| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2022 Intel Corporation |
| */ |
| |
| #include "xe_pm.h" |
| |
| #include <linux/pm_runtime.h> |
| |
| #include <drm/drm_managed.h> |
| #include <drm/ttm/ttm_placement.h> |
| |
| #include "display/xe_display.h" |
| #include "xe_bo.h" |
| #include "xe_bo_evict.h" |
| #include "xe_device.h" |
| #include "xe_device_sysfs.h" |
| #include "xe_ggtt.h" |
| #include "xe_gt.h" |
| #include "xe_guc.h" |
| #include "xe_irq.h" |
| #include "xe_pcode.h" |
| #include "xe_wa.h" |
| |
| /** |
| * DOC: Xe Power Management |
| * |
| * Xe PM implements the main routines for both system level suspend states and |
| * for the opportunistic runtime suspend states. |
| * |
| * System Level Suspend (S-States) - In general this is OS initiated suspend |
| * driven by ACPI for achieving S0ix (a.k.a. S2idle, freeze), S3 (suspend to ram), |
| * S4 (disk). The main functions here are `xe_pm_suspend` and `xe_pm_resume`. They |
| * are the main point for the suspend to and resume from these states. |
| * |
| * PCI Device Suspend (D-States) - This is the opportunistic PCIe device low power |
| * state D3, controlled by the PCI subsystem and ACPI with the help from the |
| * runtime_pm infrastructure. |
| * PCI D3 is special and can mean D3hot, where Vcc power is on for keeping memory |
| * alive and quicker low latency resume or D3Cold where Vcc power is off for |
| * better power savings. |
| * The Vcc control of PCI hierarchy can only be controlled at the PCI root port |
| * level, while the device driver can be behind multiple bridges/switches and |
| * paired with other devices. For this reason, the PCI subsystem cannot perform |
| * the transition towards D3Cold. The lowest runtime PM possible from the PCI |
| * subsystem is D3hot. Then, if all these paired devices in the same root port |
| * are in D3hot, ACPI will assist here and run its own methods (_PR3 and _OFF) |
| * to perform the transition from D3hot to D3cold. Xe may disallow this |
| * transition by calling pci_d3cold_disable(root_pdev) before going to runtime |
| * suspend. It will be based on runtime conditions such as VRAM usage for a |
| * quick and low latency resume for instance. |
| * |
| * Runtime PM - This infrastructure provided by the Linux kernel allows the |
| * device drivers to indicate when the can be runtime suspended, so the device |
| * could be put at D3 (if supported), or allow deeper package sleep states |
| * (PC-states), and/or other low level power states. Xe PM component provides |
| * `xe_pm_runtime_suspend` and `xe_pm_runtime_resume` functions that PCI |
| * subsystem will call before transition to/from runtime suspend. |
| * |
| * Also, Xe PM provides get and put functions that Xe driver will use to |
| * indicate activity. In order to avoid locking complications with the memory |
| * management, whenever possible, these get and put functions needs to be called |
| * from the higher/outer levels. |
| * The main cases that need to be protected from the outer levels are: IOCTL, |
| * sysfs, debugfs, dma-buf sharing, GPU execution. |
| * |
| * This component is not responsible for GT idleness (RC6) nor GT frequency |
| * management (RPS). |
| */ |
| |
| #ifdef CONFIG_LOCKDEP |
| struct lockdep_map xe_pm_runtime_lockdep_map = { |
| .name = "xe_pm_runtime_lockdep_map" |
| }; |
| #endif |
| |
| /** |
| * xe_pm_suspend - Helper for System suspend, i.e. S0->S3 / S0->S2idle |
| * @xe: xe device instance |
| * |
| * Return: 0 on success |
| */ |
| int xe_pm_suspend(struct xe_device *xe) |
| { |
| struct xe_gt *gt; |
| u8 id; |
| int err; |
| |
| drm_dbg(&xe->drm, "Suspending device\n"); |
| |
| for_each_gt(gt, xe, id) |
| xe_gt_suspend_prepare(gt); |
| |
| /* FIXME: Super racey... */ |
| err = xe_bo_evict_all(xe); |
| if (err) |
| goto err; |
| |
| xe_display_pm_suspend(xe); |
| |
| for_each_gt(gt, xe, id) { |
| err = xe_gt_suspend(gt); |
| if (err) { |
| xe_display_pm_resume(xe); |
| goto err; |
| } |
| } |
| |
| xe_irq_suspend(xe); |
| |
| xe_display_pm_suspend_late(xe); |
| |
| drm_dbg(&xe->drm, "Device suspended\n"); |
| return 0; |
| err: |
| drm_dbg(&xe->drm, "Device suspend failed %d\n", err); |
| return err; |
| } |
| |
| /** |
| * xe_pm_resume - Helper for System resume S3->S0 / S2idle->S0 |
| * @xe: xe device instance |
| * |
| * Return: 0 on success |
| */ |
| int xe_pm_resume(struct xe_device *xe) |
| { |
| struct xe_tile *tile; |
| struct xe_gt *gt; |
| u8 id; |
| int err; |
| |
| drm_dbg(&xe->drm, "Resuming device\n"); |
| |
| for_each_tile(tile, xe, id) |
| xe_wa_apply_tile_workarounds(tile); |
| |
| err = xe_pcode_ready(xe, true); |
| if (err) |
| return err; |
| |
| xe_display_pm_resume_early(xe); |
| |
| /* |
| * This only restores pinned memory which is the memory required for the |
| * GT(s) to resume. |
| */ |
| err = xe_bo_restore_kernel(xe); |
| if (err) |
| goto err; |
| |
| xe_irq_resume(xe); |
| |
| xe_display_pm_resume(xe); |
| |
| for_each_gt(gt, xe, id) |
| xe_gt_resume(gt); |
| |
| err = xe_bo_restore_user(xe); |
| if (err) |
| goto err; |
| |
| drm_dbg(&xe->drm, "Device resumed\n"); |
| return 0; |
| err: |
| drm_dbg(&xe->drm, "Device resume failed %d\n", err); |
| return err; |
| } |
| |
| static bool xe_pm_pci_d3cold_capable(struct xe_device *xe) |
| { |
| struct pci_dev *pdev = to_pci_dev(xe->drm.dev); |
| struct pci_dev *root_pdev; |
| |
| root_pdev = pcie_find_root_port(pdev); |
| if (!root_pdev) |
| return false; |
| |
| /* D3Cold requires PME capability */ |
| if (!pci_pme_capable(root_pdev, PCI_D3cold)) { |
| drm_dbg(&xe->drm, "d3cold: PME# not supported\n"); |
| return false; |
| } |
| |
| /* D3Cold requires _PR3 power resource */ |
| if (!pci_pr3_present(root_pdev)) { |
| drm_dbg(&xe->drm, "d3cold: ACPI _PR3 not present\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void xe_pm_runtime_init(struct xe_device *xe) |
| { |
| struct device *dev = xe->drm.dev; |
| |
| /* |
| * Disable the system suspend direct complete optimization. |
| * We need to ensure that the regular device suspend/resume functions |
| * are called since our runtime_pm cannot guarantee local memory |
| * eviction for d3cold. |
| * TODO: Check HDA audio dependencies claimed by i915, and then enforce |
| * this option to integrated graphics as well. |
| */ |
| if (IS_DGFX(xe)) |
| dev_pm_set_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE); |
| |
| pm_runtime_use_autosuspend(dev); |
| pm_runtime_set_autosuspend_delay(dev, 1000); |
| pm_runtime_set_active(dev); |
| pm_runtime_allow(dev); |
| pm_runtime_mark_last_busy(dev); |
| pm_runtime_put(dev); |
| } |
| |
| int xe_pm_init_early(struct xe_device *xe) |
| { |
| int err; |
| |
| INIT_LIST_HEAD(&xe->mem_access.vram_userfault.list); |
| |
| err = drmm_mutex_init(&xe->drm, &xe->mem_access.vram_userfault.lock); |
| if (err) |
| return err; |
| |
| err = drmm_mutex_init(&xe->drm, &xe->d3cold.lock); |
| if (err) |
| return err; |
| |
| return 0; |
| } |
| |
| /** |
| * xe_pm_init - Initialize Xe Power Management |
| * @xe: xe device instance |
| * |
| * This component is responsible for System and Device sleep states. |
| * |
| * Returns 0 for success, negative error code otherwise. |
| */ |
| int xe_pm_init(struct xe_device *xe) |
| { |
| int err; |
| |
| /* For now suspend/resume is only allowed with GuC */ |
| if (!xe_device_uc_enabled(xe)) |
| return 0; |
| |
| xe->d3cold.capable = xe_pm_pci_d3cold_capable(xe); |
| |
| if (xe->d3cold.capable) { |
| err = xe_device_sysfs_init(xe); |
| if (err) |
| return err; |
| |
| err = xe_pm_set_vram_threshold(xe, DEFAULT_VRAM_THRESHOLD); |
| if (err) |
| return err; |
| } |
| |
| xe_pm_runtime_init(xe); |
| |
| return 0; |
| } |
| |
| /** |
| * xe_pm_runtime_fini - Finalize Runtime PM |
| * @xe: xe device instance |
| */ |
| void xe_pm_runtime_fini(struct xe_device *xe) |
| { |
| struct device *dev = xe->drm.dev; |
| |
| pm_runtime_get_sync(dev); |
| pm_runtime_forbid(dev); |
| } |
| |
| static void xe_pm_write_callback_task(struct xe_device *xe, |
| struct task_struct *task) |
| { |
| WRITE_ONCE(xe->pm_callback_task, task); |
| |
| /* |
| * Just in case it's somehow possible for our writes to be reordered to |
| * the extent that something else re-uses the task written in |
| * pm_callback_task. For example after returning from the callback, but |
| * before the reordered write that resets pm_callback_task back to NULL. |
| */ |
| smp_mb(); /* pairs with xe_pm_read_callback_task */ |
| } |
| |
| struct task_struct *xe_pm_read_callback_task(struct xe_device *xe) |
| { |
| smp_mb(); /* pairs with xe_pm_write_callback_task */ |
| |
| return READ_ONCE(xe->pm_callback_task); |
| } |
| |
| /** |
| * xe_pm_runtime_suspended - Check if runtime_pm state is suspended |
| * @xe: xe device instance |
| * |
| * This does not provide any guarantee that the device is going to remain |
| * suspended as it might be racing with the runtime state transitions. |
| * It can be used only as a non-reliable assertion, to ensure that we are not in |
| * the sleep state while trying to access some memory for instance. |
| * |
| * Returns true if PCI device is suspended, false otherwise. |
| */ |
| bool xe_pm_runtime_suspended(struct xe_device *xe) |
| { |
| return pm_runtime_suspended(xe->drm.dev); |
| } |
| |
| /** |
| * xe_pm_runtime_suspend - Prepare our device for D3hot/D3Cold |
| * @xe: xe device instance |
| * |
| * Returns 0 for success, negative error code otherwise. |
| */ |
| int xe_pm_runtime_suspend(struct xe_device *xe) |
| { |
| struct xe_bo *bo, *on; |
| struct xe_gt *gt; |
| u8 id; |
| int err = 0; |
| |
| /* Disable access_ongoing asserts and prevent recursive pm calls */ |
| xe_pm_write_callback_task(xe, current); |
| |
| /* |
| * The actual xe_pm_runtime_put() is always async underneath, so |
| * exactly where that is called should makes no difference to us. However |
| * we still need to be very careful with the locks that this callback |
| * acquires and the locks that are acquired and held by any callers of |
| * xe_runtime_pm_get(). We already have the matching annotation |
| * on that side, but we also need it here. For example lockdep should be |
| * able to tell us if the following scenario is in theory possible: |
| * |
| * CPU0 | CPU1 (kworker) |
| * lock(A) | |
| * | xe_pm_runtime_suspend() |
| * | lock(A) |
| * xe_pm_runtime_get() | |
| * |
| * This will clearly deadlock since rpm core needs to wait for |
| * xe_pm_runtime_suspend() to complete, but here we are holding lock(A) |
| * on CPU0 which prevents CPU1 making forward progress. With the |
| * annotation here and in xe_pm_runtime_get() lockdep will see |
| * the potential lock inversion and give us a nice splat. |
| */ |
| lock_map_acquire(&xe_pm_runtime_lockdep_map); |
| |
| /* |
| * Applying lock for entire list op as xe_ttm_bo_destroy and xe_bo_move_notify |
| * also checks and delets bo entry from user fault list. |
| */ |
| mutex_lock(&xe->mem_access.vram_userfault.lock); |
| list_for_each_entry_safe(bo, on, |
| &xe->mem_access.vram_userfault.list, vram_userfault_link) |
| xe_bo_runtime_pm_release_mmap_offset(bo); |
| mutex_unlock(&xe->mem_access.vram_userfault.lock); |
| |
| if (xe->d3cold.allowed) { |
| err = xe_bo_evict_all(xe); |
| if (err) |
| goto out; |
| } |
| |
| for_each_gt(gt, xe, id) { |
| err = xe_gt_suspend(gt); |
| if (err) |
| goto out; |
| } |
| |
| xe_irq_suspend(xe); |
| out: |
| lock_map_release(&xe_pm_runtime_lockdep_map); |
| xe_pm_write_callback_task(xe, NULL); |
| return err; |
| } |
| |
| /** |
| * xe_pm_runtime_resume - Waking up from D3hot/D3Cold |
| * @xe: xe device instance |
| * |
| * Returns 0 for success, negative error code otherwise. |
| */ |
| int xe_pm_runtime_resume(struct xe_device *xe) |
| { |
| struct xe_gt *gt; |
| u8 id; |
| int err = 0; |
| |
| /* Disable access_ongoing asserts and prevent recursive pm calls */ |
| xe_pm_write_callback_task(xe, current); |
| |
| lock_map_acquire(&xe_pm_runtime_lockdep_map); |
| |
| /* |
| * It can be possible that xe has allowed d3cold but other pcie devices |
| * in gfx card soc would have blocked d3cold, therefore card has not |
| * really lost power. Detecting primary Gt power is sufficient. |
| */ |
| gt = xe_device_get_gt(xe, 0); |
| xe->d3cold.power_lost = xe_guc_in_reset(>->uc.guc); |
| |
| if (xe->d3cold.allowed && xe->d3cold.power_lost) { |
| err = xe_pcode_ready(xe, true); |
| if (err) |
| goto out; |
| |
| /* |
| * This only restores pinned memory which is the memory |
| * required for the GT(s) to resume. |
| */ |
| err = xe_bo_restore_kernel(xe); |
| if (err) |
| goto out; |
| } |
| |
| xe_irq_resume(xe); |
| |
| for_each_gt(gt, xe, id) |
| xe_gt_resume(gt); |
| |
| if (xe->d3cold.allowed && xe->d3cold.power_lost) { |
| err = xe_bo_restore_user(xe); |
| if (err) |
| goto out; |
| } |
| out: |
| lock_map_release(&xe_pm_runtime_lockdep_map); |
| xe_pm_write_callback_task(xe, NULL); |
| return err; |
| } |
| |
| /* |
| * For places where resume is synchronous it can be quite easy to deadlock |
| * if we are not careful. Also in practice it might be quite timing |
| * sensitive to ever see the 0 -> 1 transition with the callers locks |
| * held, so deadlocks might exist but are hard for lockdep to ever see. |
| * With this in mind, help lockdep learn about the potentially scary |
| * stuff that can happen inside the runtime_resume callback by acquiring |
| * a dummy lock (it doesn't protect anything and gets compiled out on |
| * non-debug builds). Lockdep then only needs to see the |
| * xe_pm_runtime_lockdep_map -> runtime_resume callback once, and then can |
| * hopefully validate all the (callers_locks) -> xe_pm_runtime_lockdep_map. |
| * For example if the (callers_locks) are ever grabbed in the |
| * runtime_resume callback, lockdep should give us a nice splat. |
| */ |
| static void pm_runtime_lockdep_prime(void) |
| { |
| lock_map_acquire(&xe_pm_runtime_lockdep_map); |
| lock_map_release(&xe_pm_runtime_lockdep_map); |
| } |
| |
| /** |
| * xe_pm_runtime_get - Get a runtime_pm reference and resume synchronously |
| * @xe: xe device instance |
| */ |
| void xe_pm_runtime_get(struct xe_device *xe) |
| { |
| pm_runtime_get_noresume(xe->drm.dev); |
| |
| if (xe_pm_read_callback_task(xe) == current) |
| return; |
| |
| pm_runtime_lockdep_prime(); |
| pm_runtime_resume(xe->drm.dev); |
| } |
| |
| /** |
| * xe_pm_runtime_put - Put the runtime_pm reference back and mark as idle |
| * @xe: xe device instance |
| */ |
| void xe_pm_runtime_put(struct xe_device *xe) |
| { |
| if (xe_pm_read_callback_task(xe) == current) { |
| pm_runtime_put_noidle(xe->drm.dev); |
| } else { |
| pm_runtime_mark_last_busy(xe->drm.dev); |
| pm_runtime_put(xe->drm.dev); |
| } |
| } |
| |
| /** |
| * xe_pm_runtime_get_ioctl - Get a runtime_pm reference before ioctl |
| * @xe: xe device instance |
| * |
| * Returns: Any number greater than or equal to 0 for success, negative error |
| * code otherwise. |
| */ |
| int xe_pm_runtime_get_ioctl(struct xe_device *xe) |
| { |
| if (WARN_ON(xe_pm_read_callback_task(xe) == current)) |
| return -ELOOP; |
| |
| pm_runtime_lockdep_prime(); |
| return pm_runtime_get_sync(xe->drm.dev); |
| } |
| |
| /** |
| * xe_pm_runtime_get_if_active - Get a runtime_pm reference if device active |
| * @xe: xe device instance |
| * |
| * Returns: Any number greater than or equal to 0 for success, negative error |
| * code otherwise. |
| */ |
| int xe_pm_runtime_get_if_active(struct xe_device *xe) |
| { |
| return pm_runtime_get_if_active(xe->drm.dev); |
| } |
| |
| /** |
| * xe_pm_runtime_get_if_in_use - Get a runtime_pm reference and resume if needed |
| * @xe: xe device instance |
| * |
| * Returns: True if device is awake and the reference was taken, false otherwise. |
| */ |
| bool xe_pm_runtime_get_if_in_use(struct xe_device *xe) |
| { |
| if (xe_pm_read_callback_task(xe) == current) { |
| /* The device is awake, grab the ref and move on */ |
| pm_runtime_get_noresume(xe->drm.dev); |
| return true; |
| } |
| |
| return pm_runtime_get_if_in_use(xe->drm.dev) > 0; |
| } |
| |
| /** |
| * xe_pm_runtime_get_noresume - Bump runtime PM usage counter without resuming |
| * @xe: xe device instance |
| * |
| * This function should be used in inner places where it is surely already |
| * protected by outer-bound callers of `xe_pm_runtime_get`. |
| * It will warn if not protected. |
| * The reference should be put back after this function regardless, since it |
| * will always bump the usage counter, regardless. |
| */ |
| void xe_pm_runtime_get_noresume(struct xe_device *xe) |
| { |
| bool ref; |
| |
| ref = xe_pm_runtime_get_if_in_use(xe); |
| |
| if (drm_WARN(&xe->drm, !ref, "Missing outer runtime PM protection\n")) |
| pm_runtime_get_noresume(xe->drm.dev); |
| } |
| |
| /** |
| * xe_pm_runtime_resume_and_get - Resume, then get a runtime_pm ref if awake. |
| * @xe: xe device instance |
| * |
| * Returns: True if device is awake and the reference was taken, false otherwise. |
| */ |
| bool xe_pm_runtime_resume_and_get(struct xe_device *xe) |
| { |
| if (xe_pm_read_callback_task(xe) == current) { |
| /* The device is awake, grab the ref and move on */ |
| pm_runtime_get_noresume(xe->drm.dev); |
| return true; |
| } |
| |
| pm_runtime_lockdep_prime(); |
| return pm_runtime_resume_and_get(xe->drm.dev) >= 0; |
| } |
| |
| /** |
| * xe_pm_assert_unbounded_bridge - Disable PM on unbounded pcie parent bridge |
| * @xe: xe device instance |
| */ |
| void xe_pm_assert_unbounded_bridge(struct xe_device *xe) |
| { |
| struct pci_dev *pdev = to_pci_dev(xe->drm.dev); |
| struct pci_dev *bridge = pci_upstream_bridge(pdev); |
| |
| if (!bridge) |
| return; |
| |
| if (!bridge->driver) { |
| drm_warn(&xe->drm, "unbounded parent pci bridge, device won't support any PM support.\n"); |
| device_set_pm_not_required(&pdev->dev); |
| } |
| } |
| |
| /** |
| * xe_pm_set_vram_threshold - Set a vram threshold for allowing/blocking D3Cold |
| * @xe: xe device instance |
| * @threshold: VRAM size in bites for the D3cold threshold |
| * |
| * Returns 0 for success, negative error code otherwise. |
| */ |
| int xe_pm_set_vram_threshold(struct xe_device *xe, u32 threshold) |
| { |
| struct ttm_resource_manager *man; |
| u32 vram_total_mb = 0; |
| int i; |
| |
| for (i = XE_PL_VRAM0; i <= XE_PL_VRAM1; ++i) { |
| man = ttm_manager_type(&xe->ttm, i); |
| if (man) |
| vram_total_mb += DIV_ROUND_UP_ULL(man->size, 1024 * 1024); |
| } |
| |
| drm_dbg(&xe->drm, "Total vram %u mb\n", vram_total_mb); |
| |
| if (threshold > vram_total_mb) |
| return -EINVAL; |
| |
| mutex_lock(&xe->d3cold.lock); |
| xe->d3cold.vram_threshold = threshold; |
| mutex_unlock(&xe->d3cold.lock); |
| |
| return 0; |
| } |
| |
| /** |
| * xe_pm_d3cold_allowed_toggle - Check conditions to toggle d3cold.allowed |
| * @xe: xe device instance |
| * |
| * To be called during runtime_pm idle callback. |
| * Check for all the D3Cold conditions ahead of runtime suspend. |
| */ |
| void xe_pm_d3cold_allowed_toggle(struct xe_device *xe) |
| { |
| struct ttm_resource_manager *man; |
| u32 total_vram_used_mb = 0; |
| u64 vram_used; |
| int i; |
| |
| if (!xe->d3cold.capable) { |
| xe->d3cold.allowed = false; |
| return; |
| } |
| |
| for (i = XE_PL_VRAM0; i <= XE_PL_VRAM1; ++i) { |
| man = ttm_manager_type(&xe->ttm, i); |
| if (man) { |
| vram_used = ttm_resource_manager_usage(man); |
| total_vram_used_mb += DIV_ROUND_UP_ULL(vram_used, 1024 * 1024); |
| } |
| } |
| |
| mutex_lock(&xe->d3cold.lock); |
| |
| if (total_vram_used_mb < xe->d3cold.vram_threshold) |
| xe->d3cold.allowed = true; |
| else |
| xe->d3cold.allowed = false; |
| |
| mutex_unlock(&xe->d3cold.lock); |
| |
| drm_dbg(&xe->drm, |
| "d3cold: allowed=%s\n", str_yes_no(xe->d3cold.allowed)); |
| } |