| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2022 Intel Corporation |
| */ |
| |
| #include "xe_gt_mcr.h" |
| |
| #include "regs/xe_gt_regs.h" |
| #include "xe_assert.h" |
| #include "xe_gt.h" |
| #include "xe_gt_topology.h" |
| #include "xe_gt_types.h" |
| #include "xe_mmio.h" |
| #include "xe_sriov.h" |
| |
| /** |
| * DOC: GT Multicast/Replicated (MCR) Register Support |
| * |
| * Some GT registers are designed as "multicast" or "replicated" registers: |
| * multiple instances of the same register share a single MMIO offset. MCR |
| * registers are generally used when the hardware needs to potentially track |
| * independent values of a register per hardware unit (e.g., per-subslice, |
| * per-L3bank, etc.). The specific types of replication that exist vary |
| * per-platform. |
| * |
| * MMIO accesses to MCR registers are controlled according to the settings |
| * programmed in the platform's MCR_SELECTOR register(s). MMIO writes to MCR |
| * registers can be done in either multicast (a single write updates all |
| * instances of the register to the same value) or unicast (a write updates only |
| * one specific instance) form. Reads of MCR registers always operate in a |
| * unicast manner regardless of how the multicast/unicast bit is set in |
| * MCR_SELECTOR. Selection of a specific MCR instance for unicast operations is |
| * referred to as "steering." |
| * |
| * If MCR register operations are steered toward a hardware unit that is |
| * fused off or currently powered down due to power gating, the MMIO operation |
| * is "terminated" by the hardware. Terminated read operations will return a |
| * value of zero and terminated unicast write operations will be silently |
| * ignored. During device initialization, the goal of the various |
| * ``init_steering_*()`` functions is to apply the platform-specific rules for |
| * each MCR register type to identify a steering target that will select a |
| * non-terminated instance. |
| * |
| * MCR registers are not available on Virtual Function (VF). |
| */ |
| |
| #define STEER_SEMAPHORE XE_REG(0xFD0) |
| |
| static inline struct xe_reg to_xe_reg(struct xe_reg_mcr reg_mcr) |
| { |
| return reg_mcr.__reg; |
| } |
| |
| enum { |
| MCR_OP_READ, |
| MCR_OP_WRITE |
| }; |
| |
| static const struct xe_mmio_range xelp_l3bank_steering_table[] = { |
| { 0x00B100, 0x00B3FF }, |
| {}, |
| }; |
| |
| static const struct xe_mmio_range xehp_l3bank_steering_table[] = { |
| { 0x008C80, 0x008CFF }, |
| { 0x00B100, 0x00B3FF }, |
| {}, |
| }; |
| |
| /* |
| * Although the bspec lists more "MSLICE" ranges than shown here, some of those |
| * are of a "GAM" subclass that has special rules and doesn't need to be |
| * included here. |
| */ |
| static const struct xe_mmio_range xehp_mslice_steering_table[] = { |
| { 0x00DD00, 0x00DDFF }, |
| { 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */ |
| {}, |
| }; |
| |
| static const struct xe_mmio_range xehp_lncf_steering_table[] = { |
| { 0x00B000, 0x00B0FF }, |
| { 0x00D880, 0x00D8FF }, |
| {}, |
| }; |
| |
| /* |
| * We have several types of MCR registers where steering to (0,0) will always |
| * provide us with a non-terminated value. We'll stick them all in the same |
| * table for simplicity. |
| */ |
| static const struct xe_mmio_range xehpc_instance0_steering_table[] = { |
| { 0x004000, 0x004AFF }, /* HALF-BSLICE */ |
| { 0x008800, 0x00887F }, /* CC */ |
| { 0x008A80, 0x008AFF }, /* TILEPSMI */ |
| { 0x00B000, 0x00B0FF }, /* HALF-BSLICE */ |
| { 0x00B100, 0x00B3FF }, /* L3BANK */ |
| { 0x00C800, 0x00CFFF }, /* HALF-BSLICE */ |
| { 0x00D800, 0x00D8FF }, /* HALF-BSLICE */ |
| { 0x00DD00, 0x00DDFF }, /* BSLICE */ |
| { 0x00E900, 0x00E9FF }, /* HALF-BSLICE */ |
| { 0x00EC00, 0x00EEFF }, /* HALF-BSLICE */ |
| { 0x00F000, 0x00FFFF }, /* HALF-BSLICE */ |
| { 0x024180, 0x0241FF }, /* HALF-BSLICE */ |
| {}, |
| }; |
| |
| static const struct xe_mmio_range xelpg_instance0_steering_table[] = { |
| { 0x000B00, 0x000BFF }, /* SQIDI */ |
| { 0x001000, 0x001FFF }, /* SQIDI */ |
| { 0x004000, 0x0048FF }, /* GAM */ |
| { 0x008700, 0x0087FF }, /* SQIDI */ |
| { 0x00B000, 0x00B0FF }, /* NODE */ |
| { 0x00C800, 0x00CFFF }, /* GAM */ |
| { 0x00D880, 0x00D8FF }, /* NODE */ |
| { 0x00DD00, 0x00DDFF }, /* OAAL2 */ |
| {}, |
| }; |
| |
| static const struct xe_mmio_range xelpg_l3bank_steering_table[] = { |
| { 0x00B100, 0x00B3FF }, |
| {}, |
| }; |
| |
| static const struct xe_mmio_range xelp_dss_steering_table[] = { |
| { 0x008150, 0x00815F }, |
| { 0x009520, 0x00955F }, |
| { 0x00DE80, 0x00E8FF }, |
| { 0x024A00, 0x024A7F }, |
| {}, |
| }; |
| |
| /* DSS steering is used for GSLICE ranges as well */ |
| static const struct xe_mmio_range xehp_dss_steering_table[] = { |
| { 0x005200, 0x0052FF }, /* GSLICE */ |
| { 0x005400, 0x007FFF }, /* GSLICE */ |
| { 0x008140, 0x00815F }, /* GSLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ |
| { 0x008D00, 0x008DFF }, /* DSS */ |
| { 0x0094D0, 0x00955F }, /* GSLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ |
| { 0x009680, 0x0096FF }, /* DSS */ |
| { 0x00D800, 0x00D87F }, /* GSLICE */ |
| { 0x00DC00, 0x00DCFF }, /* GSLICE */ |
| { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved ) */ |
| { 0x017000, 0x017FFF }, /* GSLICE */ |
| { 0x024A00, 0x024A7F }, /* DSS */ |
| {}, |
| }; |
| |
| /* DSS steering is used for COMPUTE ranges as well */ |
| static const struct xe_mmio_range xehpc_dss_steering_table[] = { |
| { 0x008140, 0x00817F }, /* COMPUTE (0x8140-0x814F & 0x8160-0x817F), DSS (0x8150-0x815F) */ |
| { 0x0094D0, 0x00955F }, /* COMPUTE (0x94D0-0x951F), DSS (0x9520-0x955F) */ |
| { 0x009680, 0x0096FF }, /* DSS */ |
| { 0x00DC00, 0x00DCFF }, /* COMPUTE */ |
| { 0x00DE80, 0x00E7FF }, /* DSS (0xDF00-0xE1FF reserved ) */ |
| {}, |
| }; |
| |
| /* DSS steering is used for SLICE ranges as well */ |
| static const struct xe_mmio_range xelpg_dss_steering_table[] = { |
| { 0x005200, 0x0052FF }, /* SLICE */ |
| { 0x005500, 0x007FFF }, /* SLICE */ |
| { 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ |
| { 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ |
| { 0x009680, 0x0096FF }, /* DSS */ |
| { 0x00D800, 0x00D87F }, /* SLICE */ |
| { 0x00DC00, 0x00DCFF }, /* SLICE */ |
| { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */ |
| {}, |
| }; |
| |
| static const struct xe_mmio_range xelpmp_oaddrm_steering_table[] = { |
| { 0x393200, 0x39323F }, |
| { 0x393400, 0x3934FF }, |
| {}, |
| }; |
| |
| static const struct xe_mmio_range dg2_implicit_steering_table[] = { |
| { 0x000B00, 0x000BFF }, /* SF (SQIDI replication) */ |
| { 0x001000, 0x001FFF }, /* SF (SQIDI replication) */ |
| { 0x004000, 0x004AFF }, /* GAM (MSLICE replication) */ |
| { 0x008700, 0x0087FF }, /* MCFG (SQIDI replication) */ |
| { 0x00C800, 0x00CFFF }, /* GAM (MSLICE replication) */ |
| { 0x00F000, 0x00FFFF }, /* GAM (MSLICE replication) */ |
| {}, |
| }; |
| |
| static const struct xe_mmio_range xe2lpg_dss_steering_table[] = { |
| { 0x005200, 0x0052FF }, /* SLICE */ |
| { 0x005500, 0x007FFF }, /* SLICE */ |
| { 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ |
| { 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ |
| { 0x009680, 0x0096FF }, /* DSS */ |
| { 0x00D800, 0x00D87F }, /* SLICE */ |
| { 0x00DC00, 0x00DCFF }, /* SLICE */ |
| { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */ |
| { 0x00E980, 0x00E9FF }, /* SLICE */ |
| { 0x013000, 0x0133FF }, /* DSS (0x13000-0x131FF), SLICE (0x13200-0x133FF) */ |
| {}, |
| }; |
| |
| static const struct xe_mmio_range xe2lpg_sqidi_psmi_steering_table[] = { |
| { 0x000B00, 0x000BFF }, |
| { 0x001000, 0x001FFF }, |
| {}, |
| }; |
| |
| static const struct xe_mmio_range xe2lpg_instance0_steering_table[] = { |
| { 0x004000, 0x004AFF }, /* GAM, rsvd, GAMWKR */ |
| { 0x008700, 0x00887F }, /* SQIDI, MEMPIPE */ |
| { 0x00B000, 0x00B3FF }, /* NODE, L3BANK */ |
| { 0x00C800, 0x00CFFF }, /* GAM */ |
| { 0x00D880, 0x00D8FF }, /* NODE */ |
| { 0x00DD00, 0x00DDFF }, /* MEMPIPE */ |
| { 0x00E900, 0x00E97F }, /* MEMPIPE */ |
| { 0x00F000, 0x00FFFF }, /* GAM, GAMWKR */ |
| { 0x013400, 0x0135FF }, /* MEMPIPE */ |
| {}, |
| }; |
| |
| static const struct xe_mmio_range xe2lpm_gpmxmt_steering_table[] = { |
| { 0x388160, 0x38817F }, |
| { 0x389480, 0x3894CF }, |
| {}, |
| }; |
| |
| static const struct xe_mmio_range xe2lpm_instance0_steering_table[] = { |
| { 0x384000, 0x3847DF }, /* GAM, rsvd, GAM */ |
| { 0x384900, 0x384AFF }, /* GAM */ |
| { 0x389560, 0x3895FF }, /* MEDIAINF */ |
| { 0x38B600, 0x38B8FF }, /* L3BANK */ |
| { 0x38C800, 0x38D07F }, /* GAM, MEDIAINF */ |
| { 0x38F000, 0x38F0FF }, /* GAM */ |
| { 0x393C00, 0x393C7F }, /* MEDIAINF */ |
| {}, |
| }; |
| |
| static void init_steering_l3bank(struct xe_gt *gt) |
| { |
| if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) { |
| u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK, |
| xe_mmio_read32(gt, MIRROR_FUSE3)); |
| u32 bank_mask = REG_FIELD_GET(GT_L3_EXC_MASK, |
| xe_mmio_read32(gt, XEHP_FUSE4)); |
| |
| /* |
| * Group selects mslice, instance selects bank within mslice. |
| * Bank 0 is always valid _except_ when the bank mask is 010b. |
| */ |
| gt->steering[L3BANK].group_target = __ffs(mslice_mask); |
| gt->steering[L3BANK].instance_target = |
| bank_mask & BIT(0) ? 0 : 2; |
| } else if (gt_to_xe(gt)->info.platform == XE_DG2) { |
| u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK, |
| xe_mmio_read32(gt, MIRROR_FUSE3)); |
| u32 bank = __ffs(mslice_mask) * 8; |
| |
| /* |
| * Like mslice registers, look for a valid mslice and steer to |
| * the first L3BANK of that quad. Access to the Nth L3 bank is |
| * split between the first bits of group and instance |
| */ |
| gt->steering[L3BANK].group_target = (bank >> 2) & 0x7; |
| gt->steering[L3BANK].instance_target = bank & 0x3; |
| } else { |
| u32 fuse = REG_FIELD_GET(L3BANK_MASK, |
| ~xe_mmio_read32(gt, MIRROR_FUSE3)); |
| |
| gt->steering[L3BANK].group_target = 0; /* unused */ |
| gt->steering[L3BANK].instance_target = __ffs(fuse); |
| } |
| } |
| |
| static void init_steering_mslice(struct xe_gt *gt) |
| { |
| u32 mask = REG_FIELD_GET(MEML3_EN_MASK, |
| xe_mmio_read32(gt, MIRROR_FUSE3)); |
| |
| /* |
| * mslice registers are valid (not terminated) if either the meml3 |
| * associated with the mslice is present, or at least one DSS associated |
| * with the mslice is present. There will always be at least one meml3 |
| * so we can just use that to find a non-terminated mslice and ignore |
| * the DSS fusing. |
| */ |
| gt->steering[MSLICE].group_target = __ffs(mask); |
| gt->steering[MSLICE].instance_target = 0; /* unused */ |
| |
| /* |
| * LNCF termination is also based on mslice presence, so we'll set |
| * it up here. Either LNCF within a non-terminated mslice will work, |
| * so we just always pick LNCF 0 here. |
| */ |
| gt->steering[LNCF].group_target = __ffs(mask) << 1; |
| gt->steering[LNCF].instance_target = 0; /* unused */ |
| } |
| |
| static unsigned int dss_per_group(struct xe_gt *gt) |
| { |
| if (gt_to_xe(gt)->info.platform == XE_PVC) |
| return 8; |
| else if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1250) |
| return 4; |
| else |
| return 6; |
| } |
| |
| /** |
| * xe_gt_mcr_get_dss_steering - Get the group/instance steering for a DSS |
| * @gt: GT structure |
| * @dss: DSS ID to obtain steering for |
| * @group: pointer to storage for steering group ID |
| * @instance: pointer to storage for steering instance ID |
| */ |
| void xe_gt_mcr_get_dss_steering(struct xe_gt *gt, unsigned int dss, u16 *group, u16 *instance) |
| { |
| int dss_per_grp = dss_per_group(gt); |
| |
| xe_gt_assert(gt, dss < XE_MAX_DSS_FUSE_BITS); |
| |
| *group = dss / dss_per_grp; |
| *instance = dss % dss_per_grp; |
| } |
| |
| static void init_steering_dss(struct xe_gt *gt) |
| { |
| xe_gt_mcr_get_dss_steering(gt, |
| min(xe_dss_mask_group_ffs(gt->fuse_topo.g_dss_mask, 0, 0), |
| xe_dss_mask_group_ffs(gt->fuse_topo.c_dss_mask, 0, 0)), |
| >->steering[DSS].group_target, |
| >->steering[DSS].instance_target); |
| } |
| |
| static void init_steering_oaddrm(struct xe_gt *gt) |
| { |
| /* |
| * First instance is only terminated if the entire first media slice |
| * is absent (i.e., no VCS0 or VECS0). |
| */ |
| if (gt->info.engine_mask & (XE_HW_ENGINE_VCS0 | XE_HW_ENGINE_VECS0)) |
| gt->steering[OADDRM].group_target = 0; |
| else |
| gt->steering[OADDRM].group_target = 1; |
| |
| gt->steering[OADDRM].instance_target = 0; /* unused */ |
| } |
| |
| static void init_steering_sqidi_psmi(struct xe_gt *gt) |
| { |
| u32 mask = REG_FIELD_GET(XE2_NODE_ENABLE_MASK, |
| xe_mmio_read32(gt, MIRROR_FUSE3)); |
| u32 select = __ffs(mask); |
| |
| gt->steering[SQIDI_PSMI].group_target = select >> 1; |
| gt->steering[SQIDI_PSMI].instance_target = select & 0x1; |
| } |
| |
| static void init_steering_inst0(struct xe_gt *gt) |
| { |
| gt->steering[INSTANCE0].group_target = 0; /* unused */ |
| gt->steering[INSTANCE0].instance_target = 0; /* unused */ |
| } |
| |
| static const struct { |
| const char *name; |
| void (*init)(struct xe_gt *gt); |
| } xe_steering_types[] = { |
| [L3BANK] = { "L3BANK", init_steering_l3bank }, |
| [MSLICE] = { "MSLICE", init_steering_mslice }, |
| [LNCF] = { "LNCF", NULL }, /* initialized by mslice init */ |
| [DSS] = { "DSS", init_steering_dss }, |
| [OADDRM] = { "OADDRM / GPMXMT", init_steering_oaddrm }, |
| [SQIDI_PSMI] = { "SQIDI_PSMI", init_steering_sqidi_psmi }, |
| [INSTANCE0] = { "INSTANCE 0", init_steering_inst0 }, |
| [IMPLICIT_STEERING] = { "IMPLICIT", NULL }, |
| }; |
| |
| void xe_gt_mcr_init(struct xe_gt *gt) |
| { |
| struct xe_device *xe = gt_to_xe(gt); |
| |
| BUILD_BUG_ON(IMPLICIT_STEERING + 1 != NUM_STEERING_TYPES); |
| BUILD_BUG_ON(ARRAY_SIZE(xe_steering_types) != NUM_STEERING_TYPES); |
| |
| if (IS_SRIOV_VF(xe)) |
| return; |
| |
| spin_lock_init(>->mcr_lock); |
| |
| if (gt->info.type == XE_GT_TYPE_MEDIA) { |
| drm_WARN_ON(&xe->drm, MEDIA_VER(xe) < 13); |
| |
| if (MEDIA_VER(xe) >= 20) { |
| gt->steering[OADDRM].ranges = xe2lpm_gpmxmt_steering_table; |
| gt->steering[INSTANCE0].ranges = xe2lpm_instance0_steering_table; |
| } else { |
| gt->steering[OADDRM].ranges = xelpmp_oaddrm_steering_table; |
| } |
| } else { |
| if (GRAPHICS_VER(xe) >= 20) { |
| gt->steering[DSS].ranges = xe2lpg_dss_steering_table; |
| gt->steering[SQIDI_PSMI].ranges = xe2lpg_sqidi_psmi_steering_table; |
| gt->steering[INSTANCE0].ranges = xe2lpg_instance0_steering_table; |
| } else if (GRAPHICS_VERx100(xe) >= 1270) { |
| gt->steering[INSTANCE0].ranges = xelpg_instance0_steering_table; |
| gt->steering[L3BANK].ranges = xelpg_l3bank_steering_table; |
| gt->steering[DSS].ranges = xelpg_dss_steering_table; |
| } else if (xe->info.platform == XE_PVC) { |
| gt->steering[INSTANCE0].ranges = xehpc_instance0_steering_table; |
| gt->steering[DSS].ranges = xehpc_dss_steering_table; |
| } else if (xe->info.platform == XE_DG2) { |
| gt->steering[L3BANK].ranges = xehp_l3bank_steering_table; |
| gt->steering[MSLICE].ranges = xehp_mslice_steering_table; |
| gt->steering[LNCF].ranges = xehp_lncf_steering_table; |
| gt->steering[DSS].ranges = xehp_dss_steering_table; |
| gt->steering[IMPLICIT_STEERING].ranges = dg2_implicit_steering_table; |
| } else { |
| gt->steering[L3BANK].ranges = xelp_l3bank_steering_table; |
| gt->steering[DSS].ranges = xelp_dss_steering_table; |
| } |
| } |
| |
| /* Select non-terminated steering target for each type */ |
| for (int i = 0; i < NUM_STEERING_TYPES; i++) |
| if (gt->steering[i].ranges && xe_steering_types[i].init) |
| xe_steering_types[i].init(gt); |
| } |
| |
| /** |
| * xe_gt_mcr_set_implicit_defaults - Initialize steer control registers |
| * @gt: GT structure |
| * |
| * Some register ranges don't need to have their steering control registers |
| * changed on each access - it's sufficient to set them once on initialization. |
| * This function sets those registers for each platform * |
| */ |
| void xe_gt_mcr_set_implicit_defaults(struct xe_gt *gt) |
| { |
| struct xe_device *xe = gt_to_xe(gt); |
| |
| if (IS_SRIOV_VF(xe)) |
| return; |
| |
| if (xe->info.platform == XE_DG2) { |
| u32 steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, 0) | |
| REG_FIELD_PREP(MCR_SUBSLICE_MASK, 2); |
| |
| xe_mmio_write32(gt, MCFG_MCR_SELECTOR, steer_val); |
| xe_mmio_write32(gt, SF_MCR_SELECTOR, steer_val); |
| /* |
| * For GAM registers, all reads should be directed to instance 1 |
| * (unicast reads against other instances are not allowed), |
| * and instance 1 is already the hardware's default steering |
| * target, which we never change |
| */ |
| } |
| } |
| |
| /* |
| * xe_gt_mcr_get_nonterminated_steering - find group/instance values that |
| * will steer a register to a non-terminated instance |
| * @gt: GT structure |
| * @reg: register for which the steering is required |
| * @group: return variable for group steering |
| * @instance: return variable for instance steering |
| * |
| * This function returns a group/instance pair that is guaranteed to work for |
| * read steering of the given register. Note that a value will be returned even |
| * if the register is not replicated and therefore does not actually require |
| * steering. |
| * |
| * Returns true if the caller should steer to the @group/@instance values |
| * returned. Returns false if the caller need not perform any steering |
| */ |
| static bool xe_gt_mcr_get_nonterminated_steering(struct xe_gt *gt, |
| struct xe_reg_mcr reg_mcr, |
| u8 *group, u8 *instance) |
| { |
| const struct xe_reg reg = to_xe_reg(reg_mcr); |
| const struct xe_mmio_range *implicit_ranges; |
| |
| for (int type = 0; type < IMPLICIT_STEERING; type++) { |
| if (!gt->steering[type].ranges) |
| continue; |
| |
| for (int i = 0; gt->steering[type].ranges[i].end > 0; i++) { |
| if (xe_mmio_in_range(gt, >->steering[type].ranges[i], reg)) { |
| *group = gt->steering[type].group_target; |
| *instance = gt->steering[type].instance_target; |
| return true; |
| } |
| } |
| } |
| |
| implicit_ranges = gt->steering[IMPLICIT_STEERING].ranges; |
| if (implicit_ranges) |
| for (int i = 0; implicit_ranges[i].end > 0; i++) |
| if (xe_mmio_in_range(gt, &implicit_ranges[i], reg)) |
| return false; |
| |
| /* |
| * Not found in a steering table and not a register with implicit |
| * steering. Just steer to 0/0 as a guess and raise a warning. |
| */ |
| drm_WARN(>_to_xe(gt)->drm, true, |
| "Did not find MCR register %#x in any MCR steering table\n", |
| reg.addr); |
| *group = 0; |
| *instance = 0; |
| |
| return true; |
| } |
| |
| /* |
| * Obtain exclusive access to MCR steering. On MTL and beyond we also need |
| * to synchronize with external clients (e.g., firmware), so a semaphore |
| * register will also need to be taken. |
| */ |
| static void mcr_lock(struct xe_gt *gt) __acquires(>->mcr_lock) |
| { |
| struct xe_device *xe = gt_to_xe(gt); |
| int ret = 0; |
| |
| spin_lock(>->mcr_lock); |
| |
| /* |
| * Starting with MTL we also need to grab a semaphore register |
| * to synchronize with external agents (e.g., firmware) that now |
| * shares the same steering control register. The semaphore is obtained |
| * when a read to the relevant register returns 1. |
| */ |
| if (GRAPHICS_VERx100(xe) >= 1270) |
| ret = xe_mmio_wait32(gt, STEER_SEMAPHORE, 0x1, 0x1, 10, NULL, |
| true); |
| |
| drm_WARN_ON_ONCE(&xe->drm, ret == -ETIMEDOUT); |
| } |
| |
| static void mcr_unlock(struct xe_gt *gt) __releases(>->mcr_lock) |
| { |
| /* Release hardware semaphore - this is done by writing 1 to the register */ |
| if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) |
| xe_mmio_write32(gt, STEER_SEMAPHORE, 0x1); |
| |
| spin_unlock(>->mcr_lock); |
| } |
| |
| /* |
| * Access a register with specific MCR steering |
| * |
| * Caller needs to make sure the relevant forcewake wells are up. |
| */ |
| static u32 rw_with_mcr_steering(struct xe_gt *gt, struct xe_reg_mcr reg_mcr, |
| u8 rw_flag, int group, int instance, u32 value) |
| { |
| const struct xe_reg reg = to_xe_reg(reg_mcr); |
| struct xe_reg steer_reg; |
| u32 steer_val, val = 0; |
| |
| lockdep_assert_held(>->mcr_lock); |
| |
| if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) { |
| steer_reg = MTL_MCR_SELECTOR; |
| steer_val = REG_FIELD_PREP(MTL_MCR_GROUPID, group) | |
| REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance); |
| } else { |
| steer_reg = MCR_SELECTOR; |
| steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, group) | |
| REG_FIELD_PREP(MCR_SUBSLICE_MASK, instance); |
| } |
| |
| /* |
| * Always leave the hardware in multicast mode when doing reads and only |
| * change it to unicast mode when doing writes of a specific instance. |
| * |
| * The setting of the multicast/unicast bit usually wouldn't matter for |
| * read operations (which always return the value from a single register |
| * instance regardless of how that bit is set), but some platforms may |
| * have workarounds requiring us to remain in multicast mode for reads, |
| * e.g. Wa_22013088509 on PVC. There's no real downside to this, so |
| * we'll just go ahead and do so on all platforms; we'll only clear the |
| * multicast bit from the mask when explicitly doing a write operation. |
| * |
| * No need to save old steering reg value. |
| */ |
| if (rw_flag == MCR_OP_READ) |
| steer_val |= MCR_MULTICAST; |
| |
| xe_mmio_write32(gt, steer_reg, steer_val); |
| |
| if (rw_flag == MCR_OP_READ) |
| val = xe_mmio_read32(gt, reg); |
| else |
| xe_mmio_write32(gt, reg, value); |
| |
| /* |
| * If we turned off the multicast bit (during a write) we're required |
| * to turn it back on before finishing. The group and instance values |
| * don't matter since they'll be re-programmed on the next MCR |
| * operation. |
| */ |
| if (rw_flag == MCR_OP_WRITE) |
| xe_mmio_write32(gt, steer_reg, MCR_MULTICAST); |
| |
| return val; |
| } |
| |
| /** |
| * xe_gt_mcr_unicast_read_any - reads a non-terminated instance of an MCR register |
| * @gt: GT structure |
| * @reg_mcr: register to read |
| * |
| * Reads a GT MCR register. The read will be steered to a non-terminated |
| * instance (i.e., one that isn't fused off or powered down by power gating). |
| * This function assumes the caller is already holding any necessary forcewake |
| * domains. |
| * |
| * Returns the value from a non-terminated instance of @reg. |
| */ |
| u32 xe_gt_mcr_unicast_read_any(struct xe_gt *gt, struct xe_reg_mcr reg_mcr) |
| { |
| const struct xe_reg reg = to_xe_reg(reg_mcr); |
| u8 group, instance; |
| u32 val; |
| bool steer; |
| |
| xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt))); |
| |
| steer = xe_gt_mcr_get_nonterminated_steering(gt, reg_mcr, |
| &group, &instance); |
| |
| if (steer) { |
| mcr_lock(gt); |
| val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ, |
| group, instance, 0); |
| mcr_unlock(gt); |
| } else { |
| val = xe_mmio_read32(gt, reg); |
| } |
| |
| return val; |
| } |
| |
| /** |
| * xe_gt_mcr_unicast_read - read a specific instance of an MCR register |
| * @gt: GT structure |
| * @reg_mcr: the MCR register to read |
| * @group: the MCR group |
| * @instance: the MCR instance |
| * |
| * Returns the value read from an MCR register after steering toward a specific |
| * group/instance. |
| */ |
| u32 xe_gt_mcr_unicast_read(struct xe_gt *gt, |
| struct xe_reg_mcr reg_mcr, |
| int group, int instance) |
| { |
| u32 val; |
| |
| xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt))); |
| |
| mcr_lock(gt); |
| val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ, group, instance, 0); |
| mcr_unlock(gt); |
| |
| return val; |
| } |
| |
| /** |
| * xe_gt_mcr_unicast_write - write a specific instance of an MCR register |
| * @gt: GT structure |
| * @reg_mcr: the MCR register to write |
| * @value: value to write |
| * @group: the MCR group |
| * @instance: the MCR instance |
| * |
| * Write an MCR register in unicast mode after steering toward a specific |
| * group/instance. |
| */ |
| void xe_gt_mcr_unicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr, |
| u32 value, int group, int instance) |
| { |
| xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt))); |
| |
| mcr_lock(gt); |
| rw_with_mcr_steering(gt, reg_mcr, MCR_OP_WRITE, group, instance, value); |
| mcr_unlock(gt); |
| } |
| |
| /** |
| * xe_gt_mcr_multicast_write - write a value to all instances of an MCR register |
| * @gt: GT structure |
| * @reg_mcr: the MCR register to write |
| * @value: value to write |
| * |
| * Write an MCR register in multicast mode to update all instances. |
| */ |
| void xe_gt_mcr_multicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr, |
| u32 value) |
| { |
| struct xe_reg reg = to_xe_reg(reg_mcr); |
| |
| xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt))); |
| |
| /* |
| * Synchronize with any unicast operations. Once we have exclusive |
| * access, the MULTICAST bit should already be set, so there's no need |
| * to touch the steering register. |
| */ |
| mcr_lock(gt); |
| xe_mmio_write32(gt, reg, value); |
| mcr_unlock(gt); |
| } |
| |
| void xe_gt_mcr_steering_dump(struct xe_gt *gt, struct drm_printer *p) |
| { |
| for (int i = 0; i < NUM_STEERING_TYPES; i++) { |
| if (gt->steering[i].ranges) { |
| drm_printf(p, "%s steering: group=%#x, instance=%#x\n", |
| xe_steering_types[i].name, |
| gt->steering[i].group_target, |
| gt->steering[i].instance_target); |
| for (int j = 0; gt->steering[i].ranges[j].end; j++) |
| drm_printf(p, "\t0x%06x - 0x%06x\n", |
| gt->steering[i].ranges[j].start, |
| gt->steering[i].ranges[j].end); |
| } |
| } |
| } |