| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2007 Oracle. All rights reserved. |
| * Copyright (C) 2022 Christoph Hellwig. |
| */ |
| |
| #include <linux/bio.h> |
| #include "bio.h" |
| #include "ctree.h" |
| #include "volumes.h" |
| #include "raid56.h" |
| #include "async-thread.h" |
| #include "dev-replace.h" |
| #include "zoned.h" |
| #include "file-item.h" |
| #include "raid-stripe-tree.h" |
| |
| static struct bio_set btrfs_bioset; |
| static struct bio_set btrfs_clone_bioset; |
| static struct bio_set btrfs_repair_bioset; |
| static mempool_t btrfs_failed_bio_pool; |
| |
| struct btrfs_failed_bio { |
| struct btrfs_bio *bbio; |
| int num_copies; |
| atomic_t repair_count; |
| }; |
| |
| /* Is this a data path I/O that needs storage layer checksum and repair? */ |
| static inline bool is_data_bbio(struct btrfs_bio *bbio) |
| { |
| return bbio->inode && is_data_inode(&bbio->inode->vfs_inode); |
| } |
| |
| static bool bbio_has_ordered_extent(struct btrfs_bio *bbio) |
| { |
| return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE; |
| } |
| |
| /* |
| * Initialize a btrfs_bio structure. This skips the embedded bio itself as it |
| * is already initialized by the block layer. |
| */ |
| void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info, |
| btrfs_bio_end_io_t end_io, void *private) |
| { |
| memset(bbio, 0, offsetof(struct btrfs_bio, bio)); |
| bbio->fs_info = fs_info; |
| bbio->end_io = end_io; |
| bbio->private = private; |
| atomic_set(&bbio->pending_ios, 1); |
| } |
| |
| /* |
| * Allocate a btrfs_bio structure. The btrfs_bio is the main I/O container for |
| * btrfs, and is used for all I/O submitted through btrfs_submit_bio. |
| * |
| * Just like the underlying bio_alloc_bioset it will not fail as it is backed by |
| * a mempool. |
| */ |
| struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf, |
| struct btrfs_fs_info *fs_info, |
| btrfs_bio_end_io_t end_io, void *private) |
| { |
| struct btrfs_bio *bbio; |
| struct bio *bio; |
| |
| bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset); |
| bbio = btrfs_bio(bio); |
| btrfs_bio_init(bbio, fs_info, end_io, private); |
| return bbio; |
| } |
| |
| static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info, |
| struct btrfs_bio *orig_bbio, |
| u64 map_length, bool use_append) |
| { |
| struct btrfs_bio *bbio; |
| struct bio *bio; |
| |
| if (use_append) { |
| unsigned int nr_segs; |
| |
| bio = bio_split_rw(&orig_bbio->bio, &fs_info->limits, &nr_segs, |
| &btrfs_clone_bioset, map_length); |
| } else { |
| bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT, |
| GFP_NOFS, &btrfs_clone_bioset); |
| } |
| bbio = btrfs_bio(bio); |
| btrfs_bio_init(bbio, fs_info, NULL, orig_bbio); |
| bbio->inode = orig_bbio->inode; |
| bbio->file_offset = orig_bbio->file_offset; |
| orig_bbio->file_offset += map_length; |
| if (bbio_has_ordered_extent(bbio)) { |
| refcount_inc(&orig_bbio->ordered->refs); |
| bbio->ordered = orig_bbio->ordered; |
| } |
| atomic_inc(&orig_bbio->pending_ios); |
| return bbio; |
| } |
| |
| /* Free a bio that was never submitted to the underlying device. */ |
| static void btrfs_cleanup_bio(struct btrfs_bio *bbio) |
| { |
| if (bbio_has_ordered_extent(bbio)) |
| btrfs_put_ordered_extent(bbio->ordered); |
| bio_put(&bbio->bio); |
| } |
| |
| static void __btrfs_bio_end_io(struct btrfs_bio *bbio) |
| { |
| if (bbio_has_ordered_extent(bbio)) { |
| struct btrfs_ordered_extent *ordered = bbio->ordered; |
| |
| bbio->end_io(bbio); |
| btrfs_put_ordered_extent(ordered); |
| } else { |
| bbio->end_io(bbio); |
| } |
| } |
| |
| void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status) |
| { |
| bbio->bio.bi_status = status; |
| __btrfs_bio_end_io(bbio); |
| } |
| |
| static void btrfs_orig_write_end_io(struct bio *bio); |
| |
| static void btrfs_bbio_propagate_error(struct btrfs_bio *bbio, |
| struct btrfs_bio *orig_bbio) |
| { |
| /* |
| * For writes we tolerate nr_mirrors - 1 write failures, so we can't |
| * just blindly propagate a write failure here. Instead increment the |
| * error count in the original I/O context so that it is guaranteed to |
| * be larger than the error tolerance. |
| */ |
| if (bbio->bio.bi_end_io == &btrfs_orig_write_end_io) { |
| struct btrfs_io_stripe *orig_stripe = orig_bbio->bio.bi_private; |
| struct btrfs_io_context *orig_bioc = orig_stripe->bioc; |
| |
| atomic_add(orig_bioc->max_errors, &orig_bioc->error); |
| } else { |
| orig_bbio->bio.bi_status = bbio->bio.bi_status; |
| } |
| } |
| |
| static void btrfs_orig_bbio_end_io(struct btrfs_bio *bbio) |
| { |
| if (bbio->bio.bi_pool == &btrfs_clone_bioset) { |
| struct btrfs_bio *orig_bbio = bbio->private; |
| |
| if (bbio->bio.bi_status) |
| btrfs_bbio_propagate_error(bbio, orig_bbio); |
| btrfs_cleanup_bio(bbio); |
| bbio = orig_bbio; |
| } |
| |
| if (atomic_dec_and_test(&bbio->pending_ios)) |
| __btrfs_bio_end_io(bbio); |
| } |
| |
| static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror) |
| { |
| if (cur_mirror == fbio->num_copies) |
| return cur_mirror + 1 - fbio->num_copies; |
| return cur_mirror + 1; |
| } |
| |
| static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror) |
| { |
| if (cur_mirror == 1) |
| return fbio->num_copies; |
| return cur_mirror - 1; |
| } |
| |
| static void btrfs_repair_done(struct btrfs_failed_bio *fbio) |
| { |
| if (atomic_dec_and_test(&fbio->repair_count)) { |
| btrfs_orig_bbio_end_io(fbio->bbio); |
| mempool_free(fbio, &btrfs_failed_bio_pool); |
| } |
| } |
| |
| static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio, |
| struct btrfs_device *dev) |
| { |
| struct btrfs_failed_bio *fbio = repair_bbio->private; |
| struct btrfs_inode *inode = repair_bbio->inode; |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio); |
| int mirror = repair_bbio->mirror_num; |
| |
| /* |
| * We can only trigger this for data bio, which doesn't support larger |
| * folios yet. |
| */ |
| ASSERT(folio_order(page_folio(bv->bv_page)) == 0); |
| |
| if (repair_bbio->bio.bi_status || |
| !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) { |
| bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ); |
| repair_bbio->bio.bi_iter = repair_bbio->saved_iter; |
| |
| mirror = next_repair_mirror(fbio, mirror); |
| if (mirror == fbio->bbio->mirror_num) { |
| btrfs_debug(fs_info, "no mirror left"); |
| fbio->bbio->bio.bi_status = BLK_STS_IOERR; |
| goto done; |
| } |
| |
| btrfs_submit_bio(repair_bbio, mirror); |
| return; |
| } |
| |
| do { |
| mirror = prev_repair_mirror(fbio, mirror); |
| btrfs_repair_io_failure(fs_info, btrfs_ino(inode), |
| repair_bbio->file_offset, fs_info->sectorsize, |
| repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT, |
| page_folio(bv->bv_page), bv->bv_offset, mirror); |
| } while (mirror != fbio->bbio->mirror_num); |
| |
| done: |
| btrfs_repair_done(fbio); |
| bio_put(&repair_bbio->bio); |
| } |
| |
| /* |
| * Try to kick off a repair read to the next available mirror for a bad sector. |
| * |
| * This primarily tries to recover good data to serve the actual read request, |
| * but also tries to write the good data back to the bad mirror(s) when a |
| * read succeeded to restore the redundancy. |
| */ |
| static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio, |
| u32 bio_offset, |
| struct bio_vec *bv, |
| struct btrfs_failed_bio *fbio) |
| { |
| struct btrfs_inode *inode = failed_bbio->inode; |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| const u32 sectorsize = fs_info->sectorsize; |
| const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT); |
| struct btrfs_bio *repair_bbio; |
| struct bio *repair_bio; |
| int num_copies; |
| int mirror; |
| |
| btrfs_debug(fs_info, "repair read error: read error at %llu", |
| failed_bbio->file_offset + bio_offset); |
| |
| num_copies = btrfs_num_copies(fs_info, logical, sectorsize); |
| if (num_copies == 1) { |
| btrfs_debug(fs_info, "no copy to repair from"); |
| failed_bbio->bio.bi_status = BLK_STS_IOERR; |
| return fbio; |
| } |
| |
| if (!fbio) { |
| fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS); |
| fbio->bbio = failed_bbio; |
| fbio->num_copies = num_copies; |
| atomic_set(&fbio->repair_count, 1); |
| } |
| |
| atomic_inc(&fbio->repair_count); |
| |
| repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS, |
| &btrfs_repair_bioset); |
| repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector; |
| __bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset); |
| |
| repair_bbio = btrfs_bio(repair_bio); |
| btrfs_bio_init(repair_bbio, fs_info, NULL, fbio); |
| repair_bbio->inode = failed_bbio->inode; |
| repair_bbio->file_offset = failed_bbio->file_offset + bio_offset; |
| |
| mirror = next_repair_mirror(fbio, failed_bbio->mirror_num); |
| btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror); |
| btrfs_submit_bio(repair_bbio, mirror); |
| return fbio; |
| } |
| |
| static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev) |
| { |
| struct btrfs_inode *inode = bbio->inode; |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| u32 sectorsize = fs_info->sectorsize; |
| struct bvec_iter *iter = &bbio->saved_iter; |
| blk_status_t status = bbio->bio.bi_status; |
| struct btrfs_failed_bio *fbio = NULL; |
| u32 offset = 0; |
| |
| /* Read-repair requires the inode field to be set by the submitter. */ |
| ASSERT(inode); |
| |
| /* |
| * Hand off repair bios to the repair code as there is no upper level |
| * submitter for them. |
| */ |
| if (bbio->bio.bi_pool == &btrfs_repair_bioset) { |
| btrfs_end_repair_bio(bbio, dev); |
| return; |
| } |
| |
| /* Clear the I/O error. A failed repair will reset it. */ |
| bbio->bio.bi_status = BLK_STS_OK; |
| |
| while (iter->bi_size) { |
| struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter); |
| |
| bv.bv_len = min(bv.bv_len, sectorsize); |
| if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv)) |
| fbio = repair_one_sector(bbio, offset, &bv, fbio); |
| |
| bio_advance_iter_single(&bbio->bio, iter, sectorsize); |
| offset += sectorsize; |
| } |
| |
| if (bbio->csum != bbio->csum_inline) |
| kfree(bbio->csum); |
| |
| if (fbio) |
| btrfs_repair_done(fbio); |
| else |
| btrfs_orig_bbio_end_io(bbio); |
| } |
| |
| static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev) |
| { |
| if (!dev || !dev->bdev) |
| return; |
| if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET) |
| return; |
| |
| if (btrfs_op(bio) == BTRFS_MAP_WRITE) |
| btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); |
| else if (!(bio->bi_opf & REQ_RAHEAD)) |
| btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); |
| if (bio->bi_opf & REQ_PREFLUSH) |
| btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS); |
| } |
| |
| static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info, |
| struct bio *bio) |
| { |
| if (bio->bi_opf & REQ_META) |
| return fs_info->endio_meta_workers; |
| return fs_info->endio_workers; |
| } |
| |
| static void btrfs_end_bio_work(struct work_struct *work) |
| { |
| struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work); |
| |
| /* Metadata reads are checked and repaired by the submitter. */ |
| if (is_data_bbio(bbio)) |
| btrfs_check_read_bio(bbio, bbio->bio.bi_private); |
| else |
| btrfs_orig_bbio_end_io(bbio); |
| } |
| |
| static void btrfs_simple_end_io(struct bio *bio) |
| { |
| struct btrfs_bio *bbio = btrfs_bio(bio); |
| struct btrfs_device *dev = bio->bi_private; |
| struct btrfs_fs_info *fs_info = bbio->fs_info; |
| |
| btrfs_bio_counter_dec(fs_info); |
| |
| if (bio->bi_status) |
| btrfs_log_dev_io_error(bio, dev); |
| |
| if (bio_op(bio) == REQ_OP_READ) { |
| INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work); |
| queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work); |
| } else { |
| if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status) |
| btrfs_record_physical_zoned(bbio); |
| btrfs_orig_bbio_end_io(bbio); |
| } |
| } |
| |
| static void btrfs_raid56_end_io(struct bio *bio) |
| { |
| struct btrfs_io_context *bioc = bio->bi_private; |
| struct btrfs_bio *bbio = btrfs_bio(bio); |
| |
| btrfs_bio_counter_dec(bioc->fs_info); |
| bbio->mirror_num = bioc->mirror_num; |
| if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) |
| btrfs_check_read_bio(bbio, NULL); |
| else |
| btrfs_orig_bbio_end_io(bbio); |
| |
| btrfs_put_bioc(bioc); |
| } |
| |
| static void btrfs_orig_write_end_io(struct bio *bio) |
| { |
| struct btrfs_io_stripe *stripe = bio->bi_private; |
| struct btrfs_io_context *bioc = stripe->bioc; |
| struct btrfs_bio *bbio = btrfs_bio(bio); |
| |
| btrfs_bio_counter_dec(bioc->fs_info); |
| |
| if (bio->bi_status) { |
| atomic_inc(&bioc->error); |
| btrfs_log_dev_io_error(bio, stripe->dev); |
| } |
| |
| /* |
| * Only send an error to the higher layers if it is beyond the tolerance |
| * threshold. |
| */ |
| if (atomic_read(&bioc->error) > bioc->max_errors) |
| bio->bi_status = BLK_STS_IOERR; |
| else |
| bio->bi_status = BLK_STS_OK; |
| |
| if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status) |
| stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; |
| |
| btrfs_orig_bbio_end_io(bbio); |
| btrfs_put_bioc(bioc); |
| } |
| |
| static void btrfs_clone_write_end_io(struct bio *bio) |
| { |
| struct btrfs_io_stripe *stripe = bio->bi_private; |
| |
| if (bio->bi_status) { |
| atomic_inc(&stripe->bioc->error); |
| btrfs_log_dev_io_error(bio, stripe->dev); |
| } else if (bio_op(bio) == REQ_OP_ZONE_APPEND) { |
| stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; |
| } |
| |
| /* Pass on control to the original bio this one was cloned from */ |
| bio_endio(stripe->bioc->orig_bio); |
| bio_put(bio); |
| } |
| |
| static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio) |
| { |
| if (!dev || !dev->bdev || |
| test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || |
| (btrfs_op(bio) == BTRFS_MAP_WRITE && |
| !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { |
| bio_io_error(bio); |
| return; |
| } |
| |
| bio_set_dev(bio, dev->bdev); |
| |
| /* |
| * For zone append writing, bi_sector must point the beginning of the |
| * zone |
| */ |
| if (bio_op(bio) == REQ_OP_ZONE_APPEND) { |
| u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; |
| u64 zone_start = round_down(physical, dev->fs_info->zone_size); |
| |
| ASSERT(btrfs_dev_is_sequential(dev, physical)); |
| bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT; |
| } |
| btrfs_debug_in_rcu(dev->fs_info, |
| "%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", |
| __func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector, |
| (unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev), |
| dev->devid, bio->bi_iter.bi_size); |
| |
| if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT) |
| blkcg_punt_bio_submit(bio); |
| else |
| submit_bio(bio); |
| } |
| |
| static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr) |
| { |
| struct bio *orig_bio = bioc->orig_bio, *bio; |
| |
| ASSERT(bio_op(orig_bio) != REQ_OP_READ); |
| |
| /* Reuse the bio embedded into the btrfs_bio for the last mirror */ |
| if (dev_nr == bioc->num_stripes - 1) { |
| bio = orig_bio; |
| bio->bi_end_io = btrfs_orig_write_end_io; |
| } else { |
| bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set); |
| bio_inc_remaining(orig_bio); |
| bio->bi_end_io = btrfs_clone_write_end_io; |
| } |
| |
| bio->bi_private = &bioc->stripes[dev_nr]; |
| bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT; |
| bioc->stripes[dev_nr].bioc = bioc; |
| bioc->size = bio->bi_iter.bi_size; |
| btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio); |
| } |
| |
| static void __btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc, |
| struct btrfs_io_stripe *smap, int mirror_num) |
| { |
| if (!bioc) { |
| /* Single mirror read/write fast path. */ |
| btrfs_bio(bio)->mirror_num = mirror_num; |
| bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT; |
| if (bio_op(bio) != REQ_OP_READ) |
| btrfs_bio(bio)->orig_physical = smap->physical; |
| bio->bi_private = smap->dev; |
| bio->bi_end_io = btrfs_simple_end_io; |
| btrfs_submit_dev_bio(smap->dev, bio); |
| } else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { |
| /* Parity RAID write or read recovery. */ |
| bio->bi_private = bioc; |
| bio->bi_end_io = btrfs_raid56_end_io; |
| if (bio_op(bio) == REQ_OP_READ) |
| raid56_parity_recover(bio, bioc, mirror_num); |
| else |
| raid56_parity_write(bio, bioc); |
| } else { |
| /* Write to multiple mirrors. */ |
| int total_devs = bioc->num_stripes; |
| |
| bioc->orig_bio = bio; |
| for (int dev_nr = 0; dev_nr < total_devs; dev_nr++) |
| btrfs_submit_mirrored_bio(bioc, dev_nr); |
| } |
| } |
| |
| static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio) |
| { |
| if (bbio->bio.bi_opf & REQ_META) |
| return btree_csum_one_bio(bbio); |
| return btrfs_csum_one_bio(bbio); |
| } |
| |
| /* |
| * Async submit bios are used to offload expensive checksumming onto the worker |
| * threads. |
| */ |
| struct async_submit_bio { |
| struct btrfs_bio *bbio; |
| struct btrfs_io_context *bioc; |
| struct btrfs_io_stripe smap; |
| int mirror_num; |
| struct btrfs_work work; |
| }; |
| |
| /* |
| * In order to insert checksums into the metadata in large chunks, we wait |
| * until bio submission time. All the pages in the bio are checksummed and |
| * sums are attached onto the ordered extent record. |
| * |
| * At IO completion time the csums attached on the ordered extent record are |
| * inserted into the btree. |
| */ |
| static void run_one_async_start(struct btrfs_work *work) |
| { |
| struct async_submit_bio *async = |
| container_of(work, struct async_submit_bio, work); |
| blk_status_t ret; |
| |
| ret = btrfs_bio_csum(async->bbio); |
| if (ret) |
| async->bbio->bio.bi_status = ret; |
| } |
| |
| /* |
| * In order to insert checksums into the metadata in large chunks, we wait |
| * until bio submission time. All the pages in the bio are checksummed and |
| * sums are attached onto the ordered extent record. |
| * |
| * At IO completion time the csums attached on the ordered extent record are |
| * inserted into the tree. |
| * |
| * If called with @do_free == true, then it will free the work struct. |
| */ |
| static void run_one_async_done(struct btrfs_work *work, bool do_free) |
| { |
| struct async_submit_bio *async = |
| container_of(work, struct async_submit_bio, work); |
| struct bio *bio = &async->bbio->bio; |
| |
| if (do_free) { |
| kfree(container_of(work, struct async_submit_bio, work)); |
| return; |
| } |
| |
| /* If an error occurred we just want to clean up the bio and move on. */ |
| if (bio->bi_status) { |
| btrfs_orig_bbio_end_io(async->bbio); |
| return; |
| } |
| |
| /* |
| * All of the bios that pass through here are from async helpers. |
| * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's |
| * context. This changes nothing when cgroups aren't in use. |
| */ |
| bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT; |
| __btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num); |
| } |
| |
| static bool should_async_write(struct btrfs_bio *bbio) |
| { |
| bool auto_csum_mode = true; |
| |
| #ifdef CONFIG_BTRFS_DEBUG |
| struct btrfs_fs_devices *fs_devices = bbio->fs_info->fs_devices; |
| enum btrfs_offload_csum_mode csum_mode = READ_ONCE(fs_devices->offload_csum_mode); |
| |
| if (csum_mode == BTRFS_OFFLOAD_CSUM_FORCE_OFF) |
| return false; |
| |
| auto_csum_mode = (csum_mode == BTRFS_OFFLOAD_CSUM_AUTO); |
| #endif |
| |
| /* Submit synchronously if the checksum implementation is fast. */ |
| if (auto_csum_mode && test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags)) |
| return false; |
| |
| /* |
| * Try to defer the submission to a workqueue to parallelize the |
| * checksum calculation unless the I/O is issued synchronously. |
| */ |
| if (op_is_sync(bbio->bio.bi_opf)) |
| return false; |
| |
| /* Zoned devices require I/O to be submitted in order. */ |
| if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info)) |
| return false; |
| |
| return true; |
| } |
| |
| /* |
| * Submit bio to an async queue. |
| * |
| * Return true if the work has been successfully submitted, else false. |
| */ |
| static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio, |
| struct btrfs_io_context *bioc, |
| struct btrfs_io_stripe *smap, int mirror_num) |
| { |
| struct btrfs_fs_info *fs_info = bbio->fs_info; |
| struct async_submit_bio *async; |
| |
| async = kmalloc(sizeof(*async), GFP_NOFS); |
| if (!async) |
| return false; |
| |
| async->bbio = bbio; |
| async->bioc = bioc; |
| async->smap = *smap; |
| async->mirror_num = mirror_num; |
| |
| btrfs_init_work(&async->work, run_one_async_start, run_one_async_done); |
| btrfs_queue_work(fs_info->workers, &async->work); |
| return true; |
| } |
| |
| static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num) |
| { |
| struct btrfs_inode *inode = bbio->inode; |
| struct btrfs_fs_info *fs_info = bbio->fs_info; |
| struct btrfs_bio *orig_bbio = bbio; |
| struct bio *bio = &bbio->bio; |
| u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT; |
| u64 length = bio->bi_iter.bi_size; |
| u64 map_length = length; |
| bool use_append = btrfs_use_zone_append(bbio); |
| struct btrfs_io_context *bioc = NULL; |
| struct btrfs_io_stripe smap; |
| blk_status_t ret; |
| int error; |
| |
| smap.is_scrub = !bbio->inode; |
| |
| btrfs_bio_counter_inc_blocked(fs_info); |
| error = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, |
| &bioc, &smap, &mirror_num); |
| if (error) { |
| ret = errno_to_blk_status(error); |
| goto fail; |
| } |
| |
| map_length = min(map_length, length); |
| if (use_append) |
| map_length = min(map_length, fs_info->max_zone_append_size); |
| |
| if (map_length < length) { |
| bbio = btrfs_split_bio(fs_info, bbio, map_length, use_append); |
| bio = &bbio->bio; |
| } |
| |
| /* |
| * Save the iter for the end_io handler and preload the checksums for |
| * data reads. |
| */ |
| if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) { |
| bbio->saved_iter = bio->bi_iter; |
| ret = btrfs_lookup_bio_sums(bbio); |
| if (ret) |
| goto fail_put_bio; |
| } |
| |
| if (btrfs_op(bio) == BTRFS_MAP_WRITE) { |
| if (use_append) { |
| bio->bi_opf &= ~REQ_OP_WRITE; |
| bio->bi_opf |= REQ_OP_ZONE_APPEND; |
| } |
| |
| if (is_data_bbio(bbio) && bioc && |
| btrfs_need_stripe_tree_update(bioc->fs_info, bioc->map_type)) { |
| /* |
| * No locking for the list update, as we only add to |
| * the list in the I/O submission path, and list |
| * iteration only happens in the completion path, which |
| * can't happen until after the last submission. |
| */ |
| btrfs_get_bioc(bioc); |
| list_add_tail(&bioc->rst_ordered_entry, &bbio->ordered->bioc_list); |
| } |
| |
| /* |
| * Csum items for reloc roots have already been cloned at this |
| * point, so they are handled as part of the no-checksum case. |
| */ |
| if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) && |
| !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) && |
| !btrfs_is_data_reloc_root(inode->root)) { |
| if (should_async_write(bbio) && |
| btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num)) |
| goto done; |
| |
| ret = btrfs_bio_csum(bbio); |
| if (ret) |
| goto fail_put_bio; |
| } else if (use_append || |
| (btrfs_is_zoned(fs_info) && inode && |
| inode->flags & BTRFS_INODE_NODATASUM)) { |
| ret = btrfs_alloc_dummy_sum(bbio); |
| if (ret) |
| goto fail_put_bio; |
| } |
| } |
| |
| __btrfs_submit_bio(bio, bioc, &smap, mirror_num); |
| done: |
| return map_length == length; |
| |
| fail_put_bio: |
| if (map_length < length) |
| btrfs_cleanup_bio(bbio); |
| fail: |
| btrfs_bio_counter_dec(fs_info); |
| btrfs_bio_end_io(orig_bbio, ret); |
| /* Do not submit another chunk */ |
| return true; |
| } |
| |
| void btrfs_submit_bio(struct btrfs_bio *bbio, int mirror_num) |
| { |
| /* If bbio->inode is not populated, its file_offset must be 0. */ |
| ASSERT(bbio->inode || bbio->file_offset == 0); |
| |
| while (!btrfs_submit_chunk(bbio, mirror_num)) |
| ; |
| } |
| |
| /* |
| * Submit a repair write. |
| * |
| * This bypasses btrfs_submit_bio deliberately, as that writes all copies in a |
| * RAID setup. Here we only want to write the one bad copy, so we do the |
| * mapping ourselves and submit the bio directly. |
| * |
| * The I/O is issued synchronously to block the repair read completion from |
| * freeing the bio. |
| */ |
| int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, |
| u64 length, u64 logical, struct folio *folio, |
| unsigned int folio_offset, int mirror_num) |
| { |
| struct btrfs_io_stripe smap = { 0 }; |
| struct bio_vec bvec; |
| struct bio bio; |
| int ret = 0; |
| |
| ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); |
| BUG_ON(!mirror_num); |
| |
| if (btrfs_repair_one_zone(fs_info, logical)) |
| return 0; |
| |
| /* |
| * Avoid races with device replace and make sure our bioc has devices |
| * associated to its stripes that don't go away while we are doing the |
| * read repair operation. |
| */ |
| btrfs_bio_counter_inc_blocked(fs_info); |
| ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num); |
| if (ret < 0) |
| goto out_counter_dec; |
| |
| if (!smap.dev->bdev || |
| !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) { |
| ret = -EIO; |
| goto out_counter_dec; |
| } |
| |
| bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC); |
| bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT; |
| ret = bio_add_folio(&bio, folio, length, folio_offset); |
| ASSERT(ret); |
| ret = submit_bio_wait(&bio); |
| if (ret) { |
| /* try to remap that extent elsewhere? */ |
| btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS); |
| goto out_bio_uninit; |
| } |
| |
| btrfs_info_rl_in_rcu(fs_info, |
| "read error corrected: ino %llu off %llu (dev %s sector %llu)", |
| ino, start, btrfs_dev_name(smap.dev), |
| smap.physical >> SECTOR_SHIFT); |
| ret = 0; |
| |
| out_bio_uninit: |
| bio_uninit(&bio); |
| out_counter_dec: |
| btrfs_bio_counter_dec(fs_info); |
| return ret; |
| } |
| |
| /* |
| * Submit a btrfs_bio based repair write. |
| * |
| * If @dev_replace is true, the write would be submitted to dev-replace target. |
| */ |
| void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace) |
| { |
| struct btrfs_fs_info *fs_info = bbio->fs_info; |
| u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; |
| u64 length = bbio->bio.bi_iter.bi_size; |
| struct btrfs_io_stripe smap = { 0 }; |
| int ret; |
| |
| ASSERT(fs_info); |
| ASSERT(mirror_num > 0); |
| ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE); |
| ASSERT(!bbio->inode); |
| |
| btrfs_bio_counter_inc_blocked(fs_info); |
| ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num); |
| if (ret < 0) |
| goto fail; |
| |
| if (dev_replace) { |
| ASSERT(smap.dev == fs_info->dev_replace.srcdev); |
| smap.dev = fs_info->dev_replace.tgtdev; |
| } |
| __btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num); |
| return; |
| |
| fail: |
| btrfs_bio_counter_dec(fs_info); |
| btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); |
| } |
| |
| int __init btrfs_bioset_init(void) |
| { |
| if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, |
| offsetof(struct btrfs_bio, bio), |
| BIOSET_NEED_BVECS)) |
| return -ENOMEM; |
| if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE, |
| offsetof(struct btrfs_bio, bio), 0)) |
| goto out_free_bioset; |
| if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE, |
| offsetof(struct btrfs_bio, bio), |
| BIOSET_NEED_BVECS)) |
| goto out_free_clone_bioset; |
| if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE, |
| sizeof(struct btrfs_failed_bio))) |
| goto out_free_repair_bioset; |
| return 0; |
| |
| out_free_repair_bioset: |
| bioset_exit(&btrfs_repair_bioset); |
| out_free_clone_bioset: |
| bioset_exit(&btrfs_clone_bioset); |
| out_free_bioset: |
| bioset_exit(&btrfs_bioset); |
| return -ENOMEM; |
| } |
| |
| void __cold btrfs_bioset_exit(void) |
| { |
| mempool_exit(&btrfs_failed_bio_pool); |
| bioset_exit(&btrfs_repair_bioset); |
| bioset_exit(&btrfs_clone_bioset); |
| bioset_exit(&btrfs_bioset); |
| } |