| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2015 Broadcom |
| */ |
| |
| /** |
| * DOC: VC4 KMS |
| * |
| * This is the general code for implementing KMS mode setting that |
| * doesn't clearly associate with any of the other objects (plane, |
| * crtc, HDMI encoder). |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/sort.h> |
| |
| #include <drm/drm_atomic.h> |
| #include <drm/drm_atomic_helper.h> |
| #include <drm/drm_crtc.h> |
| #include <drm/drm_fourcc.h> |
| #include <drm/drm_gem_framebuffer_helper.h> |
| #include <drm/drm_probe_helper.h> |
| #include <drm/drm_vblank.h> |
| |
| #include "vc4_drv.h" |
| #include "vc4_regs.h" |
| |
| struct vc4_ctm_state { |
| struct drm_private_state base; |
| struct drm_color_ctm *ctm; |
| int fifo; |
| }; |
| |
| #define to_vc4_ctm_state(_state) \ |
| container_of_const(_state, struct vc4_ctm_state, base) |
| |
| struct vc4_load_tracker_state { |
| struct drm_private_state base; |
| u64 hvs_load; |
| u64 membus_load; |
| }; |
| |
| #define to_vc4_load_tracker_state(_state) \ |
| container_of_const(_state, struct vc4_load_tracker_state, base) |
| |
| static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state, |
| struct drm_private_obj *manager) |
| { |
| struct drm_device *dev = state->dev; |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| struct drm_private_state *priv_state; |
| int ret; |
| |
| ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| priv_state = drm_atomic_get_private_obj_state(state, manager); |
| if (IS_ERR(priv_state)) |
| return ERR_CAST(priv_state); |
| |
| return to_vc4_ctm_state(priv_state); |
| } |
| |
| static struct drm_private_state * |
| vc4_ctm_duplicate_state(struct drm_private_obj *obj) |
| { |
| struct vc4_ctm_state *state; |
| |
| state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); |
| if (!state) |
| return NULL; |
| |
| __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); |
| |
| return &state->base; |
| } |
| |
| static void vc4_ctm_destroy_state(struct drm_private_obj *obj, |
| struct drm_private_state *state) |
| { |
| struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state); |
| |
| kfree(ctm_state); |
| } |
| |
| static const struct drm_private_state_funcs vc4_ctm_state_funcs = { |
| .atomic_duplicate_state = vc4_ctm_duplicate_state, |
| .atomic_destroy_state = vc4_ctm_destroy_state, |
| }; |
| |
| static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| |
| drm_atomic_private_obj_fini(&vc4->ctm_manager); |
| } |
| |
| static int vc4_ctm_obj_init(struct vc4_dev *vc4) |
| { |
| struct vc4_ctm_state *ctm_state; |
| |
| drm_modeset_lock_init(&vc4->ctm_state_lock); |
| |
| ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL); |
| if (!ctm_state) |
| return -ENOMEM; |
| |
| drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base, |
| &vc4_ctm_state_funcs); |
| |
| return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL); |
| } |
| |
| /* Converts a DRM S31.32 value to the HW S0.9 format. */ |
| static u16 vc4_ctm_s31_32_to_s0_9(u64 in) |
| { |
| u16 r; |
| |
| /* Sign bit. */ |
| r = in & BIT_ULL(63) ? BIT(9) : 0; |
| |
| if ((in & GENMASK_ULL(62, 32)) > 0) { |
| /* We have zero integer bits so we can only saturate here. */ |
| r |= GENMASK(8, 0); |
| } else { |
| /* Otherwise take the 9 most important fractional bits. */ |
| r |= (in >> 23) & GENMASK(8, 0); |
| } |
| |
| return r; |
| } |
| |
| static void |
| vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state) |
| { |
| struct vc4_hvs *hvs = vc4->hvs; |
| struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state); |
| struct drm_color_ctm *ctm = ctm_state->ctm; |
| |
| if (ctm_state->fifo) { |
| HVS_WRITE(SCALER_OLEDCOEF2, |
| VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]), |
| SCALER_OLEDCOEF2_R_TO_R) | |
| VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]), |
| SCALER_OLEDCOEF2_R_TO_G) | |
| VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]), |
| SCALER_OLEDCOEF2_R_TO_B)); |
| HVS_WRITE(SCALER_OLEDCOEF1, |
| VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]), |
| SCALER_OLEDCOEF1_G_TO_R) | |
| VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]), |
| SCALER_OLEDCOEF1_G_TO_G) | |
| VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]), |
| SCALER_OLEDCOEF1_G_TO_B)); |
| HVS_WRITE(SCALER_OLEDCOEF0, |
| VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]), |
| SCALER_OLEDCOEF0_B_TO_R) | |
| VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]), |
| SCALER_OLEDCOEF0_B_TO_G) | |
| VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]), |
| SCALER_OLEDCOEF0_B_TO_B)); |
| } |
| |
| HVS_WRITE(SCALER_OLEDOFFS, |
| VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO)); |
| } |
| |
| struct vc4_hvs_state * |
| vc4_hvs_get_new_global_state(const struct drm_atomic_state *state) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(state->dev); |
| struct drm_private_state *priv_state; |
| |
| priv_state = drm_atomic_get_new_private_obj_state(state, &vc4->hvs_channels); |
| if (!priv_state) |
| return ERR_PTR(-EINVAL); |
| |
| return to_vc4_hvs_state(priv_state); |
| } |
| |
| struct vc4_hvs_state * |
| vc4_hvs_get_old_global_state(const struct drm_atomic_state *state) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(state->dev); |
| struct drm_private_state *priv_state; |
| |
| priv_state = drm_atomic_get_old_private_obj_state(state, &vc4->hvs_channels); |
| if (!priv_state) |
| return ERR_PTR(-EINVAL); |
| |
| return to_vc4_hvs_state(priv_state); |
| } |
| |
| struct vc4_hvs_state * |
| vc4_hvs_get_global_state(struct drm_atomic_state *state) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(state->dev); |
| struct drm_private_state *priv_state; |
| |
| priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels); |
| if (IS_ERR(priv_state)) |
| return ERR_CAST(priv_state); |
| |
| return to_vc4_hvs_state(priv_state); |
| } |
| |
| static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4, |
| struct drm_atomic_state *state) |
| { |
| struct vc4_hvs *hvs = vc4->hvs; |
| struct drm_crtc_state *crtc_state; |
| struct drm_crtc *crtc; |
| unsigned int i; |
| |
| for_each_new_crtc_in_state(state, crtc, crtc_state, i) { |
| struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); |
| struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); |
| u32 dispctrl; |
| u32 dsp3_mux; |
| |
| if (!crtc_state->active) |
| continue; |
| |
| if (vc4_state->assigned_channel != 2) |
| continue; |
| |
| /* |
| * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to |
| * FIFO X'. |
| * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'. |
| * |
| * DSP3 is connected to FIFO2 unless the transposer is |
| * enabled. In this case, FIFO 2 is directly accessed by the |
| * TXP IP, and we need to disable the FIFO2 -> pixelvalve1 |
| * route. |
| */ |
| if (vc4_crtc->feeds_txp) |
| dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX); |
| else |
| dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX); |
| |
| dispctrl = HVS_READ(SCALER_DISPCTRL) & |
| ~SCALER_DISPCTRL_DSP3_MUX_MASK; |
| HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux); |
| } |
| } |
| |
| static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4, |
| struct drm_atomic_state *state) |
| { |
| struct vc4_hvs *hvs = vc4->hvs; |
| struct drm_crtc_state *crtc_state; |
| struct drm_crtc *crtc; |
| unsigned char mux; |
| unsigned int i; |
| u32 reg; |
| |
| for_each_new_crtc_in_state(state, crtc, crtc_state, i) { |
| struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); |
| struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); |
| unsigned int channel = vc4_state->assigned_channel; |
| |
| if (!vc4_state->update_muxing) |
| continue; |
| |
| switch (vc4_crtc->data->hvs_output) { |
| case 2: |
| drm_WARN_ON(&vc4->base, |
| VC4_GET_FIELD(HVS_READ(SCALER_DISPCTRL), |
| SCALER_DISPCTRL_DSP3_MUX) == channel); |
| |
| mux = (channel == 2) ? 0 : 1; |
| reg = HVS_READ(SCALER_DISPECTRL); |
| HVS_WRITE(SCALER_DISPECTRL, |
| (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) | |
| VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX)); |
| break; |
| |
| case 3: |
| if (channel == VC4_HVS_CHANNEL_DISABLED) |
| mux = 3; |
| else |
| mux = channel; |
| |
| reg = HVS_READ(SCALER_DISPCTRL); |
| HVS_WRITE(SCALER_DISPCTRL, |
| (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) | |
| VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX)); |
| break; |
| |
| case 4: |
| if (channel == VC4_HVS_CHANNEL_DISABLED) |
| mux = 3; |
| else |
| mux = channel; |
| |
| reg = HVS_READ(SCALER_DISPEOLN); |
| HVS_WRITE(SCALER_DISPEOLN, |
| (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) | |
| VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX)); |
| |
| break; |
| |
| case 5: |
| if (channel == VC4_HVS_CHANNEL_DISABLED) |
| mux = 3; |
| else |
| mux = channel; |
| |
| reg = HVS_READ(SCALER_DISPDITHER); |
| HVS_WRITE(SCALER_DISPDITHER, |
| (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) | |
| VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX)); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| } |
| |
| static void vc4_atomic_commit_tail(struct drm_atomic_state *state) |
| { |
| struct drm_device *dev = state->dev; |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| struct vc4_hvs *hvs = vc4->hvs; |
| struct drm_crtc_state *new_crtc_state; |
| struct vc4_hvs_state *new_hvs_state; |
| struct drm_crtc *crtc; |
| struct vc4_hvs_state *old_hvs_state; |
| unsigned int channel; |
| int i; |
| |
| old_hvs_state = vc4_hvs_get_old_global_state(state); |
| if (WARN_ON(IS_ERR(old_hvs_state))) |
| return; |
| |
| new_hvs_state = vc4_hvs_get_new_global_state(state); |
| if (WARN_ON(IS_ERR(new_hvs_state))) |
| return; |
| |
| for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { |
| struct vc4_crtc_state *vc4_crtc_state; |
| |
| if (!new_crtc_state->commit) |
| continue; |
| |
| vc4_crtc_state = to_vc4_crtc_state(new_crtc_state); |
| vc4_hvs_mask_underrun(hvs, vc4_crtc_state->assigned_channel); |
| } |
| |
| for (channel = 0; channel < HVS_NUM_CHANNELS; channel++) { |
| struct drm_crtc_commit *commit; |
| int ret; |
| |
| if (!old_hvs_state->fifo_state[channel].in_use) |
| continue; |
| |
| commit = old_hvs_state->fifo_state[channel].pending_commit; |
| if (!commit) |
| continue; |
| |
| ret = drm_crtc_commit_wait(commit); |
| if (ret) |
| drm_err(dev, "Timed out waiting for commit\n"); |
| |
| drm_crtc_commit_put(commit); |
| old_hvs_state->fifo_state[channel].pending_commit = NULL; |
| } |
| |
| if (vc4->is_vc5) { |
| unsigned long state_rate = max(old_hvs_state->core_clock_rate, |
| new_hvs_state->core_clock_rate); |
| unsigned long core_rate = clamp_t(unsigned long, state_rate, |
| 500000000, hvs->max_core_rate); |
| |
| drm_dbg(dev, "Raising the core clock at %lu Hz\n", core_rate); |
| |
| /* |
| * Do a temporary request on the core clock during the |
| * modeset. |
| */ |
| WARN_ON(clk_set_min_rate(hvs->core_clk, core_rate)); |
| } |
| |
| drm_atomic_helper_commit_modeset_disables(dev, state); |
| |
| vc4_ctm_commit(vc4, state); |
| |
| if (vc4->is_vc5) |
| vc5_hvs_pv_muxing_commit(vc4, state); |
| else |
| vc4_hvs_pv_muxing_commit(vc4, state); |
| |
| drm_atomic_helper_commit_planes(dev, state, |
| DRM_PLANE_COMMIT_ACTIVE_ONLY); |
| |
| drm_atomic_helper_commit_modeset_enables(dev, state); |
| |
| drm_atomic_helper_fake_vblank(state); |
| |
| drm_atomic_helper_commit_hw_done(state); |
| |
| drm_atomic_helper_wait_for_flip_done(dev, state); |
| |
| drm_atomic_helper_cleanup_planes(dev, state); |
| |
| if (vc4->is_vc5) { |
| unsigned long core_rate = min_t(unsigned long, |
| hvs->max_core_rate, |
| new_hvs_state->core_clock_rate); |
| |
| drm_dbg(dev, "Running the core clock at %lu Hz\n", core_rate); |
| |
| /* |
| * Request a clock rate based on the current HVS |
| * requirements. |
| */ |
| WARN_ON(clk_set_min_rate(hvs->core_clk, core_rate)); |
| |
| drm_dbg(dev, "Core clock actual rate: %lu Hz\n", |
| clk_get_rate(hvs->core_clk)); |
| } |
| } |
| |
| static int vc4_atomic_commit_setup(struct drm_atomic_state *state) |
| { |
| struct drm_crtc_state *crtc_state; |
| struct vc4_hvs_state *hvs_state; |
| struct drm_crtc *crtc; |
| unsigned int i; |
| |
| hvs_state = vc4_hvs_get_new_global_state(state); |
| if (WARN_ON(IS_ERR(hvs_state))) |
| return PTR_ERR(hvs_state); |
| |
| for_each_new_crtc_in_state(state, crtc, crtc_state, i) { |
| struct vc4_crtc_state *vc4_crtc_state = |
| to_vc4_crtc_state(crtc_state); |
| unsigned int channel = |
| vc4_crtc_state->assigned_channel; |
| |
| if (channel == VC4_HVS_CHANNEL_DISABLED) |
| continue; |
| |
| if (!hvs_state->fifo_state[channel].in_use) |
| continue; |
| |
| hvs_state->fifo_state[channel].pending_commit = |
| drm_crtc_commit_get(crtc_state->commit); |
| } |
| |
| return 0; |
| } |
| |
| static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev, |
| struct drm_file *file_priv, |
| const struct drm_mode_fb_cmd2 *mode_cmd) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| struct drm_mode_fb_cmd2 mode_cmd_local; |
| |
| if (WARN_ON_ONCE(vc4->is_vc5)) |
| return ERR_PTR(-ENODEV); |
| |
| /* If the user didn't specify a modifier, use the |
| * vc4_set_tiling_ioctl() state for the BO. |
| */ |
| if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) { |
| struct drm_gem_object *gem_obj; |
| struct vc4_bo *bo; |
| |
| gem_obj = drm_gem_object_lookup(file_priv, |
| mode_cmd->handles[0]); |
| if (!gem_obj) { |
| DRM_DEBUG("Failed to look up GEM BO %d\n", |
| mode_cmd->handles[0]); |
| return ERR_PTR(-ENOENT); |
| } |
| bo = to_vc4_bo(gem_obj); |
| |
| mode_cmd_local = *mode_cmd; |
| |
| if (bo->t_format) { |
| mode_cmd_local.modifier[0] = |
| DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED; |
| } else { |
| mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE; |
| } |
| |
| drm_gem_object_put(gem_obj); |
| |
| mode_cmd = &mode_cmd_local; |
| } |
| |
| return drm_gem_fb_create(dev, file_priv, mode_cmd); |
| } |
| |
| /* Our CTM has some peculiar limitations: we can only enable it for one CRTC |
| * at a time and the HW only supports S0.9 scalars. To account for the latter, |
| * we don't allow userland to set a CTM that we have no hope of approximating. |
| */ |
| static int |
| vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| struct vc4_ctm_state *ctm_state = NULL; |
| struct drm_crtc *crtc; |
| struct drm_crtc_state *old_crtc_state, *new_crtc_state; |
| struct drm_color_ctm *ctm; |
| int i; |
| |
| for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { |
| /* CTM is being disabled. */ |
| if (!new_crtc_state->ctm && old_crtc_state->ctm) { |
| ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager); |
| if (IS_ERR(ctm_state)) |
| return PTR_ERR(ctm_state); |
| ctm_state->fifo = 0; |
| } |
| } |
| |
| for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { |
| if (new_crtc_state->ctm == old_crtc_state->ctm) |
| continue; |
| |
| if (!ctm_state) { |
| ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager); |
| if (IS_ERR(ctm_state)) |
| return PTR_ERR(ctm_state); |
| } |
| |
| /* CTM is being enabled or the matrix changed. */ |
| if (new_crtc_state->ctm) { |
| struct vc4_crtc_state *vc4_crtc_state = |
| to_vc4_crtc_state(new_crtc_state); |
| |
| /* fifo is 1-based since 0 disables CTM. */ |
| int fifo = vc4_crtc_state->assigned_channel + 1; |
| |
| /* Check userland isn't trying to turn on CTM for more |
| * than one CRTC at a time. |
| */ |
| if (ctm_state->fifo && ctm_state->fifo != fifo) { |
| DRM_DEBUG_DRIVER("Too many CTM configured\n"); |
| return -EINVAL; |
| } |
| |
| /* Check we can approximate the specified CTM. |
| * We disallow scalars |c| > 1.0 since the HW has |
| * no integer bits. |
| */ |
| ctm = new_crtc_state->ctm->data; |
| for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) { |
| u64 val = ctm->matrix[i]; |
| |
| val &= ~BIT_ULL(63); |
| if (val > BIT_ULL(32)) |
| return -EINVAL; |
| } |
| |
| ctm_state->fifo = fifo; |
| ctm_state->ctm = ctm; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state) |
| { |
| struct drm_plane_state *old_plane_state, *new_plane_state; |
| struct vc4_dev *vc4 = to_vc4_dev(state->dev); |
| struct vc4_load_tracker_state *load_state; |
| struct drm_private_state *priv_state; |
| struct drm_plane *plane; |
| int i; |
| |
| priv_state = drm_atomic_get_private_obj_state(state, |
| &vc4->load_tracker); |
| if (IS_ERR(priv_state)) |
| return PTR_ERR(priv_state); |
| |
| load_state = to_vc4_load_tracker_state(priv_state); |
| for_each_oldnew_plane_in_state(state, plane, old_plane_state, |
| new_plane_state, i) { |
| struct vc4_plane_state *vc4_plane_state; |
| |
| if (old_plane_state->fb && old_plane_state->crtc) { |
| vc4_plane_state = to_vc4_plane_state(old_plane_state); |
| load_state->membus_load -= vc4_plane_state->membus_load; |
| load_state->hvs_load -= vc4_plane_state->hvs_load; |
| } |
| |
| if (new_plane_state->fb && new_plane_state->crtc) { |
| vc4_plane_state = to_vc4_plane_state(new_plane_state); |
| load_state->membus_load += vc4_plane_state->membus_load; |
| load_state->hvs_load += vc4_plane_state->hvs_load; |
| } |
| } |
| |
| /* Don't check the load when the tracker is disabled. */ |
| if (!vc4->load_tracker_enabled) |
| return 0; |
| |
| /* The absolute limit is 2Gbyte/sec, but let's take a margin to let |
| * the system work when other blocks are accessing the memory. |
| */ |
| if (load_state->membus_load > SZ_1G + SZ_512M) |
| return -ENOSPC; |
| |
| /* HVS clock is supposed to run @ 250Mhz, let's take a margin and |
| * consider the maximum number of cycles is 240M. |
| */ |
| if (load_state->hvs_load > 240000000ULL) |
| return -ENOSPC; |
| |
| return 0; |
| } |
| |
| static struct drm_private_state * |
| vc4_load_tracker_duplicate_state(struct drm_private_obj *obj) |
| { |
| struct vc4_load_tracker_state *state; |
| |
| state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); |
| if (!state) |
| return NULL; |
| |
| __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); |
| |
| return &state->base; |
| } |
| |
| static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj, |
| struct drm_private_state *state) |
| { |
| struct vc4_load_tracker_state *load_state; |
| |
| load_state = to_vc4_load_tracker_state(state); |
| kfree(load_state); |
| } |
| |
| static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = { |
| .atomic_duplicate_state = vc4_load_tracker_duplicate_state, |
| .atomic_destroy_state = vc4_load_tracker_destroy_state, |
| }; |
| |
| static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| |
| drm_atomic_private_obj_fini(&vc4->load_tracker); |
| } |
| |
| static int vc4_load_tracker_obj_init(struct vc4_dev *vc4) |
| { |
| struct vc4_load_tracker_state *load_state; |
| |
| load_state = kzalloc(sizeof(*load_state), GFP_KERNEL); |
| if (!load_state) |
| return -ENOMEM; |
| |
| drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker, |
| &load_state->base, |
| &vc4_load_tracker_state_funcs); |
| |
| return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL); |
| } |
| |
| static struct drm_private_state * |
| vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj) |
| { |
| struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state); |
| struct vc4_hvs_state *state; |
| unsigned int i; |
| |
| state = kzalloc(sizeof(*state), GFP_KERNEL); |
| if (!state) |
| return NULL; |
| |
| __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); |
| |
| for (i = 0; i < HVS_NUM_CHANNELS; i++) { |
| state->fifo_state[i].in_use = old_state->fifo_state[i].in_use; |
| state->fifo_state[i].fifo_load = old_state->fifo_state[i].fifo_load; |
| } |
| |
| state->core_clock_rate = old_state->core_clock_rate; |
| |
| return &state->base; |
| } |
| |
| static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj, |
| struct drm_private_state *state) |
| { |
| struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state); |
| unsigned int i; |
| |
| for (i = 0; i < HVS_NUM_CHANNELS; i++) { |
| if (!hvs_state->fifo_state[i].pending_commit) |
| continue; |
| |
| drm_crtc_commit_put(hvs_state->fifo_state[i].pending_commit); |
| } |
| |
| kfree(hvs_state); |
| } |
| |
| static void vc4_hvs_channels_print_state(struct drm_printer *p, |
| const struct drm_private_state *state) |
| { |
| const struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state); |
| unsigned int i; |
| |
| drm_printf(p, "HVS State\n"); |
| drm_printf(p, "\tCore Clock Rate: %lu\n", hvs_state->core_clock_rate); |
| |
| for (i = 0; i < HVS_NUM_CHANNELS; i++) { |
| drm_printf(p, "\tChannel %d\n", i); |
| drm_printf(p, "\t\tin use=%d\n", hvs_state->fifo_state[i].in_use); |
| drm_printf(p, "\t\tload=%lu\n", hvs_state->fifo_state[i].fifo_load); |
| } |
| } |
| |
| static const struct drm_private_state_funcs vc4_hvs_state_funcs = { |
| .atomic_duplicate_state = vc4_hvs_channels_duplicate_state, |
| .atomic_destroy_state = vc4_hvs_channels_destroy_state, |
| .atomic_print_state = vc4_hvs_channels_print_state, |
| }; |
| |
| static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| |
| drm_atomic_private_obj_fini(&vc4->hvs_channels); |
| } |
| |
| static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4) |
| { |
| struct vc4_hvs_state *state; |
| |
| state = kzalloc(sizeof(*state), GFP_KERNEL); |
| if (!state) |
| return -ENOMEM; |
| |
| drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels, |
| &state->base, |
| &vc4_hvs_state_funcs); |
| |
| return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL); |
| } |
| |
| static int cmp_vc4_crtc_hvs_output(const void *a, const void *b) |
| { |
| const struct vc4_crtc *crtc_a = |
| to_vc4_crtc(*(const struct drm_crtc **)a); |
| const struct vc4_crtc_data *data_a = |
| vc4_crtc_to_vc4_crtc_data(crtc_a); |
| const struct vc4_crtc *crtc_b = |
| to_vc4_crtc(*(const struct drm_crtc **)b); |
| const struct vc4_crtc_data *data_b = |
| vc4_crtc_to_vc4_crtc_data(crtc_b); |
| |
| return data_a->hvs_output - data_b->hvs_output; |
| } |
| |
| /* |
| * The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and |
| * the TXP (and therefore all the CRTCs found on that platform). |
| * |
| * The naive (and our initial) implementation would just iterate over |
| * all the active CRTCs, try to find a suitable FIFO, and then remove it |
| * from the pool of available FIFOs. However, there are a few corner |
| * cases that need to be considered: |
| * |
| * - When running in a dual-display setup (so with two CRTCs involved), |
| * we can update the state of a single CRTC (for example by changing |
| * its mode using xrandr under X11) without affecting the other. In |
| * this case, the other CRTC wouldn't be in the state at all, so we |
| * need to consider all the running CRTCs in the DRM device to assign |
| * a FIFO, not just the one in the state. |
| * |
| * - To fix the above, we can't use drm_atomic_get_crtc_state on all |
| * enabled CRTCs to pull their CRTC state into the global state, since |
| * a page flip would start considering their vblank to complete. Since |
| * we don't have a guarantee that they are actually active, that |
| * vblank might never happen, and shouldn't even be considered if we |
| * want to do a page flip on a single CRTC. That can be tested by |
| * doing a modetest -v first on HDMI1 and then on HDMI0. |
| * |
| * - Since we need the pixelvalve to be disabled and enabled back when |
| * the FIFO is changed, we should keep the FIFO assigned for as long |
| * as the CRTC is enabled, only considering it free again once that |
| * CRTC has been disabled. This can be tested by booting X11 on a |
| * single display, and changing the resolution down and then back up. |
| */ |
| static int vc4_pv_muxing_atomic_check(struct drm_device *dev, |
| struct drm_atomic_state *state) |
| { |
| struct vc4_hvs_state *hvs_new_state; |
| struct drm_crtc **sorted_crtcs; |
| struct drm_crtc *crtc; |
| unsigned int unassigned_channels = 0; |
| unsigned int i; |
| int ret; |
| |
| hvs_new_state = vc4_hvs_get_global_state(state); |
| if (IS_ERR(hvs_new_state)) |
| return PTR_ERR(hvs_new_state); |
| |
| for (i = 0; i < ARRAY_SIZE(hvs_new_state->fifo_state); i++) |
| if (!hvs_new_state->fifo_state[i].in_use) |
| unassigned_channels |= BIT(i); |
| |
| /* |
| * The problem we have to solve here is that we have up to 7 |
| * encoders, connected to up to 6 CRTCs. |
| * |
| * Those CRTCs, depending on the instance, can be routed to 1, 2 |
| * or 3 HVS FIFOs, and we need to set the muxing between FIFOs and |
| * outputs in the HVS accordingly. |
| * |
| * It would be pretty hard to come up with an algorithm that |
| * would generically solve this. However, the current routing |
| * trees we support allow us to simplify a bit the problem. |
| * |
| * Indeed, with the current supported layouts, if we try to |
| * assign in the ascending crtc index order the FIFOs, we can't |
| * fall into the situation where an earlier CRTC that had |
| * multiple routes is assigned one that was the only option for |
| * a later CRTC. |
| * |
| * If the layout changes and doesn't give us that in the future, |
| * we will need to have something smarter, but it works so far. |
| */ |
| sorted_crtcs = kmalloc_array(dev->num_crtcs, sizeof(*sorted_crtcs), GFP_KERNEL); |
| if (!sorted_crtcs) |
| return -ENOMEM; |
| |
| i = 0; |
| drm_for_each_crtc(crtc, dev) |
| sorted_crtcs[i++] = crtc; |
| |
| sort(sorted_crtcs, i, sizeof(*sorted_crtcs), cmp_vc4_crtc_hvs_output, NULL); |
| |
| for (i = 0; i < dev->num_crtcs; i++) { |
| struct vc4_crtc_state *old_vc4_crtc_state, *new_vc4_crtc_state; |
| struct drm_crtc_state *old_crtc_state, *new_crtc_state; |
| struct vc4_crtc *vc4_crtc; |
| unsigned int matching_channels; |
| unsigned int channel; |
| |
| crtc = sorted_crtcs[i]; |
| if (!crtc) |
| continue; |
| vc4_crtc = to_vc4_crtc(crtc); |
| |
| old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc); |
| if (!old_crtc_state) |
| continue; |
| old_vc4_crtc_state = to_vc4_crtc_state(old_crtc_state); |
| |
| new_crtc_state = drm_atomic_get_new_crtc_state(state, crtc); |
| if (!new_crtc_state) |
| continue; |
| new_vc4_crtc_state = to_vc4_crtc_state(new_crtc_state); |
| |
| drm_dbg(dev, "%s: Trying to find a channel.\n", crtc->name); |
| |
| /* Nothing to do here, let's skip it */ |
| if (old_crtc_state->enable == new_crtc_state->enable) { |
| if (new_crtc_state->enable) |
| drm_dbg(dev, "%s: Already enabled, reusing channel %d.\n", |
| crtc->name, new_vc4_crtc_state->assigned_channel); |
| else |
| drm_dbg(dev, "%s: Disabled, ignoring.\n", crtc->name); |
| |
| continue; |
| } |
| |
| /* Muxing will need to be modified, mark it as such */ |
| new_vc4_crtc_state->update_muxing = true; |
| |
| /* If we're disabling our CRTC, we put back our channel */ |
| if (!new_crtc_state->enable) { |
| channel = old_vc4_crtc_state->assigned_channel; |
| |
| drm_dbg(dev, "%s: Disabling, Freeing channel %d\n", |
| crtc->name, channel); |
| |
| hvs_new_state->fifo_state[channel].in_use = false; |
| new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED; |
| continue; |
| } |
| |
| matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels; |
| if (!matching_channels) { |
| ret = -EINVAL; |
| goto err_free_crtc_array; |
| } |
| |
| channel = ffs(matching_channels) - 1; |
| |
| drm_dbg(dev, "Assigned HVS channel %d to CRTC %s\n", channel, crtc->name); |
| new_vc4_crtc_state->assigned_channel = channel; |
| unassigned_channels &= ~BIT(channel); |
| hvs_new_state->fifo_state[channel].in_use = true; |
| } |
| |
| kfree(sorted_crtcs); |
| return 0; |
| |
| err_free_crtc_array: |
| kfree(sorted_crtcs); |
| return ret; |
| } |
| |
| static int |
| vc4_core_clock_atomic_check(struct drm_atomic_state *state) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(state->dev); |
| struct drm_private_state *priv_state; |
| struct vc4_hvs_state *hvs_new_state; |
| struct vc4_load_tracker_state *load_state; |
| struct drm_crtc_state *old_crtc_state, *new_crtc_state; |
| struct drm_crtc *crtc; |
| unsigned int num_outputs; |
| unsigned long pixel_rate; |
| unsigned long cob_rate; |
| unsigned int i; |
| |
| priv_state = drm_atomic_get_private_obj_state(state, |
| &vc4->load_tracker); |
| if (IS_ERR(priv_state)) |
| return PTR_ERR(priv_state); |
| |
| load_state = to_vc4_load_tracker_state(priv_state); |
| |
| hvs_new_state = vc4_hvs_get_global_state(state); |
| if (IS_ERR(hvs_new_state)) |
| return PTR_ERR(hvs_new_state); |
| |
| for_each_oldnew_crtc_in_state(state, crtc, |
| old_crtc_state, |
| new_crtc_state, |
| i) { |
| if (old_crtc_state->active) { |
| struct vc4_crtc_state *old_vc4_state = |
| to_vc4_crtc_state(old_crtc_state); |
| unsigned int channel = old_vc4_state->assigned_channel; |
| |
| hvs_new_state->fifo_state[channel].fifo_load = 0; |
| } |
| |
| if (new_crtc_state->active) { |
| struct vc4_crtc_state *new_vc4_state = |
| to_vc4_crtc_state(new_crtc_state); |
| unsigned int channel = new_vc4_state->assigned_channel; |
| |
| hvs_new_state->fifo_state[channel].fifo_load = |
| new_vc4_state->hvs_load; |
| } |
| } |
| |
| cob_rate = 0; |
| num_outputs = 0; |
| for (i = 0; i < HVS_NUM_CHANNELS; i++) { |
| if (!hvs_new_state->fifo_state[i].in_use) |
| continue; |
| |
| num_outputs++; |
| cob_rate = max_t(unsigned long, |
| hvs_new_state->fifo_state[i].fifo_load, |
| cob_rate); |
| } |
| |
| pixel_rate = load_state->hvs_load; |
| if (num_outputs > 1) { |
| pixel_rate = (pixel_rate * 40) / 100; |
| } else { |
| pixel_rate = (pixel_rate * 60) / 100; |
| } |
| |
| hvs_new_state->core_clock_rate = max(cob_rate, pixel_rate); |
| |
| return 0; |
| } |
| |
| |
| static int |
| vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) |
| { |
| int ret; |
| |
| ret = vc4_pv_muxing_atomic_check(dev, state); |
| if (ret) |
| return ret; |
| |
| ret = vc4_ctm_atomic_check(dev, state); |
| if (ret < 0) |
| return ret; |
| |
| ret = drm_atomic_helper_check(dev, state); |
| if (ret) |
| return ret; |
| |
| ret = vc4_load_tracker_atomic_check(state); |
| if (ret) |
| return ret; |
| |
| return vc4_core_clock_atomic_check(state); |
| } |
| |
| static struct drm_mode_config_helper_funcs vc4_mode_config_helpers = { |
| .atomic_commit_setup = vc4_atomic_commit_setup, |
| .atomic_commit_tail = vc4_atomic_commit_tail, |
| }; |
| |
| static const struct drm_mode_config_funcs vc4_mode_funcs = { |
| .atomic_check = vc4_atomic_check, |
| .atomic_commit = drm_atomic_helper_commit, |
| .fb_create = vc4_fb_create, |
| }; |
| |
| static const struct drm_mode_config_funcs vc5_mode_funcs = { |
| .atomic_check = vc4_atomic_check, |
| .atomic_commit = drm_atomic_helper_commit, |
| .fb_create = drm_gem_fb_create, |
| }; |
| |
| int vc4_kms_load(struct drm_device *dev) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| int ret; |
| |
| /* |
| * The limits enforced by the load tracker aren't relevant for |
| * the BCM2711, but the load tracker computations are used for |
| * the core clock rate calculation. |
| */ |
| if (!vc4->is_vc5) { |
| /* Start with the load tracker enabled. Can be |
| * disabled through the debugfs load_tracker file. |
| */ |
| vc4->load_tracker_enabled = true; |
| } |
| |
| /* Set support for vblank irq fast disable, before drm_vblank_init() */ |
| dev->vblank_disable_immediate = true; |
| |
| ret = drm_vblank_init(dev, dev->mode_config.num_crtc); |
| if (ret < 0) { |
| dev_err(dev->dev, "failed to initialize vblank\n"); |
| return ret; |
| } |
| |
| if (vc4->is_vc5) { |
| dev->mode_config.max_width = 7680; |
| dev->mode_config.max_height = 7680; |
| } else { |
| dev->mode_config.max_width = 2048; |
| dev->mode_config.max_height = 2048; |
| } |
| |
| dev->mode_config.funcs = vc4->is_vc5 ? &vc5_mode_funcs : &vc4_mode_funcs; |
| dev->mode_config.helper_private = &vc4_mode_config_helpers; |
| dev->mode_config.preferred_depth = 24; |
| dev->mode_config.async_page_flip = true; |
| dev->mode_config.normalize_zpos = true; |
| |
| ret = vc4_ctm_obj_init(vc4); |
| if (ret) |
| return ret; |
| |
| ret = vc4_load_tracker_obj_init(vc4); |
| if (ret) |
| return ret; |
| |
| ret = vc4_hvs_channels_obj_init(vc4); |
| if (ret) |
| return ret; |
| |
| drm_mode_config_reset(dev); |
| |
| drm_kms_helper_poll_init(dev); |
| |
| return 0; |
| } |