments);
ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
&prev_ps->rx_oversize, &cur_ps->rx_oversize);
ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
&prev_ps->rx_jabber, &cur_ps->rx_jabber);
cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
pf->stat_prev_loaded = true;
}
/**
* ice_get_stats64 - get statistics for network device structure
* @netdev: network interface device structure
* @stats: main device statistics structure
*/
static
void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct rtnl_link_stats64 *vsi_stats;
struct ice_vsi *vsi = np->vsi;
vsi_stats = &vsi->net_stats;
if (!vsi->num_txq || !vsi->num_rxq)
return;
/* netdev packet/byte stats come from ring counter. These are obtained
* by summing up ring counters (done by ice_update_vsi_ring_stats).
* But, only call the update routine and read the registers if VSI is
* not down.
*/
if (!test_bit(ICE_VSI_DOWN, vsi->state))
ice_update_vsi_ring_stats(vsi);
stats->tx_packets = vsi_stats->tx_packets;
stats->tx_bytes = vsi_stats->tx_bytes;
stats->rx_packets = vsi_stats->rx_packets;
stats->rx_bytes = vsi_stats->rx_bytes;
/* The rest of the stats can be read from the hardware but instead we
* just return values that the watchdog task has already obtained from
* the hardware.
*/
stats->multicast = vsi_stats->multicast;
stats->tx_errors = vsi_stats->tx_errors;
stats->tx_dropped = vsi_stats->tx_dropped;
stats->rx_errors = vsi_stats->rx_errors;
stats->rx_dropped = vsi_stats->rx_dropped;
stats->rx_crc_errors = vsi_stats->rx_crc_errors;
stats->rx_length_errors = vsi_stats->rx_length_errors;
}
/**
* ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
* @vsi: VSI having NAPI disabled
*/
static void ice_napi_disable_all(struct ice_vsi *vsi)
{
int q_idx;
if (!vsi->netdev)
return;
ice_for_each_q_vector(vsi, q_idx) {
struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
napi_disable(&q_vector->napi);
cancel_work_sync(&q_vector->tx.dim.work);
cancel_work_sync(&q_vector->rx.dim.work);
}
}
/**
* ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
* @vsi: the VSI being un-configured
*/
static void ice_vsi_dis_irq(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
u32 val;
int i;
/* disable interrupt causation from each Rx queue; Tx queues are
* handled in ice_vsi_stop_tx_ring()
*/
if (vsi->rx_rings) {
ice_for_each_rxq(vsi, i) {
if (vsi->rx_rings[i]) {
u16 reg;
reg = vsi->rx_rings[i]->reg_idx;
val = rd32(hw, QINT_RQCTL(reg));
val &= ~QINT_RQCTL_CAUSE_ENA_M;
wr32(hw, QINT_RQCTL(reg), val);
}
}
}
/* disable each interrupt */
ice_for_each_q_vector(vsi, i) {
if (!vsi->q_vectors[i])
continue;
wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
}
ice_flush(hw);
/* don't call synchronize_irq() for VF's from the host */
if (vsi->type == ICE_VSI_VF)
return;
ice_for_each_q_vector(vsi, i)
synchronize_irq(vsi->q_vectors[i]->irq.virq);
}
/**
* ice_down - Shutdown the connection
* @vsi: The VSI being stopped
*
* Caller of this function is expected to set the vsi->state ICE_DOWN bit
*/
int ice_down(struct ice_vsi *vsi)
{
int i, tx_err, rx_err, vlan_err = 0;
WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
if (vsi->netdev) {
vlan_err = ice_vsi_del_vlan_zero(vsi);
ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
netif_carrier_off(vsi->netdev);
netif_tx_disable(vsi->netdev);
}
ice_vsi_dis_irq(vsi);
tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
if (tx_err)
netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
vsi->vsi_num, tx_err);
if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
if (tx_err)
netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
vsi->vsi_num, tx_err);
}
rx_err = ice_vsi_stop_all_rx_rings(vsi);
if (rx_err)
netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
vsi->vsi_num, rx_err);
ice_napi_disable_all(vsi);
ice_for_each_txq(vsi, i)
ice_clean_tx_ring(vsi->tx_rings[i]);
if (ice_is_xdp_ena_vsi(vsi))
ice_for_each_xdp_txq(vsi, i)
ice_clean_tx_ring(vsi->xdp_rings[i]);
ice_for_each_rxq(vsi, i)
ice_clean_rx_ring(vsi->rx_rings[i]);
if (tx_err || rx_err || vlan_err) {
netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
vsi->vsi_num, vsi->vsw->sw_id);
return -EIO;
}
return 0;
}
/**
* ice_down_up - shutdown the VSI connection and bring it up
* @vsi: the VSI to be reconnected
*/
int ice_down_up(struct ice_vsi *vsi)
{
int ret;
/* if DOWN already set, nothing to do */
if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
return 0;
ret = ice_down(vsi);
if (ret)
return ret;
ret = ice_up(vsi);
if (ret) {
netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
return ret;
}
return 0;
}
/**
* ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
* @vsi: VSI having resources allocated
*
* Return 0 on success, negative on failure
*/
int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
{
int i, err = 0;
if (!vsi->num_txq) {
dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
vsi->vsi_num);
return -EINVAL;
}
ice_for_each_txq(vsi, i) {
struct ice_tx_ring *ring = vsi->tx_rings[i];
if (!ring)
return -EINVAL;
if (vsi->netdev)
ring->netdev = vsi->netdev;
err = ice_setup_tx_ring(ring);
if (err)
break;
}
return err;
}
/**
* ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
* @vsi: VSI having resources allocated
*
* Return 0 on success, negative on failure
*/
int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
{
int i, err = 0;
if (!vsi->num_rxq) {
dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
vsi->vsi_num);
return -EINVAL;
}
ice_for_each_rxq(vsi, i) {
struct ice_rx_ring *ring = vsi->rx_rings[i];
if (!ring)
return -EINVAL;
if (vsi->netdev)
ring->netdev = vsi->netdev;
err = ice_setup_rx_ring(ring);
if (err)
break;
}
return err;
}
/**
* ice_vsi_open_ctrl - open control VSI for use
* @vsi: the VSI to open
*
* Initialization of the Control VSI
*
* Returns 0 on success, negative value on error
*/
int ice_vsi_open_ctrl(struct ice_vsi *vsi)
{
char int_name[ICE_INT_NAME_STR_LEN];
struct ice_pf *pf = vsi->back;
struct device *dev;
int err;
dev = ice_pf_to_dev(pf);
/* allocate descriptors */
err = ice_vsi_setup_tx_rings(vsi);
if (err)
goto err_setup_tx;
err = ice_vsi_setup_rx_rings(vsi);
if (err)
goto err_setup_rx;
err = ice_vsi_cfg_lan(vsi);
if (err)
goto err_setup_rx;
snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
dev_driver_string(dev), dev_name(dev));
err = ice_vsi_req_irq_msix(vsi, int_name);
if (err)
goto err_setup_rx;
ice_vsi_cfg_msix(vsi);
err = ice_vsi_start_all_rx_rings(vsi);
if (err)
goto err_up_complete;
clear_bit(ICE_VSI_DOWN, vsi->state);
ice_vsi_ena_irq(vsi);
return 0;
err_up_complete:
ice_down(vsi);
err_setup_rx:
ice_vsi_free_rx_rings(vsi);
err_setup_tx:
ice_vsi_free_tx_rings(vsi);
return err;
}
/**
* ice_vsi_open - Called when a network interface is made active
* @vsi: the VSI to open
*
* Initialization of the VSI
*
* Returns 0 on success, negative value on error
*/
int ice_vsi_open(struct ice_vsi *vsi)
{
char int_name[ICE_INT_NAME_STR_LEN];
struct ice_pf *pf = vsi->back;
int err;
/* allocate descriptors */
err = ice_vsi_setup_tx_rings(vsi);
if (err)
goto err_setup_tx;
err = ice_vsi_setup_rx_rings(vsi);
if (err)
goto err_setup_rx;
err = ice_vsi_cfg_lan(vsi);
if (err)
goto err_setup_rx;
snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
err = ice_vsi_req_irq_msix(vsi, int_name);
if (err)
goto err_setup_rx;
ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
if (vsi->type == ICE_VSI_PF) {
/* Notify the stack of the actual queue counts. */
err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
if (err)
goto err_set_qs;
err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
if (err)
goto err_set_qs;
}
err = ice_up_complete(vsi);
if (err)
goto err_up_complete;
return 0;
err_up_complete:
ice_down(vsi);
err_set_qs:
ice_vsi_free_irq(vsi);
err_setup_rx:
ice_vsi_free_rx_rings(vsi);
err_setup_tx:
ice_vsi_free_tx_rings(vsi);
return err;
}
/**
* ice_vsi_release_all - Delete all VSIs
* @pf: PF from which all VSIs are being removed
*/
static void ice_vsi_release_all(struct ice_pf *pf)
{
int err, i;
if (!pf->vsi)
return;
ice_for_each_vsi(pf, i) {
if (!pf->vsi[i])
continue;
if (pf->vsi[i]->type == ICE_VSI_CHNL)
continue;
err = ice_vsi_release(pf->vsi[i]);
if (err)
dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
i, err, pf->vsi[i]->vsi_num);
}
}
/**
* ice_vsi_rebuild_by_type - Rebuild VSI of a given type
* @pf: pointer to the PF instance
* @type: VSI type to rebuild
*
* Iterates through the pf->vsi array and rebuilds VSIs of the requested type
*/
static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
{
struct device *dev = ice_pf_to_dev(pf);
int i, err;
ice_for_each_vsi(pf, i) {
struct ice_vsi *vsi = pf->vsi[i];
if (!vsi || vsi->type != type)
continue;
/* rebuild the VSI */
err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
if (err) {
dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
err, vsi->idx, ice_vsi_type_str(type));
return err;
}
/* replay filters for the VSI */
err = ice_replay_vsi(&pf->hw, vsi->idx);
if (err) {
dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
err, vsi->idx, ice_vsi_type_str(type));
return err;
}
/* Re-map HW VSI number, using VSI handle that has been
* previously validated in ice_replay_vsi() call above
*/
vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
/* enable the VSI */
err = ice_ena_vsi(vsi, false);
if (err) {
dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
err, vsi->idx, ice_vsi_type_str(type));
return err;
}
dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
ice_vsi_type_str(type));
}
return 0;
}
/**
* ice_update_pf_netdev_link - Update PF netdev link status
* @pf: pointer to the PF instance
*/
static void ice_update_pf_netdev_link(struct ice_pf *pf)
{
bool link_up;
int i;
ice_for_each_vsi(pf, i) {
struct ice_vsi *vsi = pf->vsi[i];
if (!vsi || vsi->type != ICE_VSI_PF)
return;
ice_get_link_status(pf->vsi[i]->port_info, &link_up);
if (link_up) {
netif_carrier_on(pf->vsi[i]->netdev);
netif_tx_wake_all_queues(pf->vsi[i]->netdev);
} else {
netif_carrier_off(pf->vsi[i]->netdev);
netif_tx_stop_all_queues(pf->vsi[i]->netdev);
}
}
}
/**
* ice_rebuild - rebuild after reset
* @pf: PF to rebuild
* @reset_type: type of reset
*
* Do not rebuild VF VSI in this flow because that is already handled via
* ice_reset_all_vfs(). This is because requirements for resetting a VF after a
* PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
* to reset/rebuild all the VF VSI twice.
*/
static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
bool dvm;
int err;
if (test_bit(ICE_DOWN, pf->state))
goto clear_recovery;
dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
#define ICE_EMP_RESET_SLEEP_MS 5000
if (reset_type == ICE_RESET_EMPR) {
/* If an EMP reset has occurred, any previously pending flash
* update will have completed. We no longer know whether or
* not the NVM update EMP reset is restricted.
*/
pf->fw_emp_reset_disabled = false;
msleep(ICE_EMP_RESET_SLEEP_MS);
}
err = ice_init_all_ctrlq(hw);
if (err) {
dev_err(dev, "control queues init failed %d\n", err);
goto err_init_ctrlq;
}
/* if DDP was previously loaded successfully */
if (!ice_is_safe_mode(pf)) {
/* reload the SW DB of filter tables */
if (reset_type == ICE_RESET_PFR)
ice_fill_blk_tbls(hw);
else
/* Reload DDP Package after CORER/GLOBR reset */
ice_load_pkg(NULL, pf);
}
err = ice_clear_pf_cfg(hw);
if (err) {
dev_err(dev, "clear PF configuration failed %d\n", err);
goto err_init_ctrlq;
}
ice_clear_pxe_mode(hw);
err = ice_init_nvm(hw);
if (err) {
dev_err(dev, "ice_init_nvm failed %d\n", err);
goto err_init_ctrlq;
}
err = ice_get_caps(hw);
if (err) {
dev_err(dev, "ice_get_caps failed %d\n", err);
goto err_init_ctrlq;
}
err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
if (err) {
dev_err(dev, "set_mac_cfg failed %d\n", err);
goto err_init_ctrlq;
}
dvm = ice_is_dvm_ena(hw);
err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
if (err)
goto err_init_ctrlq;
err = ice_sched_init_port(hw->port_info);
if (err)
goto err_sched_init_port;
/* start misc vector */
err = ice_req_irq_msix_misc(pf);
if (err) {
dev_err(dev, "misc vector setup failed: %d\n", err);
goto err_sched_init_port;
}
if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
if (!rd32(hw, PFQF_FD_SIZE)) {
u16 unused, guar, b_effort;
guar = hw->func_caps.fd_fltr_guar;
b_effort = hw->func_caps.fd_fltr_best_effort;
/* force guaranteed filter pool for PF */
ice_alloc_fd_guar_item(hw, &unused, guar);
/* force shared filter pool for PF */
ice_alloc_fd_shrd_item(hw, &unused, b_effort);
}
}
if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
ice_dcb_rebuild(pf);
/* If the PF previously had enabled PTP, PTP init needs to happen before
* the VSI rebuild. If not, this causes the PTP link status events to
* fail.
*/
if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
ice_ptp_rebuild(pf, reset_type);
if (ice_is_feature_supported(pf, ICE_F_GNSS))
ice_gnss_init(pf);
/* rebuild PF VSI */
err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
if (err) {
dev_err(dev, "PF VSI rebuild failed: %d\n", err);
goto err_vsi_rebuild;
}
ice_eswitch_rebuild(pf);
if (reset_type == ICE_RESET_PFR) {
err = ice_rebuild_channels(pf);
if (err) {
dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
err);
goto err_vsi_rebuild;
}
}
/* If Flow Director is active */
if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
if (err) {
dev_err(dev, "control VSI rebuild failed: %d\n", err);
goto err_vsi_rebuild;
}
/* replay HW Flow Director recipes */
if (hw->fdir_prof)
ice_fdir_replay_flows(hw);
/* replay Flow Director filters */
ice_fdir_replay_fltrs(pf);
ice_rebuild_arfs(pf);
}
ice_update_pf_netdev_link(pf);
/* tell the firmware we are up */
err = ice_send_version(pf);
if (err) {
dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
err);
goto err_vsi_rebuild;
}
ice_replay_post(hw);
/* if we get here, reset flow is successful */
clear_bit(ICE_RESET_FAILED, pf->state);
ice_plug_aux_dev(pf);
if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG))
ice_lag_rebuild(pf);
/* Restore timestamp mode settings after VSI rebuild */
ice_ptp_restore_timestamp_mode(pf);
return;
err_vsi_rebuild:
err_sched_init_port:
ice_sched_cleanup_all(hw);
err_init_ctrlq:
ice_shutdown_all_ctrlq(hw, false);
set_bit(ICE_RESET_FAILED, pf->state);
clear_recovery:
/* set this bit in PF state to control service task scheduling */
set_bit(ICE_NEEDS_RESTART, pf->state);
dev_err(dev, "Rebuild failed, unload and reload driver\n");
}
/**
* ice_change_mtu - NDO callback to change the MTU
* @netdev: network interface device structure
* @new_mtu: new value for maximum frame size
*
* Returns 0 on success, negative on failure
*/
static int ice_change_mtu(struct net_device *netdev, int new_mtu)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
struct ice_pf *pf = vsi->back;
struct bpf_prog *prog;
u8 count = 0;
int err = 0;
if (new_mtu == (int)netdev->mtu) {
netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
return 0;
}
prog = vsi->xdp_prog;
if (prog && !prog->aux->xdp_has_frags) {
int frame_size = ice_max_xdp_frame_size(vsi);
if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
netdev_err(netdev, "max MTU for XDP usage is %d\n",
frame_size - ICE_ETH_PKT_HDR_PAD);
return -EINVAL;
}
} else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) {
if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) {
netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n",
ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD);
return -EINVAL;
}
}
/* if a reset is in progress, wait for some time for it to complete */
do {
if (ice_is_reset_in_progress(pf->state)) {
count++;
usleep_range(1000, 2000);
} else {
break;
}
} while (count < 100);
if (count == 100) {
netdev_err(netdev, "can't change MTU. Device is busy\n");
return -EBUSY;
}
WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu);
err = ice_down_up(vsi);
if (err)
return err;
netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
return err;
}
/**
* ice_eth_ioctl - Access the hwtstamp interface
* @netdev: network interface device structure
* @ifr: interface request data
* @cmd: ioctl command
*/
static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_pf *pf = np->vsi->back;
switch (cmd) {
case SIOCGHWTSTAMP:
return ice_ptp_get_ts_config(pf, ifr);
case SIOCSHWTSTAMP:
return ice_ptp_set_ts_config(pf, ifr);
default:
return -EOPNOTSUPP;
}
}
/**
* ice_aq_str - convert AQ err code to a string
* @aq_err: the AQ error code to convert
*/
const char *ice_aq_str(enum ice_aq_err aq_err)
{
switch (aq_err) {
case ICE_AQ_RC_OK:
return "OK";
case ICE_AQ_RC_EPERM:
return "ICE_AQ_RC_EPERM";
case ICE_AQ_RC_ENOENT:
return "ICE_AQ_RC_ENOENT";
case ICE_AQ_RC_ENOMEM:
return "ICE_AQ_RC_ENOMEM";
case ICE_AQ_RC_EBUSY:
return "ICE_AQ_RC_EBUSY";
case ICE_AQ_RC_EEXIST:
return "ICE_AQ_RC_EEXIST";
case ICE_AQ_RC_EINVAL:
return "ICE_AQ_RC_EINVAL";
case ICE_AQ_RC_ENOSPC:
return "ICE_AQ_RC_ENOSPC";
case ICE_AQ_RC_ENOSYS:
return "ICE_AQ_RC_ENOSYS";
case ICE_AQ_RC_EMODE:
return "ICE_AQ_RC_EMODE";
case ICE_AQ_RC_ENOSEC:
return "ICE_AQ_RC_ENOSEC";
case ICE_AQ_RC_EBADSIG:
return "ICE_AQ_RC_EBADSIG";
case ICE_AQ_RC_ESVN:
return "ICE_AQ_RC_ESVN";
case ICE_AQ_RC_EBADMAN:
return "ICE_AQ_RC_EBADMAN";
case ICE_AQ_RC_EBADBUF:
return "ICE_AQ_RC_EBADBUF";
}
return "ICE_AQ_RC_UNKNOWN";
}
/**
* ice_set_rss_lut - Set RSS LUT
* @vsi: Pointer to VSI structure
* @lut: Lookup table
* @lut_size: Lookup table size
*
* Returns 0 on success, negative on failure
*/
int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
{
struct ice_aq_get_set_rss_lut_params params = {};
struct ice_hw *hw = &vsi->back->hw;
int status;
if (!lut)
return -EINVAL;
params.vsi_handle = vsi->idx;
params.lut_size = lut_size;
params.lut_type = vsi->rss_lut_type;
params.lut = lut;
status = ice_aq_set_rss_lut(hw, &params);
if (status)
dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
status, ice_aq_str(hw->adminq.sq_last_status));
return status;
}
/**
* ice_set_rss_key - Set RSS key
* @vsi: Pointer to the VSI structure
* @seed: RSS hash seed
*
* Returns 0 on success, negative on failure
*/
int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
{
struct ice_hw *hw = &vsi->back->hw;
int status;
if (!seed)
return -EINVAL;
status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
if (status)
dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
status, ice_aq_str(hw->adminq.sq_last_status));
return status;
}
/**
* ice_get_rss_lut - Get RSS LUT
* @vsi: Pointer to VSI structure
* @lut: Buffer to store the lookup table entries
* @lut_size: Size of buffer to store the lookup table entries
*
* Returns 0 on success, negative on failure
*/
int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
{
struct ice_aq_get_set_rss_lut_params params = {};
struct ice_hw *hw = &vsi->back->hw;
int status;
if (!lut)
return -EINVAL;
params.vsi_handle = vsi->idx;
params.lut_size = lut_size;
params.lut_type = vsi->rss_lut_type;
params.lut = lut;
status = ice_aq_get_rss_lut(hw, &params);
if (status)
dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
status, ice_aq_str(hw->adminq.sq_last_status));
return status;
}
/**
* ice_get_rss_key - Get RSS key
* @vsi: Pointer to VSI structure
* @seed: Buffer to store the key in
*
* Returns 0 on success, negative on failure
*/
int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
{
struct ice_hw *hw = &vsi->back->hw;
int status;
if (!seed)
return -EINVAL;
status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
if (status)
dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
status, ice_aq_str(hw->adminq.sq_last_status));
return status;
}
/**
* ice_set_rss_hfunc - Set RSS HASH function
* @vsi: Pointer to VSI structure
* @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*)
*
* Returns 0 on success, negative on failure
*/
int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc)
{
struct ice_hw *hw = &vsi->back->hw;
struct ice_vsi_ctx *ctx;
bool symm;
int err;
if (hfunc == vsi->rss_hfunc)
return 0;
if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ &&
hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ)
return -EOPNOTSUPP;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
ctx->info.q_opt_rss = vsi->info.q_opt_rss;
ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M;
ctx->info.q_opt_rss |=
FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc);
ctx->info.q_opt_tc = vsi->info.q_opt_tc;
ctx->info.q_opt_flags = vsi->info.q_opt_rss;
err = ice_update_vsi(hw, vsi->idx, ctx, NULL);
if (err) {
dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n",
vsi->vsi_num, err);
} else {
vsi->info.q_opt_rss = ctx->info.q_opt_rss;
vsi->rss_hfunc = hfunc;
netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n",
hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ?
"Symmetric " : "");
}
kfree(ctx);
if (err)
return err;
/* Fix the symmetry setting for all existing RSS configurations */
symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ);
return ice_set_rss_cfg_symm(hw, vsi, symm);
}
/**
* ice_bridge_getlink - Get the hardware bridge mode
* @skb: skb buff
* @pid: process ID
* @seq: RTNL message seq
* @dev: the netdev being configured
* @filter_mask: filter mask passed in
* @nlflags: netlink flags passed in
*
* Return the bridge mode (VEB/VEPA)
*/
static int
ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
struct net_device *dev, u32 filter_mask, int nlflags)
{
struct ice_netdev_priv *np = netdev_priv(dev);
struct ice_vsi *vsi = np->vsi;
struct ice_pf *pf = vsi->back;
u16 bmode;
bmode = pf->first_sw->bridge_mode;
return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
filter_mask, NULL);
}
/**
* ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
* @vsi: Pointer to VSI structure
* @bmode: Hardware bridge mode (VEB/VEPA)
*
* Returns 0 on success, negative on failure
*/
static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
{
struct ice_aqc_vsi_props *vsi_props;
struct ice_hw *hw = &vsi->back->hw;
struct ice_vsi_ctx *ctxt;
int ret;
vsi_props = &vsi->info;
ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
if (!ctxt)
return -ENOMEM;
ctxt->info = vsi->info;
if (bmode == BRIDGE_MODE_VEB)
/* change from VEPA to VEB mode */
ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
else
/* change from VEB to VEPA mode */
ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
if (ret) {
dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
goto out;
}
/* Update sw flags for book keeping */
vsi_props->sw_flags = ctxt->info.sw_flags;
out:
kfree(ctxt);
return ret;
}
/**
* ice_bridge_setlink - Set the hardware bridge mode
* @dev: the netdev being configured
* @nlh: RTNL message
* @flags: bridge setlink flags
* @extack: netlink extended ack
*
* Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
* hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
* not already set for all VSIs connected to this switch. And also update the
* unicast switch filter rules for the corresponding switch of the netdev.
*/
static int
ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
u16 __always_unused flags,
struct netlink_ext_ack __always_unused *extack)
{
struct ice_netdev_priv *np = netdev_priv(dev);
struct ice_pf *pf = np->vsi->back;
struct nlattr *attr, *br_spec;
struct ice_hw *hw = &pf->hw;
struct ice_sw *pf_sw;
int rem, v, err = 0;
pf_sw = pf->first_sw;
/* find the attribute in the netlink message */
br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
if (!br_spec)
return -EINVAL;
nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) {
__u16 mode = nla_get_u16(attr);
if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
return -EINVAL;
/* Continue if bridge mode is not being flipped */
if (mode == pf_sw->bridge_mode)
continue;
/* Iterates through the PF VSI list and update the loopback
* mode of the VSI
*/
ice_for_each_vsi(pf, v) {
if (!pf->vsi[v])
continue;
err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
if (err)
return err;
}
hw->evb_veb = (mode == BRIDGE_MODE_VEB);
/* Update the unicast switch filter rules for the corresponding
* switch of the netdev
*/
err = ice_update_sw_rule_bridge_mode(hw);
if (err) {
netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
mode, err,
ice_aq_str(hw->adminq.sq_last_status));
/* revert hw->evb_veb */
hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
return err;
}
pf_sw->bridge_mode = mode;
}
return 0;
}
/**
* ice_tx_timeout - Respond to a Tx Hang
* @netdev: network interface device structure
* @txqueue: Tx queue
*/
static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_tx_ring *tx_ring = NULL;
struct ice_vsi *vsi = np->vsi;
struct ice_pf *pf = vsi->back;
u32 i;
pf->tx_timeout_count++;
/* Check if PFC is enabled for the TC to which the queue belongs
* to. If yes then Tx timeout is not caused by a hung queue, no
* need to reset and rebuild
*/
if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
txqueue);
return;
}
/* now that we have an index, find the tx_ring struct */
ice_for_each_txq(vsi, i)
if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
if (txqueue == vsi->tx_rings[i]->q_index) {
tx_ring = vsi->tx_rings[i];
break;
}
/* Reset recovery level if enough time has elapsed after last timeout.
* Also ensure no new reset action happens before next timeout period.
*/
if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
pf->tx_timeout_recovery_level = 1;
else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
netdev->watchdog_timeo)))
return;
if (tx_ring) {
struct ice_hw *hw = &pf->hw;
u32 head, val = 0;
head = FIELD_GET(QTX_COMM_HEAD_HEAD_M,
rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])));
/* Read interrupt register */
val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
vsi->vsi_num, txqueue, tx_ring->next_to_clean,
head, tx_ring->next_to_use, val);
}
pf->tx_timeout_last_recovery = jiffies;
netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
pf->tx_timeout_recovery_level, txqueue);
switch (pf->tx_timeout_recovery_level) {
case 1:
set_bit(ICE_PFR_REQ, pf->state);
break;
case 2:
set_bit(ICE_CORER_REQ, pf->state);
break;
case 3:
set_bit(ICE_GLOBR_REQ, pf->state);
break;
default:
netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
set_bit(ICE_DOWN, pf->state);
set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
set_bit(ICE_SERVICE_DIS, pf->state);
break;
}
ice_service_task_schedule(pf);
pf->tx_timeout_recovery_level++;
}
/**
* ice_setup_tc_cls_flower - flower classifier offloads
* @np: net device to configure
* @filter_dev: device on which filter is added
* @cls_flower: offload data
*/
static int
ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
struct net_device *filter_dev,
struct flow_cls_offload *cls_flower)
{
struct ice_vsi *vsi = np->vsi;
if (cls_flower->common.chain_index)
return -EOPNOTSUPP;
switch (cls_flower->command) {
case FLOW_CLS_REPLACE:
return ice_add_cls_flower(filter_dev, vsi, cls_flower);
case FLOW_CLS_DESTROY:
return ice_del_cls_flower(vsi, cls_flower);
default:
return -EINVAL;
}
}
/**
* ice_setup_tc_block_cb - callback handler registered for TC block
* @type: TC SETUP type
* @type_data: TC flower offload data that contains user input
* @cb_priv: netdev private data
*/
static int
ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
{
struct ice_netdev_priv *np = cb_priv;
switch (type) {
case TC_SETUP_CLSFLOWER:
return ice_setup_tc_cls_flower(np, np->vsi->netdev,
type_data);
default:
return -EOPNOTSUPP;
}
}
/**
* ice_validate_mqprio_qopt - Validate TCF input parameters
* @vsi: Pointer to VSI
* @mqprio_qopt: input parameters for mqprio queue configuration
*
* This function validates MQPRIO params, such as qcount (power of 2 wherever
* needed), and make sure user doesn't specify qcount and BW rate limit
* for TCs, which are more than "num_tc"
*/
static int
ice_validate_mqprio_qopt(struct ice_vsi *vsi,
struct tc_mqprio_qopt_offload *mqprio_qopt)
{
int non_power_of_2_qcount = 0;
struct ice_pf *pf = vsi->back;
int max_rss_q_cnt = 0;
u64 sum_min_rate = 0;
struct device *dev;
int i, speed;
u8 num_tc;
if (vsi->type != ICE_VSI_PF)
return -EINVAL;
if (mqprio_qopt->qopt.offset[0] != 0 ||
mqprio_qopt->qopt.num_tc < 1 ||
mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
return -EINVAL;
dev = ice_pf_to_dev(pf);
vsi->ch_rss_size = 0;
num_tc = mqprio_qopt->qopt.num_tc;
speed = ice_get_link_speed_kbps(vsi);
for (i = 0; num_tc; i++) {
int qcount = mqprio_qopt->qopt.count[i];
u64 max_rate, min_rate, rem;
if (!qcount)
return -EINVAL;
if (is_power_of_2(qcount)) {
if (non_power_of_2_qcount &&
qcount > non_power_of_2_qcount) {
dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
qcount, non_power_of_2_qcount);
return -EINVAL;
}
if (qcount > max_rss_q_cnt)
max_rss_q_cnt = qcount;
} else {
if (non_power_of_2_qcount &&
qcount != non_power_of_2_qcount) {
dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
qcount, non_power_of_2_qcount);
return -EINVAL;
}
if (qcount < max_rss_q_cnt) {
dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
qcount, max_rss_q_cnt);
return -EINVAL;
}
max_rss_q_cnt = qcount;
non_power_of_2_qcount = qcount;
}
/* TC command takes input in K/N/Gbps or K/M/Gbit etc but
* converts the bandwidth rate limit into Bytes/s when
* passing it down to the driver. So convert input bandwidth
* from Bytes/s to Kbps
*/
max_rate = mqprio_qopt->max_rate[i];
max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
/* min_rate is minimum guaranteed rate and it can't be zero */
min_rate = mqprio_qopt->min_rate[i];
min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
sum_min_rate += min_rate;
if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
min_rate, ICE_MIN_BW_LIMIT);
return -EINVAL;
}
if (max_rate && max_rate > speed) {
dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n",
i, max_rate, speed);
return -EINVAL;
}
iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
if (rem) {
dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
i, ICE_MIN_BW_LIMIT);
return -EINVAL;
}
iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
if (rem) {
dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
i, ICE_MIN_BW_LIMIT);
return -EINVAL;
}
/* min_rate can't be more than max_rate, except when max_rate
* is zero (implies max_rate sought is max line rate). In such
* a case min_rate can be more than max.
*/
if (max_rate && min_rate > max_rate) {
dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
min_rate, max_rate);
return -EINVAL;
}
if (i >= mqprio_qopt->qopt.num_tc - 1)
break;
if (mqprio_qopt->qopt.offset[i + 1] !=
(mqprio_qopt->qopt.offset[i] + qcount))
return -EINVAL;
}
if (vsi->num_rxq <
(mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
return -EINVAL;
if (vsi->num_txq <
(mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
return -EINVAL;
if (sum_min_rate && sum_min_rate > (u64)speed) {
dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
sum_min_rate, speed);
return -EINVAL;
}
/* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
vsi->ch_rss_size = max_rss_q_cnt;
return 0;
}
/**
* ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
* @pf: ptr to PF device
* @vsi: ptr to VSI
*/
static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
{
struct device *dev = ice_pf_to_dev(pf);
bool added = false;
struct ice_hw *hw;
int flow;
if (!(vsi->num_gfltr || vsi->num_bfltr))
return -EINVAL;
hw = &pf->hw;
for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
struct ice_fd_hw_prof *prof;
int tun, status;
u64 entry_h;
if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
hw->fdir_prof[flow]->cnt))
continue;
for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
enum ice_flow_priority prio;
/* add this VSI to FDir profile for this flow */
prio = ICE_FLOW_PRIO_NORMAL;
prof = hw->fdir_prof[flow];
status = ice_flow_add_entry(hw, ICE_BLK_FD,
prof->prof_id[tun],
prof->vsi_h[0], vsi->idx,
prio, prof->fdir_seg[tun],
&entry_h);
if (status) {
dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
vsi->idx, flow);
continue;
}
prof->entry_h[prof->cnt][tun] = entry_h;
}
/* store VSI for filter replay and delete */
prof->vsi_h[prof->cnt] = vsi->idx;
prof->cnt++;
added = true;
dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
flow);
}
if (!added)
dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
return 0;
}
/**
* ice_add_channel - add a channel by adding VSI
* @pf: ptr to PF device
* @sw_id: underlying HW switching element ID
* @ch: ptr to channel structure
*
* Add a channel (VSI) using add_vsi and queue_map
*/
static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_vsi *vsi;
if (ch->type != ICE_VSI_CHNL) {
dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
return -EINVAL;
}
vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
if (!vsi || vsi->type != ICE_VSI_CHNL) {
dev_err(dev, "create chnl VSI failure\n");
return -EINVAL;
}
ice_add_vsi_to_fdir(pf, vsi);
ch->sw_id = sw_id;
ch->vsi_num = vsi->vsi_num;
ch->info.mapping_flags = vsi->info.mapping_flags;
ch->ch_vsi = vsi;
/* set the back pointer of channel for newly created VSI */
vsi->ch = ch;
memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
sizeof(vsi->info.q_mapping));
memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
sizeof(vsi->info.tc_mapping));
return 0;
}
/**
* ice_chnl_cfg_res
* @vsi: the VSI being setup
* @ch: ptr to channel structure
*
* Configure channel specific resources such as rings, vector.
*/
static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
{
int i;
for (i = 0; i < ch->num_txq; i++) {
struct ice_q_vector *tx_q_vector, *rx_q_vector;
struct ice_ring_container *rc;
struct ice_tx_ring *tx_ring;
struct ice_rx_ring *rx_ring;
tx_ring = vsi->tx_rings[ch->base_q + i];
rx_ring = vsi->rx_rings[ch->base_q + i];
if (!tx_ring || !rx_ring)
continue;
/* setup ring being channel enabled */
tx_ring->ch = ch;
rx_ring->ch = ch;
/* following code block sets up vector specific attributes */
tx_q_vector = tx_ring->q_vector;
rx_q_vector = rx_ring->q_vector;
if (!tx_q_vector && !rx_q_vector)
continue;
if (tx_q_vector) {
tx_q_vector->ch = ch;
/* setup Tx and Rx ITR setting if DIM is off */
rc = &tx_q_vector->tx;
if (!ITR_IS_DYNAMIC(rc))
ice_write_itr(rc, rc->itr_setting);
}
if (rx_q_vector) {
rx_q_vector->ch = ch;
/* setup Tx and Rx ITR setting if DIM is off */
rc = &rx_q_vector->rx;
if (!ITR_IS_DYNAMIC(rc))
ice_write_itr(rc, rc->itr_setting);
}
}
/* it is safe to assume that, if channel has non-zero num_t[r]xq, then
* GLINT_ITR register would have written to perform in-context
* update, hence perform flush
*/
if (ch->num_txq || ch->num_rxq)
ice_flush(&vsi->back->hw);
}
/**
* ice_cfg_chnl_all_res - configure channel resources
* @vsi: pte to main_vsi
* @ch: ptr to channel structure
*
* This function configures channel specific resources such as flow-director
* counter index, and other resources such as queues, vectors, ITR settings
*/
static void
ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
{
/* configure channel (aka ADQ) resources such as queues, vectors,
* ITR settings for channel specific vectors and anything else
*/
ice_chnl_cfg_res(vsi, ch);
}
/**
* ice_setup_hw_channel - setup new channel
* @pf: ptr to PF device
* @vsi: the VSI being setup
* @ch: ptr to channel structure
* @sw_id: underlying HW switching element ID
* @type: type of channel to be created (VMDq2/VF)
*
* Setup new channel (VSI) based on specified type (VMDq2/VF)
* and configures Tx rings accordingly
*/
static int
ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
struct ice_channel *ch, u16 sw_id, u8 type)
{
struct device *dev = ice_pf_to_dev(pf);
int ret;
ch->base_q = vsi->next_base_q;
ch->type = type;
ret = ice_add_channel(pf, sw_id, ch);
if (ret) {
dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
return ret;
}
/* configure/setup ADQ specific resources */
ice_cfg_chnl_all_res(vsi, ch);
/* make sure to update the next_base_q so that subsequent channel's
* (aka ADQ) VSI queue map is correct
*/
vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
ch->num_rxq);
return 0;
}
/**
* ice_setup_channel - setup new channel using uplink element
* @pf: ptr to PF device
* @vsi: the VSI being setup
* @ch: ptr to channel structure
*
* Setup new channel (VSI) based on specified type (VMDq2/VF)
* and uplink switching element
*/
static bool
ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
struct ice_channel *ch)
{
struct device *dev = ice_pf_to_dev(pf);
u16 sw_id;
int ret;
if (vsi->type != ICE_VSI_PF) {
dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
return false;
}
sw_id = pf->first_sw->sw_id;
/* create channel (VSI) */
ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
if (ret) {
dev_err(dev, "failed to setup hw_channel\n");
return false;
}
dev_dbg(dev, "successfully created channel()\n");
return ch->ch_vsi ? true : false;
}
/**
* ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
* @vsi: VSI to be configured
* @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
* @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
*/
static int
ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
{
int err;
err = ice_set_min_bw_limit(vsi, min_tx_rate);
if (err)
return err;
return ice_set_max_bw_limit(vsi, max_tx_rate);
}
/**
* ice_create_q_channel - function to create channel
* @vsi: VSI to be configured
* @ch: ptr to channel (it contains channel specific params)
*
* This function creates channel (VSI) using num_queues specified by user,
* reconfigs RSS if needed.
*/
static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
{
struct ice_pf *pf = vsi->back;
struct device *dev;
if (!ch)
return -EINVAL;
dev = ice_pf_to_dev(pf);
if (!ch->num_txq || !ch->num_rxq) {
dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
return -EINVAL;
}
if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
vsi->cnt_q_avail, ch->num_txq);
return -EINVAL;
}
if (!ice_setup_channel(pf, vsi, ch)) {
dev_info(dev, "Failed to setup channel\n");
return -EINVAL;
}
/* configure BW rate limit */
if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
int ret;
ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
ch->min_tx_rate);
if (ret)
dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
ch->max_tx_rate, ch->ch_vsi->vsi_num);
else
dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
ch->max_tx_rate, ch->ch_vsi->vsi_num);
}
vsi->cnt_q_avail -= ch->num_txq;
return 0;
}
/**
* ice_rem_all_chnl_fltrs - removes all channel filters
* @pf: ptr to PF, TC-flower based filter are tracked at PF level
*
* Remove all advanced switch filters only if they are channel specific
* tc-flower based filter
*/
static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
{
struct ice_tc_flower_fltr *fltr;
struct hlist_node *node;
/* to remove all channel filters, iterate an ordered list of filters */
hlist_for_each_entry_safe(fltr, node,
&pf->tc_flower_fltr_list,
tc_flower_node) {
struct ice_rule_query_data rule;
int status;
/* for now process only channel specific filters */
if (!ice_is_chnl_fltr(fltr))
continue;
rule.rid = fltr->rid;
rule.rule_id = fltr->rule_id;
rule.vsi_handle = fltr->dest_vsi_handle;
status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
if (status) {
if (status == -ENOENT)
dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
rule.rule_id);
else
dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
status);
} else if (fltr->dest_vsi) {
/* update advanced switch filter count */
if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
u32 flags = fltr->flags;
fltr->dest_vsi->num_chnl_fltr--;
if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
ICE_TC_FLWR_FIELD_ENC_DST_MAC))
pf->num_dmac_chnl_fltrs--;
}
}
hlist_del(&fltr->tc_flower_node);
kfree(fltr);
}
}
/**
* ice_remove_q_channels - Remove queue channels for the TCs
* @vsi: VSI to be configured
* @rem_fltr: delete advanced switch filter or not
*
* Remove queue channels for the TCs
*/
static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
{
struct ice_channel *ch, *ch_tmp;
struct ice_pf *pf = vsi->back;
int i;
/* remove all tc-flower based filter if they are channel filters only */
if (rem_fltr)
ice_rem_all_chnl_fltrs(pf);
/* remove ntuple filters since queue configuration is being changed */
if (vsi->netdev->features & NETIF_F_NTUPLE) {
struct ice_hw *hw = &pf->hw;
mutex_lock(&hw->fdir_fltr_lock);
ice_fdir_del_all_fltrs(vsi);
mutex_unlock(&hw->fdir_fltr_lock);
}
/* perform cleanup for channels if they exist */
list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
struct ice_vsi *ch_vsi;
list_del(&ch->list);
ch_vsi = ch->ch_vsi;
if (!ch_vsi) {
kfree(ch);
continue;
}
/* Reset queue contexts */
for (i = 0; i < ch->num_rxq; i++) {
struct ice_tx_ring *tx_ring;
struct ice_rx_ring *rx_ring;
tx_ring = vsi->tx_rings[ch->base_q + i];
rx_ring = vsi->rx_rings[ch->base_q + i];
if (tx_ring) {
tx_ring->ch = NULL;
if (tx_ring->q_vector)
tx_ring->q_vector->ch = NULL;
}
if (rx_ring) {
rx_ring->ch = NULL;
if (rx_ring->q_vector)
rx_ring->q_vector->ch = NULL;
}
}
/* Release FD resources for the channel VSI */
ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
/* clear the VSI from scheduler tree */
ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
/* Delete VSI from FW, PF and HW VSI arrays */
ice_vsi_delete(ch->ch_vsi);
/* free the channel */
kfree(ch);
}
/* clear the channel VSI map which is stored in main VSI */
ice_for_each_chnl_tc(i)
vsi->tc_map_vsi[i] = NULL;
/* reset main VSI's all TC information */
vsi->all_enatc = 0;
vsi->all_numtc = 0;
}
/**
* ice_rebuild_channels - rebuild channel
* @pf: ptr to PF
*
* Recreate channel VSIs and replay filters
*/
static int ice_rebuild_channels(struct ice_pf *pf)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_vsi *main_vsi;
bool rem_adv_fltr = true;
struct ice_channel *ch;
struct ice_vsi *vsi;
int tc_idx = 1;
int i, err;
main_vsi = ice_get_main_vsi(pf);
if (!main_vsi)
return 0;
if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
main_vsi->old_numtc == 1)
return 0; /* nothing to be done */
/* reconfigure main VSI based on old value of TC and cached values
* for MQPRIO opts
*/
err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
if (err) {
dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
main_vsi->old_ena_tc, main_vsi->vsi_num);
return err;
}
/* rebuild ADQ VSIs */
ice_for_each_vsi(pf, i) {
enum ice_vsi_type type;
vsi = pf->vsi[i];
if (!vsi || vsi->type != ICE_VSI_CHNL)
continue;
type = vsi->type;
/* rebuild ADQ VSI */
err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
if (err) {
dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
ice_vsi_type_str(type), vsi->idx, err);
goto cleanup;
}
/* Re-map HW VSI number, using VSI handle that has been
* previously validated in ice_replay_vsi() call above
*/
vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
/* replay filters for the VSI */
err = ice_replay_vsi(&pf->hw, vsi->idx);
if (err) {
dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
ice_vsi_type_str(type), err, vsi->idx);
rem_adv_fltr = false;
goto cleanup;
}
dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
ice_vsi_type_str(type), vsi->idx);
/* store ADQ VSI at correct TC index in main VSI's
* map of TC to VSI
*/
main_vsi->tc_map_vsi[tc_idx++] = vsi;
}
/* ADQ VSI(s) has been rebuilt successfully, so setup
* channel for main VSI's Tx and Rx rings
*/
list_for_each_entry(ch, &main_vsi->ch_list, list) {
struct ice_vsi *ch_vsi;
ch_vsi = ch->ch_vsi;
if (!ch_vsi)
continue;
/* reconfig channel resources */
ice_cfg_chnl_all_res(main_vsi, ch);
/* replay BW rate limit if it is non-zero */
if (!ch->max_tx_rate && !ch->min_tx_rate)
continue;
err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
ch->min_tx_rate);
if (err)
dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
err, ch->max_tx_rate, ch->min_tx_rate,
ch_vsi->vsi_num);
else
dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
ch->max_tx_rate, ch->min_tx_rate,
ch_vsi->vsi_num);
}
/* reconfig RSS for main VSI */
if (main_vsi->ch_rss_size)
ice_vsi_cfg_rss_lut_key(main_vsi);
return 0;
cleanup:
ice_remove_q_channels(main_vsi, rem_adv_fltr);
return err;
}
/**
* ice_create_q_channels - Add queue channel for the given TCs
* @vsi: VSI to be configured
*
* Configures queue channel mapping to the given TCs
*/
static int ice_create_q_channels(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct ice_channel *ch;
int ret = 0, i;
ice_for_each_chnl_tc(i) {
if (!(vsi->all_enatc & BIT(i)))
continue;
ch = kzalloc(sizeof(*ch), GFP_KERNEL);
if (!ch) {
ret = -ENOMEM;
goto err_free;
}
INIT_LIST_HEAD(&ch->list);
ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
/* convert to Kbits/s */
if (ch->max_tx_rate)
ch->max_tx_rate = div_u64(ch->max_tx_rate,
ICE_BW_KBPS_DIVISOR);
if (ch->min_tx_rate)
ch->min_tx_rate = div_u64(ch->min_tx_rate,
ICE_BW_KBPS_DIVISOR);
ret = ice_create_q_channel(vsi, ch);
if (ret) {
dev_err(ice_pf_to_dev(pf),
"failed creating channel TC:%d\n", i);
kfree(ch);
goto err_free;
}
list_add_tail(&ch->list, &vsi->ch_list);
vsi->tc_map_vsi[i] = ch->ch_vsi;
dev_dbg(ice_pf_to_dev(pf),
"successfully created channel: VSI %pK\n", ch->ch_vsi);
}
return 0;
err_free:
ice_remove_q_channels(vsi, false);
return ret;
}
/**
* ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
* @netdev: net device to configure
* @type_data: TC offload data
*/
static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
{
struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
struct ice_pf *pf = vsi->back;
u16 mode, ena_tc_qdisc = 0;
int cur_txq, cur_rxq;
u8 hw = 0, num_tcf;
struct device *dev;
int ret, i;
dev = ice_pf_to_dev(pf);
num_tcf = mqprio_qopt->qopt.num_tc;
hw = mqprio_qopt->qopt.hw;
mode = mqprio_qopt->mode;
if (!hw) {
clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
vsi->ch_rss_size = 0;
memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
goto config_tcf;
}
/* Generate queue region map for number of TCF requested */
for (i = 0; i < num_tcf; i++)
ena_tc_qdisc |= BIT(i);
switch (mode) {
case TC_MQPRIO_MODE_CHANNEL:
if (pf->hw.port_info->is_custom_tx_enabled) {
dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
return -EBUSY;
}
ice_tear_down_devlink_rate_tree(pf);
ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
if (ret) {
netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
ret);
return ret;
}
memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
/* don't assume state of hw_tc_offload during driver load
* and set the flag for TC flower filter if hw_tc_offload
* already ON
*/
if (vsi->netdev->features & NETIF_F_HW_TC)
set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
break;
default:
return -EINVAL;
}
config_tcf:
/* Requesting same TCF configuration as already enabled */
if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
mode != TC_MQPRIO_MODE_CHANNEL)
return 0;
/* Pause VSI queues */
ice_dis_vsi(vsi, true);
if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
ice_remove_q_channels(vsi, true);
if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
num_online_cpus());
vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
num_online_cpus());
} else {
/* logic to rebuild VSI, same like ethtool -L */
u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
for (i = 0; i < num_tcf; i++) {
if (!(ena_tc_qdisc & BIT(i)))
continue;
offset = vsi->mqprio_qopt.qopt.offset[i];
qcount_rx = vsi->mqprio_qopt.qopt.count[i];
qcount_tx = vsi->mqprio_qopt.qopt.count[i];
}
vsi->req_txq = offset + qcount_tx;
vsi->req_rxq = offset + qcount_rx;
/* store away original rss_size info, so that it gets reused
* form ice_vsi_rebuild during tc-qdisc delete stage - to
* determine, what should be the rss_sizefor main VSI
*/
vsi->orig_rss_size = vsi->rss_size;
}
/* save current values of Tx and Rx queues before calling VSI rebuild
* for fallback option
*/
cur_txq = vsi->num_txq;
cur_rxq = vsi->num_rxq;
/* proceed with rebuild main VSI using correct number of queues */
ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
if (ret) {
/* fallback to current number of queues */
dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
vsi->req_txq = cur_txq;
vsi->req_rxq = cur_rxq;
clear_bit(ICE_RESET_FAILED, pf->state);
if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
dev_err(dev, "Rebuild of main VSI failed again\n");
return ret;
}
}
vsi->all_numtc = num_tcf;
vsi->all_enatc = ena_tc_qdisc;
ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
if (ret) {
netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
vsi->vsi_num);
goto exit;
}
if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
/* set TC0 rate limit if specified */
if (max_tx_rate || min_tx_rate) {
/* convert to Kbits/s */
if (max_tx_rate)
max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
if (min_tx_rate)
min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
if (!ret) {
dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
max_tx_rate, min_tx_rate, vsi->vsi_num);
} else {
dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
max_tx_rate, min_tx_rate, vsi->vsi_num);
goto exit;
}
}
ret = ice_create_q_channels(vsi);
if (ret) {
netdev_err(netdev, "failed configuring queue channels\n");
goto exit;
} else {
netdev_dbg(netdev, "successfully configured channels\n");
}
}
if (vsi->ch_rss_size)
ice_vsi_cfg_rss_lut_key(vsi);
exit:
/* if error, reset the all_numtc and all_enatc */
if (ret) {
vsi->all_numtc = 0;
vsi->all_enatc = 0;
}
/* resume VSI */
ice_ena_vsi(vsi, true);
return ret;
}
static LIST_HEAD(ice_block_cb_list);
static int
ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
void *type_data)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_pf *pf = np->vsi->back;
bool locked = false;
int err;
switch (type) {
case TC_SETUP_BLOCK:
return flow_block_cb_setup_simple(type_data,
&ice_block_cb_list,
ice_setup_tc_block_cb,
np, np, true);
case TC_SETUP_QDISC_MQPRIO:
if (ice_is_eswitch_mode_switchdev(pf)) {
netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n");
return -EOPNOTSUPP;
}
if (pf->adev) {
mutex_lock(&pf->adev_mutex);
device_lock(&pf->adev->dev);
locked = true;
if (pf->adev->dev.driver) {
netdev_err(netdev, "Cannot change qdisc when RDMA is active\n");
err = -EBUSY;
goto adev_unlock;
}
}
/* setup traffic classifier for receive side */
mutex_lock(&pf->tc_mutex);
err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
mutex_unlock(&pf->tc_mutex);
adev_unlock:
if (locked) {
device_unlock(&pf->adev->dev);
mutex_unlock(&pf->adev_mutex);
}
return err;
default:
return -EOPNOTSUPP;
}
return -EOPNOTSUPP;
}
static struct ice_indr_block_priv *
ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
struct net_device *netdev)
{
struct ice_indr_block_priv *cb_priv;
list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
if (!cb_priv->netdev)
return NULL;
if (cb_priv->netdev == netdev)
return cb_priv;
}
return NULL;
}
static int
ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
void *indr_priv)
{
struct ice_indr_block_priv *priv = indr_priv;
struct ice_netdev_priv *np = priv->np;
switch (type) {
case TC_SETUP_CLSFLOWER:
return ice_setup_tc_cls_flower(np, priv->netdev,
(struct flow_cls_offload *)
type_data);
default:
return -EOPNOTSUPP;
}
}
static int
ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
struct ice_netdev_priv *np,
struct flow_block_offload *f, void *data,
void (*cleanup)(struct flow_block_cb *block_cb))
{
struct ice_indr_block_priv *indr_priv;
struct flow_block_cb *block_cb;
if (!ice_is_tunnel_supported(netdev) &&
!(is_vlan_dev(netdev) &&
vlan_dev_real_dev(netdev) == np->vsi->netdev))
return -EOPNOTSUPP;
if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
return -EOPNOTSUPP;
switch (f->command) {
case FLOW_BLOCK_BIND:
indr_priv = ice_indr_block_priv_lookup(np, netdev);
if (indr_priv)
return -EEXIST;
indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
if (!indr_priv)
return -ENOMEM;
indr_priv->netdev = netdev;
indr_priv->np = np;
list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
block_cb =
flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
indr_priv, indr_priv,
ice_rep_indr_tc_block_unbind,
f, netdev, sch, data, np,
cleanup);
if (IS_ERR(block_cb)) {
list_del(&indr_priv->list);
kfree(indr_priv);
return PTR_ERR(block_cb);
}
flow_block_cb_add(block_cb, f);
list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
break;
case FLOW_BLOCK_UNBIND:
indr_priv = ice_indr_block_priv_lookup(np, netdev);
if (!indr_priv)
return -ENOENT;
block_cb = flow_block_cb_lookup(f->block,
ice_indr_setup_block_cb,
indr_priv);
if (!block_cb)
return -ENOENT;
flow_indr_block_cb_remove(block_cb, f);
list_del(&block_cb->driver_list);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int
ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
void *cb_priv, enum tc_setup_type type, void *type_data,
void *data,
void (*cleanup)(struct flow_block_cb *block_cb))
{
switch (type) {
case TC_SETUP_BLOCK:
return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
data, cleanup);
default:
return -EOPNOTSUPP;
}
}
/**
* ice_open - Called when a network interface becomes active
* @netdev: network interface device structure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the netdev watchdog is enabled,
* and the stack is notified that the interface is ready.
*
* Returns 0 on success, negative value on failure
*/
int ice_open(struct net_device *netdev)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_pf *pf = np->vsi->back;
if (ice_is_reset_in_progress(pf->state)) {
netdev_err(netdev, "can't open net device while reset is in progress");
return -EBUSY;
}
return ice_open_internal(netdev);
}
/**
* ice_open_internal - Called when a network interface becomes active
* @netdev: network interface device structure
*
* Internal ice_open implementation. Should not be used directly except for ice_open and reset
* handling routine
*
* Returns 0 on success, negative value on failure
*/
int ice_open_internal(struct net_device *netdev)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
struct ice_pf *pf = vsi->back;
struct ice_port_info *pi;
int err;
if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
return -EIO;
}
netif_carrier_off(netdev);
pi = vsi->port_info;
err = ice_update_link_info(pi);
if (err) {
netdev_err(netdev, "Failed to get link info, error %d\n", err);
return err;
}
ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
/* Set PHY if there is media, otherwise, turn off PHY */
if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
err = ice_init_phy_user_cfg(pi);
if (err) {
netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
err);
return err;
}
}
err = ice_configure_phy(vsi);
if (err) {
netdev_err(netdev, "Failed to set physical link up, error %d\n",
err);
return err;
}
} else {
set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
ice_set_link(vsi, false);
}
err = ice_vsi_open(vsi);
if (err)
netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
vsi->vsi_num, vsi->vsw->sw_id);
/* Update existing tunnels information */
udp_tunnel_get_rx_info(netdev);
return err;
}
/**
* ice_stop - Disables a network interface
* @netdev: network interface device structure
*
* The stop entry point is called when an interface is de-activated by the OS,
* and the netdevice enters the DOWN state. The hardware is still under the
* driver's control, but the netdev interface is disabled.
*
* Returns success only - not allowed to fail
*/
int ice_stop(struct net_device *netdev)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
struct ice_pf *pf = vsi->back;
if (ice_is_reset_in_progress(pf->state)) {
netdev_err(netdev, "can't stop net device while reset is in progress");
return -EBUSY;
}
if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
int link_err = ice_force_phys_link_state(vsi, false);
if (link_err) {
if (link_err == -ENOMEDIUM)
netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n",
vsi->vsi_num);
else
netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
vsi->vsi_num, link_err);
ice_vsi_close(vsi);
return -EIO;
}
}
ice_vsi_close(vsi);
return 0;
}
/**
* ice_features_check - Validate encapsulated packet conforms to limits
* @skb: skb buffer
* @netdev: This port's netdev
* @features: Offload features that the stack believes apply
*/
static netdev_features_t
ice_features_check(struct sk_buff *skb,
struct net_device __always_unused *netdev,
netdev_features_t features)
{
bool gso = skb_is_gso(skb);
size_t len;
/* No point in doing any of this if neither checksum nor GSO are
* being requested for this frame. We can rule out both by just
* checking for CHECKSUM_PARTIAL
*/
if (skb->ip_summed != CHECKSUM_PARTIAL)
return features;
/* We cannot support GSO if the MSS is going to be less than
* 64 bytes. If it is then we need to drop support for GSO.
*/
if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
features &= ~NETIF_F_GSO_MASK;
len = skb_network_offset(skb);
if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
goto out_rm_features;
len = skb_network_header_len(skb);
if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
goto out_rm_features;
if (skb->encapsulation) {
/* this must work for VXLAN frames AND IPIP/SIT frames, and in
* the case of IPIP frames, the transport header pointer is
* after the inner header! So check to make sure that this
* is a GRE or UDP_TUNNEL frame before doing that math.
*/
if (gso && (skb_shinfo(skb)->gso_type &
(SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
len = skb_inner_network_header(skb) -
skb_transport_header(skb);
if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
goto out_rm_features;
}
len = skb_inner_network_header_len(skb);
if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
goto out_rm_features;
}
return features;
out_rm_features:
return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
}
static const struct net_device_ops ice_netdev_safe_mode_ops = {
.ndo_open = ice_open,
.ndo_stop = ice_stop,
.ndo_start_xmit = ice_start_xmit,
.ndo_set_mac_address = ice_set_mac_address,
.ndo_validate_addr = eth_validate_addr,
.ndo_change_mtu = ice_change_mtu,
.ndo_get_stats64 = ice_get_stats64,
.ndo_tx_timeout = ice_tx_timeout,
.ndo_bpf = ice_xdp_safe_mode,
};
static const struct net_device_ops ice_netdev_ops = {
.ndo_open = ice_open,
.ndo_stop = ice_stop,
.ndo_start_xmit = ice_start_xmit,
.ndo_select_queue = ice_select_queue,
.ndo_features_check = ice_features_check,
.ndo_fix_features = ice_fix_features,
.ndo_set_rx_mode = ice_set_rx_mode,
.ndo_set_mac_address = ice_set_mac_address,
.ndo_validate_addr = eth_validate_addr,
.ndo_change_mtu = ice_change_mtu,
.ndo_get_stats64 = ice_get_stats64,
.ndo_set_tx_maxrate = ice_set_tx_maxrate,
.ndo_eth_ioctl = ice_eth_ioctl,
.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
.ndo_set_vf_mac = ice_set_vf_mac,
.ndo_get_vf_config = ice_get_vf_cfg,
.ndo_set_vf_trust = ice_set_vf_trust,
.ndo_set_vf_vlan = ice_set_vf_port_vlan,
.ndo_set_vf_link_state = ice_set_vf_link_state,
.ndo_get_vf_stats = ice_get_vf_stats,
.ndo_set_vf_rate = ice_set_vf_bw,
.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
.ndo_setup_tc = ice_setup_tc,
.ndo_set_features = ice_set_features,
.ndo_bridge_getlink = ice_bridge_getlink,
.ndo_bridge_setlink = ice_bridge_setlink,
.ndo_fdb_add = ice_fdb_add,
.ndo_fdb_del = ice_fdb_del,
#ifdef CONFIG_RFS_ACCEL
.ndo_rx_flow_steer = ice_rx_flow_steer,
#endif
.ndo_tx_timeout = ice_tx_timeout,
.ndo_bpf = ice_xdp,
.ndo_xdp_xmit = ice_xdp_xmit,
.ndo_xsk_wakeup = ice_xsk_wakeup,
};