blob: 04af672caacb1b4c869a953f9d25d3ed7c8e7b9e [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2015 Broadcom
*/
/**
* DOC: VC4 HVS module.
*
* The Hardware Video Scaler (HVS) is the piece of hardware that does
* translation, scaling, colorspace conversion, and compositing of
* pixels stored in framebuffers into a FIFO of pixels going out to
* the Pixel Valve (CRTC). It operates at the system clock rate (the
* system audio clock gate, specifically), which is much higher than
* the pixel clock rate.
*
* There is a single global HVS, with multiple output FIFOs that can
* be consumed by the PVs. This file just manages the resources for
* the HVS, while the vc4_crtc.c code actually drives HVS setup for
* each CRTC.
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/platform_device.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_drv.h>
#include <drm/drm_vblank.h>
#include <soc/bcm2835/raspberrypi-firmware.h>
#include "vc4_drv.h"
#include "vc4_regs.h"
static const struct debugfs_reg32 hvs_regs[] = {
VC4_REG32(SCALER_DISPCTRL),
VC4_REG32(SCALER_DISPSTAT),
VC4_REG32(SCALER_DISPID),
VC4_REG32(SCALER_DISPECTRL),
VC4_REG32(SCALER_DISPPROF),
VC4_REG32(SCALER_DISPDITHER),
VC4_REG32(SCALER_DISPEOLN),
VC4_REG32(SCALER_DISPLIST0),
VC4_REG32(SCALER_DISPLIST1),
VC4_REG32(SCALER_DISPLIST2),
VC4_REG32(SCALER_DISPLSTAT),
VC4_REG32(SCALER_DISPLACT0),
VC4_REG32(SCALER_DISPLACT1),
VC4_REG32(SCALER_DISPLACT2),
VC4_REG32(SCALER_DISPCTRL0),
VC4_REG32(SCALER_DISPBKGND0),
VC4_REG32(SCALER_DISPSTAT0),
VC4_REG32(SCALER_DISPBASE0),
VC4_REG32(SCALER_DISPCTRL1),
VC4_REG32(SCALER_DISPBKGND1),
VC4_REG32(SCALER_DISPSTAT1),
VC4_REG32(SCALER_DISPBASE1),
VC4_REG32(SCALER_DISPCTRL2),
VC4_REG32(SCALER_DISPBKGND2),
VC4_REG32(SCALER_DISPSTAT2),
VC4_REG32(SCALER_DISPBASE2),
VC4_REG32(SCALER_DISPALPHA2),
VC4_REG32(SCALER_OLEDOFFS),
VC4_REG32(SCALER_OLEDCOEF0),
VC4_REG32(SCALER_OLEDCOEF1),
VC4_REG32(SCALER_OLEDCOEF2),
};
void vc4_hvs_dump_state(struct vc4_hvs *hvs)
{
struct drm_device *drm = &hvs->vc4->base;
struct drm_printer p = drm_info_printer(&hvs->pdev->dev);
int idx, i;
if (!drm_dev_enter(drm, &idx))
return;
drm_print_regset32(&p, &hvs->regset);
DRM_INFO("HVS ctx:\n");
for (i = 0; i < 64; i += 4) {
DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
readl((u32 __iomem *)hvs->dlist + i + 0),
readl((u32 __iomem *)hvs->dlist + i + 1),
readl((u32 __iomem *)hvs->dlist + i + 2),
readl((u32 __iomem *)hvs->dlist + i + 3));
}
drm_dev_exit(idx);
}
static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data)
{
struct drm_debugfs_entry *entry = m->private;
struct drm_device *dev = entry->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct drm_printer p = drm_seq_file_printer(m);
drm_printf(&p, "%d\n", atomic_read(&vc4->underrun));
return 0;
}
static int vc4_hvs_debugfs_dlist(struct seq_file *m, void *data)
{
struct drm_debugfs_entry *entry = m->private;
struct drm_device *dev = entry->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct vc4_hvs *hvs = vc4->hvs;
struct drm_printer p = drm_seq_file_printer(m);
unsigned int next_entry_start = 0;
unsigned int i, j;
u32 dlist_word, dispstat;
for (i = 0; i < SCALER_CHANNELS_COUNT; i++) {
dispstat = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(i)),
SCALER_DISPSTATX_MODE);
if (dispstat == SCALER_DISPSTATX_MODE_DISABLED ||
dispstat == SCALER_DISPSTATX_MODE_EOF) {
drm_printf(&p, "HVS chan %u disabled\n", i);
continue;
}
drm_printf(&p, "HVS chan %u:\n", i);
for (j = HVS_READ(SCALER_DISPLISTX(i)); j < 256; j++) {
dlist_word = readl((u32 __iomem *)vc4->hvs->dlist + j);
drm_printf(&p, "dlist: %02d: 0x%08x\n", j,
dlist_word);
if (!next_entry_start ||
next_entry_start == j) {
if (dlist_word & SCALER_CTL0_END)
break;
next_entry_start = j +
VC4_GET_FIELD(dlist_word,
SCALER_CTL0_SIZE);
}
}
}
return 0;
}
/* The filter kernel is composed of dwords each containing 3 9-bit
* signed integers packed next to each other.
*/
#define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
#define VC4_PPF_FILTER_WORD(c0, c1, c2) \
((((c0) & 0x1ff) << 0) | \
(((c1) & 0x1ff) << 9) | \
(((c2) & 0x1ff) << 18))
/* The whole filter kernel is arranged as the coefficients 0-16 going
* up, then a pad, then 17-31 going down and reversed within the
* dwords. This means that a linear phase kernel (where it's
* symmetrical at the boundary between 15 and 16) has the last 5
* dwords matching the first 5, but reversed.
*/
#define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8, \
c9, c10, c11, c12, c13, c14, c15) \
{VC4_PPF_FILTER_WORD(c0, c1, c2), \
VC4_PPF_FILTER_WORD(c3, c4, c5), \
VC4_PPF_FILTER_WORD(c6, c7, c8), \
VC4_PPF_FILTER_WORD(c9, c10, c11), \
VC4_PPF_FILTER_WORD(c12, c13, c14), \
VC4_PPF_FILTER_WORD(c15, c15, 0)}
#define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
#define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
/* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
* http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
*/
static const u32 mitchell_netravali_1_3_1_3_kernel[] =
VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
50, 82, 119, 155, 187, 213, 227);
static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
struct drm_mm_node *space,
const u32 *kernel)
{
int ret, i;
u32 __iomem *dst_kernel;
/*
* NOTE: We don't need a call to drm_dev_enter()/drm_dev_exit()
* here since that function is only called from vc4_hvs_bind().
*/
ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
if (ret) {
DRM_ERROR("Failed to allocate space for filter kernel: %d\n",
ret);
return ret;
}
dst_kernel = hvs->dlist + space->start;
for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
writel(kernel[i], &dst_kernel[i]);
else {
writel(kernel[VC4_KERNEL_DWORDS - i - 1],
&dst_kernel[i]);
}
}
return 0;
}
static void vc4_hvs_lut_load(struct vc4_hvs *hvs,
struct vc4_crtc *vc4_crtc)
{
struct drm_device *drm = &hvs->vc4->base;
struct drm_crtc *crtc = &vc4_crtc->base;
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
int idx;
u32 i;
if (!drm_dev_enter(drm, &idx))
return;
/* The LUT memory is laid out with each HVS channel in order,
* each of which takes 256 writes for R, 256 for G, then 256
* for B.
*/
HVS_WRITE(SCALER_GAMADDR,
SCALER_GAMADDR_AUTOINC |
(vc4_state->assigned_channel * 3 * crtc->gamma_size));
for (i = 0; i < crtc->gamma_size; i++)
HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
for (i = 0; i < crtc->gamma_size; i++)
HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
for (i = 0; i < crtc->gamma_size; i++)
HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
drm_dev_exit(idx);
}
static void vc4_hvs_update_gamma_lut(struct vc4_hvs *hvs,
struct vc4_crtc *vc4_crtc)
{
struct drm_crtc_state *crtc_state = vc4_crtc->base.state;
struct drm_color_lut *lut = crtc_state->gamma_lut->data;
u32 length = drm_color_lut_size(crtc_state->gamma_lut);
u32 i;
for (i = 0; i < length; i++) {
vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
}
vc4_hvs_lut_load(hvs, vc4_crtc);
}
u8 vc4_hvs_get_fifo_frame_count(struct vc4_hvs *hvs, unsigned int fifo)
{
struct drm_device *drm = &hvs->vc4->base;
u8 field = 0;
int idx;
if (!drm_dev_enter(drm, &idx))
return 0;
switch (fifo) {
case 0:
field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
SCALER_DISPSTAT1_FRCNT0);
break;
case 1:
field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
SCALER_DISPSTAT1_FRCNT1);
break;
case 2:
field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT2),
SCALER_DISPSTAT2_FRCNT2);
break;
}
drm_dev_exit(idx);
return field;
}
int vc4_hvs_get_fifo_from_output(struct vc4_hvs *hvs, unsigned int output)
{
struct vc4_dev *vc4 = hvs->vc4;
u32 reg;
int ret;
if (!vc4->is_vc5)
return output;
/*
* NOTE: We should probably use drm_dev_enter()/drm_dev_exit()
* here, but this function is only used during the DRM device
* initialization, so we should be fine.
*/
switch (output) {
case 0:
return 0;
case 1:
return 1;
case 2:
reg = HVS_READ(SCALER_DISPECTRL);
ret = FIELD_GET(SCALER_DISPECTRL_DSP2_MUX_MASK, reg);
if (ret == 0)
return 2;
return 0;
case 3:
reg = HVS_READ(SCALER_DISPCTRL);
ret = FIELD_GET(SCALER_DISPCTRL_DSP3_MUX_MASK, reg);
if (ret == 3)
return -EPIPE;
return ret;
case 4:
reg = HVS_READ(SCALER_DISPEOLN);
ret = FIELD_GET(SCALER_DISPEOLN_DSP4_MUX_MASK, reg);
if (ret == 3)
return -EPIPE;
return ret;
case 5:
reg = HVS_READ(SCALER_DISPDITHER);
ret = FIELD_GET(SCALER_DISPDITHER_DSP5_MUX_MASK, reg);
if (ret == 3)
return -EPIPE;
return ret;
default:
return -EPIPE;
}
}
static int vc4_hvs_init_channel(struct vc4_hvs *hvs, struct drm_crtc *crtc,
struct drm_display_mode *mode, bool oneshot)
{
struct vc4_dev *vc4 = hvs->vc4;
struct drm_device *drm = &vc4->base;
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
unsigned int chan = vc4_crtc_state->assigned_channel;
bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
u32 dispbkgndx;
u32 dispctrl;
int idx;
if (!drm_dev_enter(drm, &idx))
return -ENODEV;
HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET);
HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
/* Turn on the scaler, which will wait for vstart to start
* compositing.
* When feeding the transposer, we should operate in oneshot
* mode.
*/
dispctrl = SCALER_DISPCTRLX_ENABLE;
dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(chan));
if (!vc4->is_vc5) {
dispctrl |= VC4_SET_FIELD(mode->hdisplay,
SCALER_DISPCTRLX_WIDTH) |
VC4_SET_FIELD(mode->vdisplay,
SCALER_DISPCTRLX_HEIGHT) |
(oneshot ? SCALER_DISPCTRLX_ONESHOT : 0);
dispbkgndx |= SCALER_DISPBKGND_AUTOHS;
} else {
dispctrl |= VC4_SET_FIELD(mode->hdisplay,
SCALER5_DISPCTRLX_WIDTH) |
VC4_SET_FIELD(mode->vdisplay,
SCALER5_DISPCTRLX_HEIGHT) |
(oneshot ? SCALER5_DISPCTRLX_ONESHOT : 0);
dispbkgndx &= ~SCALER5_DISPBKGND_BCK2BCK;
}
HVS_WRITE(SCALER_DISPCTRLX(chan), dispctrl);
dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
dispbkgndx &= ~SCALER_DISPBKGND_INTERLACE;
HVS_WRITE(SCALER_DISPBKGNDX(chan), dispbkgndx |
((!vc4->is_vc5) ? SCALER_DISPBKGND_GAMMA : 0) |
(interlace ? SCALER_DISPBKGND_INTERLACE : 0));
/* Reload the LUT, since the SRAMs would have been disabled if
* all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
*/
vc4_hvs_lut_load(hvs, vc4_crtc);
drm_dev_exit(idx);
return 0;
}
void vc4_hvs_stop_channel(struct vc4_hvs *hvs, unsigned int chan)
{
struct drm_device *drm = &hvs->vc4->base;
int idx;
if (!drm_dev_enter(drm, &idx))
return;
if (HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_ENABLE)
goto out;
HVS_WRITE(SCALER_DISPCTRLX(chan),
HVS_READ(SCALER_DISPCTRLX(chan)) | SCALER_DISPCTRLX_RESET);
HVS_WRITE(SCALER_DISPCTRLX(chan),
HVS_READ(SCALER_DISPCTRLX(chan)) & ~SCALER_DISPCTRLX_ENABLE);
/* Once we leave, the scaler should be disabled and its fifo empty. */
WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
SCALER_DISPSTATX_MODE) !=
SCALER_DISPSTATX_MODE_DISABLED);
WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
(SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
SCALER_DISPSTATX_EMPTY);
out:
drm_dev_exit(idx);
}
int vc4_hvs_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state)
{
struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
struct drm_device *dev = crtc->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct drm_plane *plane;
unsigned long flags;
const struct drm_plane_state *plane_state;
u32 dlist_count = 0;
int ret;
/* The pixelvalve can only feed one encoder (and encoders are
* 1:1 with connectors.)
*/
if (hweight32(crtc_state->connector_mask) > 1)
return -EINVAL;
drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state)
dlist_count += vc4_plane_dlist_size(plane_state);
dlist_count++; /* Account for SCALER_CTL0_END. */
spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
dlist_count);
spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
if (ret)
return ret;
return 0;
}
static void vc4_hvs_install_dlist(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct vc4_hvs *hvs = vc4->hvs;
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
int idx;
if (!drm_dev_enter(dev, &idx))
return;
HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel),
vc4_state->mm.start);
drm_dev_exit(idx);
}
static void vc4_hvs_update_dlist(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
unsigned long flags;
if (crtc->state->event) {
crtc->state->event->pipe = drm_crtc_index(crtc);
WARN_ON(drm_crtc_vblank_get(crtc) != 0);
spin_lock_irqsave(&dev->event_lock, flags);
if (!vc4_crtc->feeds_txp || vc4_state->txp_armed) {
vc4_crtc->event = crtc->state->event;
crtc->state->event = NULL;
}
spin_unlock_irqrestore(&dev->event_lock, flags);
}
spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
vc4_crtc->current_dlist = vc4_state->mm.start;
spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
}
void vc4_hvs_atomic_begin(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
unsigned long flags;
spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
vc4_crtc->current_hvs_channel = vc4_state->assigned_channel;
spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
}
void vc4_hvs_atomic_enable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_device *dev = crtc->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct drm_display_mode *mode = &crtc->state->adjusted_mode;
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
bool oneshot = vc4_crtc->feeds_txp;
vc4_hvs_install_dlist(crtc);
vc4_hvs_update_dlist(crtc);
vc4_hvs_init_channel(vc4->hvs, crtc, mode, oneshot);
}
void vc4_hvs_atomic_disable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_device *dev = crtc->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc);
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(old_state);
unsigned int chan = vc4_state->assigned_channel;
vc4_hvs_stop_channel(vc4->hvs, chan);
}
void vc4_hvs_atomic_flush(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
crtc);
struct drm_device *dev = crtc->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct vc4_hvs *hvs = vc4->hvs;
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
unsigned int channel = vc4_state->assigned_channel;
struct drm_plane *plane;
struct vc4_plane_state *vc4_plane_state;
bool debug_dump_regs = false;
bool enable_bg_fill = false;
u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
u32 __iomem *dlist_next = dlist_start;
unsigned int zpos = 0;
bool found = false;
int idx;
if (!drm_dev_enter(dev, &idx)) {
vc4_crtc_send_vblank(crtc);
return;
}
if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
return;
if (debug_dump_regs) {
DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
vc4_hvs_dump_state(hvs);
}
/* Copy all the active planes' dlist contents to the hardware dlist. */
do {
found = false;
drm_atomic_crtc_for_each_plane(plane, crtc) {
if (plane->state->normalized_zpos != zpos)
continue;
/* Is this the first active plane? */
if (dlist_next == dlist_start) {
/* We need to enable background fill when a plane
* could be alpha blending from the background, i.e.
* where no other plane is underneath. It suffices to
* consider the first active plane here since we set
* needs_bg_fill such that either the first plane
* already needs it or all planes on top blend from
* the first or a lower plane.
*/
vc4_plane_state = to_vc4_plane_state(plane->state);
enable_bg_fill = vc4_plane_state->needs_bg_fill;
}
dlist_next += vc4_plane_write_dlist(plane, dlist_next);
found = true;
}
zpos++;
} while (found);
writel(SCALER_CTL0_END, dlist_next);
dlist_next++;
WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
if (enable_bg_fill)
/* This sets a black background color fill, as is the case
* with other DRM drivers.
*/
HVS_WRITE(SCALER_DISPBKGNDX(channel),
HVS_READ(SCALER_DISPBKGNDX(channel)) |
SCALER_DISPBKGND_FILL);
/* Only update DISPLIST if the CRTC was already running and is not
* being disabled.
* vc4_crtc_enable() takes care of updating the dlist just after
* re-enabling VBLANK interrupts and before enabling the engine.
* If the CRTC is being disabled, there's no point in updating this
* information.
*/
if (crtc->state->active && old_state->active) {
vc4_hvs_install_dlist(crtc);
vc4_hvs_update_dlist(crtc);
}
if (crtc->state->color_mgmt_changed) {
u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(channel));
if (crtc->state->gamma_lut) {
vc4_hvs_update_gamma_lut(hvs, vc4_crtc);
dispbkgndx |= SCALER_DISPBKGND_GAMMA;
} else {
/* Unsetting DISPBKGND_GAMMA skips the gamma lut step
* in hardware, which is the same as a linear lut that
* DRM expects us to use in absence of a user lut.
*/
dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
}
HVS_WRITE(SCALER_DISPBKGNDX(channel), dispbkgndx);
}
if (debug_dump_regs) {
DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
vc4_hvs_dump_state(hvs);
}
drm_dev_exit(idx);
}
void vc4_hvs_mask_underrun(struct vc4_hvs *hvs, int channel)
{
struct drm_device *drm = &hvs->vc4->base;
u32 dispctrl;
int idx;
if (!drm_dev_enter(drm, &idx))
return;
dispctrl = HVS_READ(SCALER_DISPCTRL);
dispctrl &= ~(hvs->vc4->is_vc5 ? SCALER5_DISPCTRL_DSPEISLUR(channel) :
SCALER_DISPCTRL_DSPEISLUR(channel));
HVS_WRITE(SCALER_DISPCTRL, dispctrl);
drm_dev_exit(idx);
}
void vc4_hvs_unmask_underrun(struct vc4_hvs *hvs, int channel)
{
struct drm_device *drm = &hvs->vc4->base;
u32 dispctrl;
int idx;
if (!drm_dev_enter(drm, &idx))
return;
dispctrl = HVS_READ(SCALER_DISPCTRL);
dispctrl |= (hvs->vc4->is_vc5 ? SCALER5_DISPCTRL_DSPEISLUR(channel) :
SCALER_DISPCTRL_DSPEISLUR(channel));
HVS_WRITE(SCALER_DISPSTAT,
SCALER_DISPSTAT_EUFLOW(channel));
HVS_WRITE(SCALER_DISPCTRL, dispctrl);
drm_dev_exit(idx);
}
static void vc4_hvs_report_underrun(struct drm_device *dev)
{
struct vc4_dev *vc4 = to_vc4_dev(dev);
atomic_inc(&vc4->underrun);
DRM_DEV_ERROR(dev->dev, "HVS underrun\n");
}
static irqreturn_t vc4_hvs_irq_handler(int irq, void *data)
{
struct drm_device *dev = data;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct vc4_hvs *hvs = vc4->hvs;
irqreturn_t irqret = IRQ_NONE;
int channel;
u32 control;
u32 status;
u32 dspeislur;
/*
* NOTE: We don't need to protect the register access using
* drm_dev_enter() there because the interrupt handler lifetime
* is tied to the device itself, and not to the DRM device.
*
* So when the device will be gone, one of the first thing we
* will be doing will be to unregister the interrupt handler,
* and then unregister the DRM device. drm_dev_enter() would
* thus always succeed if we are here.
*/
status = HVS_READ(SCALER_DISPSTAT);
control = HVS_READ(SCALER_DISPCTRL);
for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) {
dspeislur = vc4->is_vc5 ? SCALER5_DISPCTRL_DSPEISLUR(channel) :
SCALER_DISPCTRL_DSPEISLUR(channel);
/* Interrupt masking is not always honored, so check it here. */
if (status & SCALER_DISPSTAT_EUFLOW(channel) &&
control & dspeislur) {
vc4_hvs_mask_underrun(hvs, channel);
vc4_hvs_report_underrun(dev);
irqret = IRQ_HANDLED;
}
}
/* Clear every per-channel interrupt flag. */
HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) |
SCALER_DISPSTAT_IRQMASK(1) |
SCALER_DISPSTAT_IRQMASK(2));
return irqret;
}
int vc4_hvs_debugfs_init(struct drm_minor *minor)
{
struct drm_device *drm = minor->dev;
struct vc4_dev *vc4 = to_vc4_dev(drm);
struct vc4_hvs *hvs = vc4->hvs;
if (!vc4->hvs)
return -ENODEV;
if (!vc4->is_vc5)
debugfs_create_bool("hvs_load_tracker", S_IRUGO | S_IWUSR,
minor->debugfs_root,
&vc4->load_tracker_enabled);
drm_debugfs_add_file(drm, "hvs_dlists", vc4_hvs_debugfs_dlist, NULL);
drm_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun, NULL);
vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset);
return 0;
}
struct vc4_hvs *__vc4_hvs_alloc(struct vc4_dev *vc4, struct platform_device *pdev)
{
struct drm_device *drm = &vc4->base;
struct vc4_hvs *hvs;
hvs = drmm_kzalloc(drm, sizeof(*hvs), GFP_KERNEL);
if (!hvs)
return ERR_PTR(-ENOMEM);
hvs->vc4 = vc4;
hvs->pdev = pdev;
spin_lock_init(&hvs->mm_lock);
/* Set up the HVS display list memory manager. We never
* overwrite the setup from the bootloader (just 128b out of
* our 16K), since we don't want to scramble the screen when
* transitioning from the firmware's boot setup to runtime.
*/
drm_mm_init(&hvs->dlist_mm,
HVS_BOOTLOADER_DLIST_END,
(SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END);
/* Set up the HVS LBM memory manager. We could have some more
* complicated data structure that allowed reuse of LBM areas
* between planes when they don't overlap on the screen, but
* for now we just allocate globally.
*/
if (!vc4->is_vc5)
/* 48k words of 2x12-bit pixels */
drm_mm_init(&hvs->lbm_mm, 0, 48 * 1024);
else
/* 60k words of 4x12-bit pixels */
drm_mm_init(&hvs->lbm_mm, 0, 60 * 1024);
vc4->hvs = hvs;
return hvs;
}
static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
{
struct platform_device *pdev = to_platform_device(dev);
struct drm_device *drm = dev_get_drvdata(master);
struct vc4_dev *vc4 = to_vc4_dev(drm);
struct vc4_hvs *hvs = NULL;
int ret;
u32 dispctrl;
u32 reg, top;
hvs = __vc4_hvs_alloc(vc4, NULL);
if (IS_ERR(hvs))
return PTR_ERR(hvs);
hvs->regs = vc4_ioremap_regs(pdev, 0);
if (IS_ERR(hvs->regs))
return PTR_ERR(hvs->regs);
hvs->regset.base = hvs->regs;
hvs->regset.regs = hvs_regs;
hvs->regset.nregs = ARRAY_SIZE(hvs_regs);
if (vc4->is_vc5) {
struct rpi_firmware *firmware;
struct device_node *node;
unsigned int max_rate;
node = rpi_firmware_find_node();
if (!node)
return -EINVAL;
firmware = rpi_firmware_get(node);
of_node_put(node);
if (!firmware)
return -EPROBE_DEFER;
hvs->core_clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(hvs->core_clk)) {
dev_err(&pdev->dev, "Couldn't get core clock\n");
return PTR_ERR(hvs->core_clk);
}
max_rate = rpi_firmware_clk_get_max_rate(firmware,
RPI_FIRMWARE_CORE_CLK_ID);
rpi_firmware_put(firmware);
if (max_rate >= 550000000)
hvs->vc5_hdmi_enable_hdmi_20 = true;
if (max_rate >= 600000000)
hvs->vc5_hdmi_enable_4096by2160 = true;
hvs->max_core_rate = max_rate;
ret = clk_prepare_enable(hvs->core_clk);
if (ret) {
dev_err(&pdev->dev, "Couldn't enable the core clock\n");
return ret;
}
}
if (!vc4->is_vc5)
hvs->dlist = hvs->regs + SCALER_DLIST_START;
else
hvs->dlist = hvs->regs + SCALER5_DLIST_START;
/* Upload filter kernels. We only have the one for now, so we
* keep it around for the lifetime of the driver.
*/
ret = vc4_hvs_upload_linear_kernel(hvs,
&hvs->mitchell_netravali_filter,
mitchell_netravali_1_3_1_3_kernel);
if (ret)
return ret;
reg = HVS_READ(SCALER_DISPECTRL);
reg &= ~SCALER_DISPECTRL_DSP2_MUX_MASK;
HVS_WRITE(SCALER_DISPECTRL,
reg | VC4_SET_FIELD(0, SCALER_DISPECTRL_DSP2_MUX));
reg = HVS_READ(SCALER_DISPCTRL);
reg &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
HVS_WRITE(SCALER_DISPCTRL,
reg | VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX));
reg = HVS_READ(SCALER_DISPEOLN);
reg &= ~SCALER_DISPEOLN_DSP4_MUX_MASK;
HVS_WRITE(SCALER_DISPEOLN,
reg | VC4_SET_FIELD(3, SCALER_DISPEOLN_DSP4_MUX));
reg = HVS_READ(SCALER_DISPDITHER);
reg &= ~SCALER_DISPDITHER_DSP5_MUX_MASK;
HVS_WRITE(SCALER_DISPDITHER,
reg | VC4_SET_FIELD(3, SCALER_DISPDITHER_DSP5_MUX));
dispctrl = HVS_READ(SCALER_DISPCTRL);
dispctrl |= SCALER_DISPCTRL_ENABLE;
dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) |
SCALER_DISPCTRL_DISPEIRQ(1) |
SCALER_DISPCTRL_DISPEIRQ(2);
if (!vc4->is_vc5)
dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
SCALER_DISPCTRL_SLVWREIRQ |
SCALER_DISPCTRL_SLVRDEIRQ |
SCALER_DISPCTRL_DSPEIEOF(0) |
SCALER_DISPCTRL_DSPEIEOF(1) |
SCALER_DISPCTRL_DSPEIEOF(2) |
SCALER_DISPCTRL_DSPEIEOLN(0) |
SCALER_DISPCTRL_DSPEIEOLN(1) |
SCALER_DISPCTRL_DSPEIEOLN(2) |
SCALER_DISPCTRL_DSPEISLUR(0) |
SCALER_DISPCTRL_DSPEISLUR(1) |
SCALER_DISPCTRL_DSPEISLUR(2) |
SCALER_DISPCTRL_SCLEIRQ);
else
dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
SCALER5_DISPCTRL_SLVEIRQ |
SCALER5_DISPCTRL_DSPEIEOF(0) |
SCALER5_DISPCTRL_DSPEIEOF(1) |
SCALER5_DISPCTRL_DSPEIEOF(2) |
SCALER5_DISPCTRL_DSPEIEOLN(0) |
SCALER5_DISPCTRL_DSPEIEOLN(1) |
SCALER5_DISPCTRL_DSPEIEOLN(2) |
SCALER5_DISPCTRL_DSPEISLUR(0) |
SCALER5_DISPCTRL_DSPEISLUR(1) |
SCALER5_DISPCTRL_DSPEISLUR(2) |
SCALER_DISPCTRL_SCLEIRQ);
/* Set AXI panic mode.
* VC4 panics when < 2 lines in FIFO.
* VC5 panics when less than 1 line in the FIFO.
*/
dispctrl &= ~(SCALER_DISPCTRL_PANIC0_MASK |
SCALER_DISPCTRL_PANIC1_MASK |
SCALER_DISPCTRL_PANIC2_MASK);
dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC0);
dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC1);
dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC2);
HVS_WRITE(SCALER_DISPCTRL, dispctrl);
/* Recompute Composite Output Buffer (COB) allocations for the displays
*/
if (!vc4->is_vc5) {
/* The COB is 20736 pixels, or just over 10 lines at 2048 wide.
* The bottom 2048 pixels are full 32bpp RGBA (intended for the
* TXP composing RGBA to memory), whilst the remainder are only
* 24bpp RGB.
*
* Assign 3 lines to channels 1 & 2, and just over 4 lines to
* channel 0.
*/
#define VC4_COB_SIZE 20736
#define VC4_COB_LINE_WIDTH 2048
#define VC4_COB_NUM_LINES 3
reg = 0;
top = VC4_COB_LINE_WIDTH * VC4_COB_NUM_LINES;
reg |= (top - 1) << 16;
HVS_WRITE(SCALER_DISPBASE2, reg);
reg = top;
top += VC4_COB_LINE_WIDTH * VC4_COB_NUM_LINES;
reg |= (top - 1) << 16;
HVS_WRITE(SCALER_DISPBASE1, reg);
reg = top;
top = VC4_COB_SIZE;
reg |= (top - 1) << 16;
HVS_WRITE(SCALER_DISPBASE0, reg);
} else {
/* The COB is 44416 pixels, or 10.8 lines at 4096 wide.
* The bottom 4096 pixels are full RGBA (intended for the TXP
* composing RGBA to memory), whilst the remainder are only
* RGB. Addressing is always pixel wide.
*
* Assign 3 lines of 4096 to channels 1 & 2, and just over 4
* lines. to channel 0.
*/
#define VC5_COB_SIZE 44416
#define VC5_COB_LINE_WIDTH 4096
#define VC5_COB_NUM_LINES 3
reg = 0;
top = VC5_COB_LINE_WIDTH * VC5_COB_NUM_LINES;
reg |= top << 16;
HVS_WRITE(SCALER_DISPBASE2, reg);
top += 16;
reg = top;
top += VC5_COB_LINE_WIDTH * VC5_COB_NUM_LINES;
reg |= top << 16;
HVS_WRITE(SCALER_DISPBASE1, reg);
top += 16;
reg = top;
top = VC5_COB_SIZE;
reg |= top << 16;
HVS_WRITE(SCALER_DISPBASE0, reg);
}
ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
vc4_hvs_irq_handler, 0, "vc4 hvs", drm);
if (ret)
return ret;
return 0;
}
static void vc4_hvs_unbind(struct device *dev, struct device *master,
void *data)
{
struct drm_device *drm = dev_get_drvdata(master);
struct vc4_dev *vc4 = to_vc4_dev(drm);
struct vc4_hvs *hvs = vc4->hvs;
struct drm_mm_node *node, *next;
if (drm_mm_node_allocated(&vc4->hvs->mitchell_netravali_filter))
drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
drm_mm_for_each_node_safe(node, next, &vc4->hvs->dlist_mm)
drm_mm_remove_node(node);
drm_mm_takedown(&vc4->hvs->dlist_mm);
drm_mm_for_each_node_safe(node, next, &vc4->hvs->lbm_mm)
drm_mm_remove_node(node);
drm_mm_takedown(&vc4->hvs->lbm_mm);
clk_disable_unprepare(hvs->core_clk);
vc4->hvs = NULL;
}
static const struct component_ops vc4_hvs_ops = {
.bind = vc4_hvs_bind,
.unbind = vc4_hvs_unbind,
};
static int vc4_hvs_dev_probe(struct platform_device *pdev)
{
return component_add(&pdev->dev, &vc4_hvs_ops);
}
static void vc4_hvs_dev_remove(struct platform_device *pdev)
{
component_del(&pdev->dev, &vc4_hvs_ops);
}
static const struct of_device_id vc4_hvs_dt_match[] = {
{ .compatible = "brcm,bcm2711-hvs" },
{ .compatible = "brcm,bcm2835-hvs" },
{}
};
struct platform_driver vc4_hvs_driver = {
.probe = vc4_hvs_dev_probe,
.remove_new = vc4_hvs_dev_remove,
.driver = {
.name = "vc4_hvs",
.of_match_table = vc4_hvs_dt_match,
},
};