| // SPDX-License-Identifier: GPL-2.0 |
| #ifndef NO_BCACHEFS_FS |
| |
| #include "bcachefs.h" |
| #include "alloc_foreground.h" |
| #include "bkey_buf.h" |
| #include "fs-io.h" |
| #include "fs-io-buffered.h" |
| #include "fs-io-direct.h" |
| #include "fs-io-pagecache.h" |
| #include "io_read.h" |
| #include "io_write.h" |
| |
| #include <linux/backing-dev.h> |
| #include <linux/pagemap.h> |
| #include <linux/writeback.h> |
| |
| static inline bool bio_full(struct bio *bio, unsigned len) |
| { |
| if (bio->bi_vcnt >= bio->bi_max_vecs) |
| return true; |
| if (bio->bi_iter.bi_size > UINT_MAX - len) |
| return true; |
| return false; |
| } |
| |
| /* readpage(s): */ |
| |
| static void bch2_readpages_end_io(struct bio *bio) |
| { |
| struct folio_iter fi; |
| |
| bio_for_each_folio_all(fi, bio) |
| folio_end_read(fi.folio, bio->bi_status == BLK_STS_OK); |
| |
| bio_put(bio); |
| } |
| |
| struct readpages_iter { |
| struct address_space *mapping; |
| unsigned idx; |
| folios folios; |
| }; |
| |
| static int readpages_iter_init(struct readpages_iter *iter, |
| struct readahead_control *ractl) |
| { |
| struct folio *folio; |
| |
| *iter = (struct readpages_iter) { ractl->mapping }; |
| |
| while ((folio = __readahead_folio(ractl))) { |
| if (!bch2_folio_create(folio, GFP_KERNEL) || |
| darray_push(&iter->folios, folio)) { |
| bch2_folio_release(folio); |
| ractl->_nr_pages += folio_nr_pages(folio); |
| ractl->_index -= folio_nr_pages(folio); |
| return iter->folios.nr ? 0 : -ENOMEM; |
| } |
| |
| folio_put(folio); |
| } |
| |
| return 0; |
| } |
| |
| static inline struct folio *readpage_iter_peek(struct readpages_iter *iter) |
| { |
| if (iter->idx >= iter->folios.nr) |
| return NULL; |
| return iter->folios.data[iter->idx]; |
| } |
| |
| static inline void readpage_iter_advance(struct readpages_iter *iter) |
| { |
| iter->idx++; |
| } |
| |
| static bool extent_partial_reads_expensive(struct bkey_s_c k) |
| { |
| struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); |
| struct bch_extent_crc_unpacked crc; |
| const union bch_extent_entry *i; |
| |
| bkey_for_each_crc(k.k, ptrs, crc, i) |
| if (crc.csum_type || crc.compression_type) |
| return true; |
| return false; |
| } |
| |
| static int readpage_bio_extend(struct btree_trans *trans, |
| struct readpages_iter *iter, |
| struct bio *bio, |
| unsigned sectors_this_extent, |
| bool get_more) |
| { |
| /* Don't hold btree locks while allocating memory: */ |
| bch2_trans_unlock(trans); |
| |
| while (bio_sectors(bio) < sectors_this_extent && |
| bio->bi_vcnt < bio->bi_max_vecs) { |
| struct folio *folio = readpage_iter_peek(iter); |
| int ret; |
| |
| if (folio) { |
| readpage_iter_advance(iter); |
| } else { |
| pgoff_t folio_offset = bio_end_sector(bio) >> PAGE_SECTORS_SHIFT; |
| |
| if (!get_more) |
| break; |
| |
| folio = xa_load(&iter->mapping->i_pages, folio_offset); |
| if (folio && !xa_is_value(folio)) |
| break; |
| |
| folio = filemap_alloc_folio(readahead_gfp_mask(iter->mapping), 0); |
| if (!folio) |
| break; |
| |
| if (!__bch2_folio_create(folio, GFP_KERNEL)) { |
| folio_put(folio); |
| break; |
| } |
| |
| ret = filemap_add_folio(iter->mapping, folio, folio_offset, GFP_KERNEL); |
| if (ret) { |
| __bch2_folio_release(folio); |
| folio_put(folio); |
| break; |
| } |
| |
| folio_put(folio); |
| } |
| |
| BUG_ON(folio_sector(folio) != bio_end_sector(bio)); |
| |
| BUG_ON(!bio_add_folio(bio, folio, folio_size(folio), 0)); |
| } |
| |
| return bch2_trans_relock(trans); |
| } |
| |
| static void bchfs_read(struct btree_trans *trans, |
| struct bch_read_bio *rbio, |
| subvol_inum inum, |
| struct readpages_iter *readpages_iter) |
| { |
| struct bch_fs *c = trans->c; |
| struct btree_iter iter; |
| struct bkey_buf sk; |
| int flags = BCH_READ_RETRY_IF_STALE| |
| BCH_READ_MAY_PROMOTE; |
| u32 snapshot; |
| int ret = 0; |
| |
| rbio->c = c; |
| rbio->start_time = local_clock(); |
| rbio->subvol = inum.subvol; |
| |
| bch2_bkey_buf_init(&sk); |
| retry: |
| bch2_trans_begin(trans); |
| iter = (struct btree_iter) { NULL }; |
| |
| ret = bch2_subvolume_get_snapshot(trans, inum.subvol, &snapshot); |
| if (ret) |
| goto err; |
| |
| bch2_trans_iter_init(trans, &iter, BTREE_ID_extents, |
| SPOS(inum.inum, rbio->bio.bi_iter.bi_sector, snapshot), |
| BTREE_ITER_slots); |
| while (1) { |
| struct bkey_s_c k; |
| unsigned bytes, sectors, offset_into_extent; |
| enum btree_id data_btree = BTREE_ID_extents; |
| |
| /* |
| * read_extent -> io_time_reset may cause a transaction restart |
| * without returning an error, we need to check for that here: |
| */ |
| ret = bch2_trans_relock(trans); |
| if (ret) |
| break; |
| |
| bch2_btree_iter_set_pos(&iter, |
| POS(inum.inum, rbio->bio.bi_iter.bi_sector)); |
| |
| k = bch2_btree_iter_peek_slot(&iter); |
| ret = bkey_err(k); |
| if (ret) |
| break; |
| |
| offset_into_extent = iter.pos.offset - |
| bkey_start_offset(k.k); |
| sectors = k.k->size - offset_into_extent; |
| |
| bch2_bkey_buf_reassemble(&sk, c, k); |
| |
| ret = bch2_read_indirect_extent(trans, &data_btree, |
| &offset_into_extent, &sk); |
| if (ret) |
| break; |
| |
| k = bkey_i_to_s_c(sk.k); |
| |
| sectors = min(sectors, k.k->size - offset_into_extent); |
| |
| if (readpages_iter) { |
| ret = readpage_bio_extend(trans, readpages_iter, &rbio->bio, sectors, |
| extent_partial_reads_expensive(k)); |
| if (ret) |
| break; |
| } |
| |
| bytes = min(sectors, bio_sectors(&rbio->bio)) << 9; |
| swap(rbio->bio.bi_iter.bi_size, bytes); |
| |
| if (rbio->bio.bi_iter.bi_size == bytes) |
| flags |= BCH_READ_LAST_FRAGMENT; |
| |
| bch2_bio_page_state_set(&rbio->bio, k); |
| |
| bch2_read_extent(trans, rbio, iter.pos, |
| data_btree, k, offset_into_extent, flags); |
| |
| if (flags & BCH_READ_LAST_FRAGMENT) |
| break; |
| |
| swap(rbio->bio.bi_iter.bi_size, bytes); |
| bio_advance(&rbio->bio, bytes); |
| |
| ret = btree_trans_too_many_iters(trans); |
| if (ret) |
| break; |
| } |
| err: |
| bch2_trans_iter_exit(trans, &iter); |
| |
| if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) |
| goto retry; |
| |
| if (ret) { |
| bch_err_inum_offset_ratelimited(c, |
| iter.pos.inode, |
| iter.pos.offset << 9, |
| "read error %i from btree lookup", ret); |
| rbio->bio.bi_status = BLK_STS_IOERR; |
| bio_endio(&rbio->bio); |
| } |
| |
| bch2_bkey_buf_exit(&sk, c); |
| } |
| |
| void bch2_readahead(struct readahead_control *ractl) |
| { |
| struct bch_inode_info *inode = to_bch_ei(ractl->mapping->host); |
| struct bch_fs *c = inode->v.i_sb->s_fs_info; |
| struct bch_io_opts opts; |
| struct folio *folio; |
| struct readpages_iter readpages_iter; |
| |
| bch2_inode_opts_get(&opts, c, &inode->ei_inode); |
| |
| int ret = readpages_iter_init(&readpages_iter, ractl); |
| if (ret) |
| return; |
| |
| bch2_pagecache_add_get(inode); |
| |
| struct btree_trans *trans = bch2_trans_get(c); |
| while ((folio = readpage_iter_peek(&readpages_iter))) { |
| unsigned n = min_t(unsigned, |
| readpages_iter.folios.nr - |
| readpages_iter.idx, |
| BIO_MAX_VECS); |
| struct bch_read_bio *rbio = |
| rbio_init(bio_alloc_bioset(NULL, n, REQ_OP_READ, |
| GFP_KERNEL, &c->bio_read), |
| opts); |
| |
| readpage_iter_advance(&readpages_iter); |
| |
| rbio->bio.bi_iter.bi_sector = folio_sector(folio); |
| rbio->bio.bi_end_io = bch2_readpages_end_io; |
| BUG_ON(!bio_add_folio(&rbio->bio, folio, folio_size(folio), 0)); |
| |
| bchfs_read(trans, rbio, inode_inum(inode), |
| &readpages_iter); |
| bch2_trans_unlock(trans); |
| } |
| bch2_trans_put(trans); |
| |
| bch2_pagecache_add_put(inode); |
| |
| darray_exit(&readpages_iter.folios); |
| } |
| |
| static void bch2_read_single_folio_end_io(struct bio *bio) |
| { |
| complete(bio->bi_private); |
| } |
| |
| int bch2_read_single_folio(struct folio *folio, struct address_space *mapping) |
| { |
| struct bch_inode_info *inode = to_bch_ei(mapping->host); |
| struct bch_fs *c = inode->v.i_sb->s_fs_info; |
| struct bch_read_bio *rbio; |
| struct bch_io_opts opts; |
| int ret; |
| DECLARE_COMPLETION_ONSTACK(done); |
| |
| if (!bch2_folio_create(folio, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| bch2_inode_opts_get(&opts, c, &inode->ei_inode); |
| |
| rbio = rbio_init(bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_KERNEL, &c->bio_read), |
| opts); |
| rbio->bio.bi_private = &done; |
| rbio->bio.bi_end_io = bch2_read_single_folio_end_io; |
| |
| rbio->bio.bi_opf = REQ_OP_READ|REQ_SYNC; |
| rbio->bio.bi_iter.bi_sector = folio_sector(folio); |
| BUG_ON(!bio_add_folio(&rbio->bio, folio, folio_size(folio), 0)); |
| |
| bch2_trans_run(c, (bchfs_read(trans, rbio, inode_inum(inode), NULL), 0)); |
| wait_for_completion(&done); |
| |
| ret = blk_status_to_errno(rbio->bio.bi_status); |
| bio_put(&rbio->bio); |
| |
| if (ret < 0) |
| return ret; |
| |
| folio_mark_uptodate(folio); |
| return 0; |
| } |
| |
| int bch2_read_folio(struct file *file, struct folio *folio) |
| { |
| int ret; |
| |
| ret = bch2_read_single_folio(folio, folio->mapping); |
| folio_unlock(folio); |
| return bch2_err_class(ret); |
| } |
| |
| /* writepages: */ |
| |
| struct bch_writepage_io { |
| struct bch_inode_info *inode; |
| |
| /* must be last: */ |
| struct bch_write_op op; |
| }; |
| |
| struct bch_writepage_state { |
| struct bch_writepage_io *io; |
| struct bch_io_opts opts; |
| struct bch_folio_sector *tmp; |
| unsigned tmp_sectors; |
| }; |
| |
| static inline struct bch_writepage_state bch_writepage_state_init(struct bch_fs *c, |
| struct bch_inode_info *inode) |
| { |
| struct bch_writepage_state ret = { 0 }; |
| |
| bch2_inode_opts_get(&ret.opts, c, &inode->ei_inode); |
| return ret; |
| } |
| |
| /* |
| * Determine when a writepage io is full. We have to limit writepage bios to a |
| * single page per bvec (i.e. 1MB with 4k pages) because that is the limit to |
| * what the bounce path in bch2_write_extent() can handle. In theory we could |
| * loosen this restriction for non-bounce I/O, but we don't have that context |
| * here. Ideally, we can up this limit and make it configurable in the future |
| * when the bounce path can be enhanced to accommodate larger source bios. |
| */ |
| static inline bool bch_io_full(struct bch_writepage_io *io, unsigned len) |
| { |
| struct bio *bio = &io->op.wbio.bio; |
| return bio_full(bio, len) || |
| (bio->bi_iter.bi_size + len > BIO_MAX_VECS * PAGE_SIZE); |
| } |
| |
| static void bch2_writepage_io_done(struct bch_write_op *op) |
| { |
| struct bch_writepage_io *io = |
| container_of(op, struct bch_writepage_io, op); |
| struct bch_fs *c = io->op.c; |
| struct bio *bio = &io->op.wbio.bio; |
| struct folio_iter fi; |
| unsigned i; |
| |
| if (io->op.error) { |
| set_bit(EI_INODE_ERROR, &io->inode->ei_flags); |
| |
| bio_for_each_folio_all(fi, bio) { |
| struct bch_folio *s; |
| |
| mapping_set_error(fi.folio->mapping, -EIO); |
| |
| s = __bch2_folio(fi.folio); |
| spin_lock(&s->lock); |
| for (i = 0; i < folio_sectors(fi.folio); i++) |
| s->s[i].nr_replicas = 0; |
| spin_unlock(&s->lock); |
| } |
| } |
| |
| if (io->op.flags & BCH_WRITE_WROTE_DATA_INLINE) { |
| bio_for_each_folio_all(fi, bio) { |
| struct bch_folio *s; |
| |
| s = __bch2_folio(fi.folio); |
| spin_lock(&s->lock); |
| for (i = 0; i < folio_sectors(fi.folio); i++) |
| s->s[i].nr_replicas = 0; |
| spin_unlock(&s->lock); |
| } |
| } |
| |
| /* |
| * racing with fallocate can cause us to add fewer sectors than |
| * expected - but we shouldn't add more sectors than expected: |
| */ |
| WARN_ON_ONCE(io->op.i_sectors_delta > 0); |
| |
| /* |
| * (error (due to going RO) halfway through a page can screw that up |
| * slightly) |
| * XXX wtf? |
| BUG_ON(io->op.op.i_sectors_delta >= PAGE_SECTORS); |
| */ |
| |
| /* |
| * The writeback flag is effectively our ref on the inode - |
| * fixup i_blocks before calling folio_end_writeback: |
| */ |
| bch2_i_sectors_acct(c, io->inode, NULL, io->op.i_sectors_delta); |
| |
| bio_for_each_folio_all(fi, bio) { |
| struct bch_folio *s = __bch2_folio(fi.folio); |
| |
| if (atomic_dec_and_test(&s->write_count)) |
| folio_end_writeback(fi.folio); |
| } |
| |
| bio_put(&io->op.wbio.bio); |
| } |
| |
| static void bch2_writepage_do_io(struct bch_writepage_state *w) |
| { |
| struct bch_writepage_io *io = w->io; |
| |
| w->io = NULL; |
| closure_call(&io->op.cl, bch2_write, NULL, NULL); |
| } |
| |
| /* |
| * Get a bch_writepage_io and add @page to it - appending to an existing one if |
| * possible, else allocating a new one: |
| */ |
| static void bch2_writepage_io_alloc(struct bch_fs *c, |
| struct writeback_control *wbc, |
| struct bch_writepage_state *w, |
| struct bch_inode_info *inode, |
| u64 sector, |
| unsigned nr_replicas) |
| { |
| struct bch_write_op *op; |
| |
| w->io = container_of(bio_alloc_bioset(NULL, BIO_MAX_VECS, |
| REQ_OP_WRITE, |
| GFP_KERNEL, |
| &c->writepage_bioset), |
| struct bch_writepage_io, op.wbio.bio); |
| |
| w->io->inode = inode; |
| op = &w->io->op; |
| bch2_write_op_init(op, c, w->opts); |
| op->target = w->opts.foreground_target; |
| op->nr_replicas = nr_replicas; |
| op->res.nr_replicas = nr_replicas; |
| op->write_point = writepoint_hashed(inode->ei_last_dirtied); |
| op->subvol = inode->ei_subvol; |
| op->pos = POS(inode->v.i_ino, sector); |
| op->end_io = bch2_writepage_io_done; |
| op->devs_need_flush = &inode->ei_devs_need_flush; |
| op->wbio.bio.bi_iter.bi_sector = sector; |
| op->wbio.bio.bi_opf = wbc_to_write_flags(wbc); |
| } |
| |
| static int __bch2_writepage(struct folio *folio, |
| struct writeback_control *wbc, |
| void *data) |
| { |
| struct bch_inode_info *inode = to_bch_ei(folio->mapping->host); |
| struct bch_fs *c = inode->v.i_sb->s_fs_info; |
| struct bch_writepage_state *w = data; |
| struct bch_folio *s; |
| unsigned i, offset, f_sectors, nr_replicas_this_write = U32_MAX; |
| loff_t i_size = i_size_read(&inode->v); |
| int ret; |
| |
| EBUG_ON(!folio_test_uptodate(folio)); |
| |
| /* Is the folio fully inside i_size? */ |
| if (folio_end_pos(folio) <= i_size) |
| goto do_io; |
| |
| /* Is the folio fully outside i_size? (truncate in progress) */ |
| if (folio_pos(folio) >= i_size) { |
| folio_unlock(folio); |
| return 0; |
| } |
| |
| /* |
| * The folio straddles i_size. It must be zeroed out on each and every |
| * writepage invocation because it may be mmapped. "A file is mapped |
| * in multiples of the folio size. For a file that is not a multiple of |
| * the folio size, the remaining memory is zeroed when mapped, and |
| * writes to that region are not written out to the file." |
| */ |
| folio_zero_segment(folio, |
| i_size - folio_pos(folio), |
| folio_size(folio)); |
| do_io: |
| f_sectors = folio_sectors(folio); |
| s = bch2_folio(folio); |
| |
| if (f_sectors > w->tmp_sectors) { |
| kfree(w->tmp); |
| w->tmp = kcalloc(f_sectors, sizeof(struct bch_folio_sector), __GFP_NOFAIL); |
| w->tmp_sectors = f_sectors; |
| } |
| |
| /* |
| * Things get really hairy with errors during writeback: |
| */ |
| ret = bch2_get_folio_disk_reservation(c, inode, folio, false); |
| BUG_ON(ret); |
| |
| /* Before unlocking the page, get copy of reservations: */ |
| spin_lock(&s->lock); |
| memcpy(w->tmp, s->s, sizeof(struct bch_folio_sector) * f_sectors); |
| |
| for (i = 0; i < f_sectors; i++) { |
| if (s->s[i].state < SECTOR_dirty) |
| continue; |
| |
| nr_replicas_this_write = |
| min_t(unsigned, nr_replicas_this_write, |
| s->s[i].nr_replicas + |
| s->s[i].replicas_reserved); |
| } |
| |
| for (i = 0; i < f_sectors; i++) { |
| if (s->s[i].state < SECTOR_dirty) |
| continue; |
| |
| s->s[i].nr_replicas = w->opts.compression |
| ? 0 : nr_replicas_this_write; |
| |
| s->s[i].replicas_reserved = 0; |
| bch2_folio_sector_set(folio, s, i, SECTOR_allocated); |
| } |
| spin_unlock(&s->lock); |
| |
| BUG_ON(atomic_read(&s->write_count)); |
| atomic_set(&s->write_count, 1); |
| |
| BUG_ON(folio_test_writeback(folio)); |
| folio_start_writeback(folio); |
| |
| folio_unlock(folio); |
| |
| offset = 0; |
| while (1) { |
| unsigned sectors = 0, dirty_sectors = 0, reserved_sectors = 0; |
| u64 sector; |
| |
| while (offset < f_sectors && |
| w->tmp[offset].state < SECTOR_dirty) |
| offset++; |
| |
| if (offset == f_sectors) |
| break; |
| |
| while (offset + sectors < f_sectors && |
| w->tmp[offset + sectors].state >= SECTOR_dirty) { |
| reserved_sectors += w->tmp[offset + sectors].replicas_reserved; |
| dirty_sectors += w->tmp[offset + sectors].state == SECTOR_dirty; |
| sectors++; |
| } |
| BUG_ON(!sectors); |
| |
| sector = folio_sector(folio) + offset; |
| |
| if (w->io && |
| (w->io->op.res.nr_replicas != nr_replicas_this_write || |
| bch_io_full(w->io, sectors << 9) || |
| bio_end_sector(&w->io->op.wbio.bio) != sector)) |
| bch2_writepage_do_io(w); |
| |
| if (!w->io) |
| bch2_writepage_io_alloc(c, wbc, w, inode, sector, |
| nr_replicas_this_write); |
| |
| atomic_inc(&s->write_count); |
| |
| BUG_ON(inode != w->io->inode); |
| BUG_ON(!bio_add_folio(&w->io->op.wbio.bio, folio, |
| sectors << 9, offset << 9)); |
| |
| /* Check for writing past i_size: */ |
| WARN_ONCE((bio_end_sector(&w->io->op.wbio.bio) << 9) > |
| round_up(i_size, block_bytes(c)) && |
| !test_bit(BCH_FS_emergency_ro, &c->flags), |
| "writing past i_size: %llu > %llu (unrounded %llu)\n", |
| bio_end_sector(&w->io->op.wbio.bio) << 9, |
| round_up(i_size, block_bytes(c)), |
| i_size); |
| |
| w->io->op.res.sectors += reserved_sectors; |
| w->io->op.i_sectors_delta -= dirty_sectors; |
| w->io->op.new_i_size = i_size; |
| |
| offset += sectors; |
| } |
| |
| if (atomic_dec_and_test(&s->write_count)) |
| folio_end_writeback(folio); |
| |
| return 0; |
| } |
| |
| int bch2_writepages(struct address_space *mapping, struct writeback_control *wbc) |
| { |
| struct bch_fs *c = mapping->host->i_sb->s_fs_info; |
| struct bch_writepage_state w = |
| bch_writepage_state_init(c, to_bch_ei(mapping->host)); |
| struct blk_plug plug; |
| int ret; |
| |
| blk_start_plug(&plug); |
| ret = write_cache_pages(mapping, wbc, __bch2_writepage, &w); |
| if (w.io) |
| bch2_writepage_do_io(&w); |
| blk_finish_plug(&plug); |
| kfree(w.tmp); |
| return bch2_err_class(ret); |
| } |
| |
| /* buffered writes: */ |
| |
| int bch2_write_begin(struct file *file, struct address_space *mapping, |
| loff_t pos, unsigned len, |
| struct page **pagep, void **fsdata) |
| { |
| struct bch_inode_info *inode = to_bch_ei(mapping->host); |
| struct bch_fs *c = inode->v.i_sb->s_fs_info; |
| struct bch2_folio_reservation *res; |
| struct folio *folio; |
| unsigned offset; |
| int ret = -ENOMEM; |
| |
| res = kmalloc(sizeof(*res), GFP_KERNEL); |
| if (!res) |
| return -ENOMEM; |
| |
| bch2_folio_reservation_init(c, inode, res); |
| *fsdata = res; |
| |
| bch2_pagecache_add_get(inode); |
| |
| folio = __filemap_get_folio(mapping, pos >> PAGE_SHIFT, |
| FGP_LOCK|FGP_WRITE|FGP_CREAT|FGP_STABLE, |
| mapping_gfp_mask(mapping)); |
| if (IS_ERR_OR_NULL(folio)) |
| goto err_unlock; |
| |
| offset = pos - folio_pos(folio); |
| len = min_t(size_t, len, folio_end_pos(folio) - pos); |
| |
| if (folio_test_uptodate(folio)) |
| goto out; |
| |
| /* If we're writing entire folio, don't need to read it in first: */ |
| if (!offset && len == folio_size(folio)) |
| goto out; |
| |
| if (!offset && pos + len >= inode->v.i_size) { |
| folio_zero_segment(folio, len, folio_size(folio)); |
| flush_dcache_folio(folio); |
| goto out; |
| } |
| |
| if (folio_pos(folio) >= inode->v.i_size) { |
| folio_zero_segments(folio, 0, offset, offset + len, folio_size(folio)); |
| flush_dcache_folio(folio); |
| goto out; |
| } |
| readpage: |
| ret = bch2_read_single_folio(folio, mapping); |
| if (ret) |
| goto err; |
| out: |
| ret = bch2_folio_set(c, inode_inum(inode), &folio, 1); |
| if (ret) |
| goto err; |
| |
| ret = bch2_folio_reservation_get(c, inode, folio, res, offset, len); |
| if (ret) { |
| if (!folio_test_uptodate(folio)) { |
| /* |
| * If the folio hasn't been read in, we won't know if we |
| * actually need a reservation - we don't actually need |
| * to read here, we just need to check if the folio is |
| * fully backed by uncompressed data: |
| */ |
| goto readpage; |
| } |
| |
| goto err; |
| } |
| |
| *pagep = &folio->page; |
| return 0; |
| err: |
| folio_unlock(folio); |
| folio_put(folio); |
| *pagep = NULL; |
| err_unlock: |
| bch2_pagecache_add_put(inode); |
| kfree(res); |
| *fsdata = NULL; |
| return bch2_err_class(ret); |
| } |
| |
| int bch2_write_end(struct file *file, struct address_space *mapping, |
| loff_t pos, unsigned len, unsigned copied, |
| struct page *page, void *fsdata) |
| { |
| struct bch_inode_info *inode = to_bch_ei(mapping->host); |
| struct bch_fs *c = inode->v.i_sb->s_fs_info; |
| struct bch2_folio_reservation *res = fsdata; |
| struct folio *folio = page_folio(page); |
| unsigned offset = pos - folio_pos(folio); |
| |
| lockdep_assert_held(&inode->v.i_rwsem); |
| BUG_ON(offset + copied > folio_size(folio)); |
| |
| if (unlikely(copied < len && !folio_test_uptodate(folio))) { |
| /* |
| * The folio needs to be read in, but that would destroy |
| * our partial write - simplest thing is to just force |
| * userspace to redo the write: |
| */ |
| folio_zero_range(folio, 0, folio_size(folio)); |
| flush_dcache_folio(folio); |
| copied = 0; |
| } |
| |
| spin_lock(&inode->v.i_lock); |
| if (pos + copied > inode->v.i_size) |
| i_size_write(&inode->v, pos + copied); |
| spin_unlock(&inode->v.i_lock); |
| |
| if (copied) { |
| if (!folio_test_uptodate(folio)) |
| folio_mark_uptodate(folio); |
| |
| bch2_set_folio_dirty(c, inode, folio, res, offset, copied); |
| |
| inode->ei_last_dirtied = (unsigned long) current; |
| } |
| |
| folio_unlock(folio); |
| folio_put(folio); |
| bch2_pagecache_add_put(inode); |
| |
| bch2_folio_reservation_put(c, inode, res); |
| kfree(res); |
| |
| return copied; |
| } |
| |
| static noinline void folios_trunc(folios *fs, struct folio **fi) |
| { |
| while (fs->data + fs->nr > fi) { |
| struct folio *f = darray_pop(fs); |
| |
| folio_unlock(f); |
| folio_put(f); |
| } |
| } |
| |
| static int __bch2_buffered_write(struct bch_inode_info *inode, |
| struct address_space *mapping, |
| struct iov_iter *iter, |
| loff_t pos, unsigned len, |
| bool inode_locked) |
| { |
| struct bch_fs *c = inode->v.i_sb->s_fs_info; |
| struct bch2_folio_reservation res; |
| folios fs; |
| struct folio *f; |
| unsigned copied = 0, f_offset, f_copied; |
| u64 end = pos + len, f_pos, f_len; |
| loff_t last_folio_pos = inode->v.i_size; |
| int ret = 0; |
| |
| BUG_ON(!len); |
| |
| bch2_folio_reservation_init(c, inode, &res); |
| darray_init(&fs); |
| |
| ret = bch2_filemap_get_contig_folios_d(mapping, pos, end, |
| FGP_LOCK|FGP_WRITE|FGP_STABLE|FGP_CREAT, |
| mapping_gfp_mask(mapping), |
| &fs); |
| if (ret) |
| goto out; |
| |
| BUG_ON(!fs.nr); |
| |
| /* |
| * If we're not using the inode lock, we need to lock all the folios for |
| * atomiticity of writes vs. other writes: |
| */ |
| if (!inode_locked && folio_end_pos(darray_last(fs)) < end) { |
| ret = -BCH_ERR_need_inode_lock; |
| goto out; |
| } |
| |
| f = darray_first(fs); |
| if (pos != folio_pos(f) && !folio_test_uptodate(f)) { |
| ret = bch2_read_single_folio(f, mapping); |
| if (ret) |
| goto out; |
| } |
| |
| f = darray_last(fs); |
| end = min(end, folio_end_pos(f)); |
| last_folio_pos = folio_pos(f); |
| if (end != folio_end_pos(f) && !folio_test_uptodate(f)) { |
| if (end >= inode->v.i_size) { |
| folio_zero_range(f, 0, folio_size(f)); |
| } else { |
| ret = bch2_read_single_folio(f, mapping); |
| if (ret) |
| goto out; |
| } |
| } |
| |
| ret = bch2_folio_set(c, inode_inum(inode), fs.data, fs.nr); |
| if (ret) |
| goto out; |
| |
| f_pos = pos; |
| f_offset = pos - folio_pos(darray_first(fs)); |
| darray_for_each(fs, fi) { |
| f = *fi; |
| f_len = min(end, folio_end_pos(f)) - f_pos; |
| |
| /* |
| * XXX: per POSIX and fstests generic/275, on -ENOSPC we're |
| * supposed to write as much as we have disk space for. |
| * |
| * On failure here we should still write out a partial page if |
| * we aren't completely out of disk space - we don't do that |
| * yet: |
| */ |
| ret = bch2_folio_reservation_get(c, inode, f, &res, f_offset, f_len); |
| if (unlikely(ret)) { |
| folios_trunc(&fs, fi); |
| if (!fs.nr) |
| goto out; |
| |
| end = min(end, folio_end_pos(darray_last(fs))); |
| break; |
| } |
| |
| f_pos = folio_end_pos(f); |
| f_offset = 0; |
| } |
| |
| if (mapping_writably_mapped(mapping)) |
| darray_for_each(fs, fi) |
| flush_dcache_folio(*fi); |
| |
| f_pos = pos; |
| f_offset = pos - folio_pos(darray_first(fs)); |
| darray_for_each(fs, fi) { |
| f = *fi; |
| f_len = min(end, folio_end_pos(f)) - f_pos; |
| f_copied = copy_folio_from_iter_atomic(f, f_offset, f_len, iter); |
| if (!f_copied) { |
| folios_trunc(&fs, fi); |
| break; |
| } |
| |
| if (!folio_test_uptodate(f) && |
| f_copied != folio_size(f) && |
| pos + copied + f_copied < inode->v.i_size) { |
| iov_iter_revert(iter, f_copied); |
| folio_zero_range(f, 0, folio_size(f)); |
| folios_trunc(&fs, fi); |
| break; |
| } |
| |
| flush_dcache_folio(f); |
| copied += f_copied; |
| |
| if (f_copied != f_len) { |
| folios_trunc(&fs, fi + 1); |
| break; |
| } |
| |
| f_pos = folio_end_pos(f); |
| f_offset = 0; |
| } |
| |
| if (!copied) |
| goto out; |
| |
| end = pos + copied; |
| |
| spin_lock(&inode->v.i_lock); |
| if (end > inode->v.i_size) { |
| BUG_ON(!inode_locked); |
| i_size_write(&inode->v, end); |
| } |
| spin_unlock(&inode->v.i_lock); |
| |
| f_pos = pos; |
| f_offset = pos - folio_pos(darray_first(fs)); |
| darray_for_each(fs, fi) { |
| f = *fi; |
| f_len = min(end, folio_end_pos(f)) - f_pos; |
| |
| if (!folio_test_uptodate(f)) |
| folio_mark_uptodate(f); |
| |
| bch2_set_folio_dirty(c, inode, f, &res, f_offset, f_len); |
| |
| f_pos = folio_end_pos(f); |
| f_offset = 0; |
| } |
| |
| inode->ei_last_dirtied = (unsigned long) current; |
| out: |
| darray_for_each(fs, fi) { |
| folio_unlock(*fi); |
| folio_put(*fi); |
| } |
| |
| /* |
| * If the last folio added to the mapping starts beyond current EOF, we |
| * performed a short write but left around at least one post-EOF folio. |
| * Clean up the mapping before we return. |
| */ |
| if (last_folio_pos >= inode->v.i_size) |
| truncate_pagecache(&inode->v, inode->v.i_size); |
| |
| darray_exit(&fs); |
| bch2_folio_reservation_put(c, inode, &res); |
| |
| return copied ?: ret; |
| } |
| |
| static ssize_t bch2_buffered_write(struct kiocb *iocb, struct iov_iter *iter) |
| { |
| struct file *file = iocb->ki_filp; |
| struct address_space *mapping = file->f_mapping; |
| struct bch_inode_info *inode = file_bch_inode(file); |
| loff_t pos; |
| bool inode_locked = false; |
| ssize_t written = 0, written2 = 0, ret = 0; |
| |
| /* |
| * We don't take the inode lock unless i_size will be changing. Folio |
| * locks provide exclusion with other writes, and the pagecache add lock |
| * provides exclusion with truncate and hole punching. |
| * |
| * There is one nasty corner case where atomicity would be broken |
| * without great care: when copying data from userspace to the page |
| * cache, we do that with faults disable - a page fault would recurse |
| * back into the filesystem, taking filesystem locks again, and |
| * deadlock; so it's done with faults disabled, and we fault in the user |
| * buffer when we aren't holding locks. |
| * |
| * If we do part of the write, but we then race and in the userspace |
| * buffer have been evicted and are no longer resident, then we have to |
| * drop our folio locks to re-fault them in, breaking write atomicity. |
| * |
| * To fix this, we restart the write from the start, if we weren't |
| * holding the inode lock. |
| * |
| * There is another wrinkle after that; if we restart the write from the |
| * start, and then get an unrecoverable error, we _cannot_ claim to |
| * userspace that we did not write data we actually did - so we must |
| * track (written2) the most we ever wrote. |
| */ |
| |
| if ((iocb->ki_flags & IOCB_APPEND) || |
| (iocb->ki_pos + iov_iter_count(iter) > i_size_read(&inode->v))) { |
| inode_lock(&inode->v); |
| inode_locked = true; |
| } |
| |
| ret = generic_write_checks(iocb, iter); |
| if (ret <= 0) |
| goto unlock; |
| |
| ret = file_remove_privs_flags(file, !inode_locked ? IOCB_NOWAIT : 0); |
| if (ret) { |
| if (!inode_locked) { |
| inode_lock(&inode->v); |
| inode_locked = true; |
| ret = file_remove_privs_flags(file, 0); |
| } |
| if (ret) |
| goto unlock; |
| } |
| |
| ret = file_update_time(file); |
| if (ret) |
| goto unlock; |
| |
| pos = iocb->ki_pos; |
| |
| bch2_pagecache_add_get(inode); |
| |
| if (!inode_locked && |
| (iocb->ki_pos + iov_iter_count(iter) > i_size_read(&inode->v))) |
| goto get_inode_lock; |
| |
| do { |
| unsigned offset = pos & (PAGE_SIZE - 1); |
| unsigned bytes = iov_iter_count(iter); |
| again: |
| /* |
| * Bring in the user page that we will copy from _first_. |
| * Otherwise there's a nasty deadlock on copying from the |
| * same page as we're writing to, without it being marked |
| * up-to-date. |
| * |
| * Not only is this an optimisation, but it is also required |
| * to check that the address is actually valid, when atomic |
| * usercopies are used, below. |
| */ |
| if (unlikely(fault_in_iov_iter_readable(iter, bytes))) { |
| bytes = min_t(unsigned long, iov_iter_count(iter), |
| PAGE_SIZE - offset); |
| |
| if (unlikely(fault_in_iov_iter_readable(iter, bytes))) { |
| ret = -EFAULT; |
| break; |
| } |
| } |
| |
| if (unlikely(bytes != iov_iter_count(iter) && !inode_locked)) |
| goto get_inode_lock; |
| |
| if (unlikely(fatal_signal_pending(current))) { |
| ret = -EINTR; |
| break; |
| } |
| |
| ret = __bch2_buffered_write(inode, mapping, iter, pos, bytes, inode_locked); |
| if (ret == -BCH_ERR_need_inode_lock) |
| goto get_inode_lock; |
| if (unlikely(ret < 0)) |
| break; |
| |
| cond_resched(); |
| |
| if (unlikely(ret == 0)) { |
| /* |
| * If we were unable to copy any data at all, we must |
| * fall back to a single segment length write. |
| * |
| * If we didn't fallback here, we could livelock |
| * because not all segments in the iov can be copied at |
| * once without a pagefault. |
| */ |
| bytes = min_t(unsigned long, PAGE_SIZE - offset, |
| iov_iter_single_seg_count(iter)); |
| goto again; |
| } |
| pos += ret; |
| written += ret; |
| written2 = max(written, written2); |
| |
| if (ret != bytes && !inode_locked) |
| goto get_inode_lock; |
| ret = 0; |
| |
| balance_dirty_pages_ratelimited(mapping); |
| |
| if (0) { |
| get_inode_lock: |
| bch2_pagecache_add_put(inode); |
| inode_lock(&inode->v); |
| inode_locked = true; |
| bch2_pagecache_add_get(inode); |
| |
| iov_iter_revert(iter, written); |
| pos -= written; |
| written = 0; |
| ret = 0; |
| } |
| } while (iov_iter_count(iter)); |
| bch2_pagecache_add_put(inode); |
| unlock: |
| if (inode_locked) |
| inode_unlock(&inode->v); |
| |
| iocb->ki_pos += written; |
| |
| ret = max(written, written2) ?: ret; |
| if (ret > 0) |
| ret = generic_write_sync(iocb, ret); |
| return ret; |
| } |
| |
| ssize_t bch2_write_iter(struct kiocb *iocb, struct iov_iter *iter) |
| { |
| ssize_t ret = iocb->ki_flags & IOCB_DIRECT |
| ? bch2_direct_write(iocb, iter) |
| : bch2_buffered_write(iocb, iter); |
| |
| return bch2_err_class(ret); |
| } |
| |
| void bch2_fs_fs_io_buffered_exit(struct bch_fs *c) |
| { |
| bioset_exit(&c->writepage_bioset); |
| } |
| |
| int bch2_fs_fs_io_buffered_init(struct bch_fs *c) |
| { |
| if (bioset_init(&c->writepage_bioset, |
| 4, offsetof(struct bch_writepage_io, op.wbio.bio), |
| BIOSET_NEED_BVECS)) |
| return -BCH_ERR_ENOMEM_writepage_bioset_init; |
| |
| return 0; |
| } |
| |
| #endif /* NO_BCACHEFS_FS */ |