| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * aes-ce-cipher.c - core AES cipher using ARMv8 Crypto Extensions |
| * |
| * Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org> |
| */ |
| |
| #include <asm/neon.h> |
| #include <asm/simd.h> |
| #include <asm/unaligned.h> |
| #include <crypto/aes.h> |
| #include <crypto/algapi.h> |
| #include <crypto/internal/simd.h> |
| #include <linux/cpufeature.h> |
| #include <linux/module.h> |
| |
| #include "aes-ce-setkey.h" |
| |
| MODULE_DESCRIPTION("Synchronous AES cipher using ARMv8 Crypto Extensions"); |
| MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>"); |
| MODULE_LICENSE("GPL v2"); |
| |
| struct aes_block { |
| u8 b[AES_BLOCK_SIZE]; |
| }; |
| |
| asmlinkage void __aes_ce_encrypt(u32 *rk, u8 *out, const u8 *in, int rounds); |
| asmlinkage void __aes_ce_decrypt(u32 *rk, u8 *out, const u8 *in, int rounds); |
| |
| asmlinkage u32 __aes_ce_sub(u32 l); |
| asmlinkage void __aes_ce_invert(struct aes_block *out, |
| const struct aes_block *in); |
| |
| static int num_rounds(struct crypto_aes_ctx *ctx) |
| { |
| /* |
| * # of rounds specified by AES: |
| * 128 bit key 10 rounds |
| * 192 bit key 12 rounds |
| * 256 bit key 14 rounds |
| * => n byte key => 6 + (n/4) rounds |
| */ |
| return 6 + ctx->key_length / 4; |
| } |
| |
| static void aes_cipher_encrypt(struct crypto_tfm *tfm, u8 dst[], u8 const src[]) |
| { |
| struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm); |
| |
| if (!crypto_simd_usable()) { |
| aes_encrypt(ctx, dst, src); |
| return; |
| } |
| |
| kernel_neon_begin(); |
| __aes_ce_encrypt(ctx->key_enc, dst, src, num_rounds(ctx)); |
| kernel_neon_end(); |
| } |
| |
| static void aes_cipher_decrypt(struct crypto_tfm *tfm, u8 dst[], u8 const src[]) |
| { |
| struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm); |
| |
| if (!crypto_simd_usable()) { |
| aes_decrypt(ctx, dst, src); |
| return; |
| } |
| |
| kernel_neon_begin(); |
| __aes_ce_decrypt(ctx->key_dec, dst, src, num_rounds(ctx)); |
| kernel_neon_end(); |
| } |
| |
| int ce_aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key, |
| unsigned int key_len) |
| { |
| /* |
| * The AES key schedule round constants |
| */ |
| static u8 const rcon[] = { |
| 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, |
| }; |
| |
| u32 kwords = key_len / sizeof(u32); |
| struct aes_block *key_enc, *key_dec; |
| int i, j; |
| |
| if (key_len != AES_KEYSIZE_128 && |
| key_len != AES_KEYSIZE_192 && |
| key_len != AES_KEYSIZE_256) |
| return -EINVAL; |
| |
| ctx->key_length = key_len; |
| for (i = 0; i < kwords; i++) |
| ctx->key_enc[i] = get_unaligned_le32(in_key + i * sizeof(u32)); |
| |
| kernel_neon_begin(); |
| for (i = 0; i < sizeof(rcon); i++) { |
| u32 *rki = ctx->key_enc + (i * kwords); |
| u32 *rko = rki + kwords; |
| |
| rko[0] = ror32(__aes_ce_sub(rki[kwords - 1]), 8) ^ rcon[i] ^ rki[0]; |
| rko[1] = rko[0] ^ rki[1]; |
| rko[2] = rko[1] ^ rki[2]; |
| rko[3] = rko[2] ^ rki[3]; |
| |
| if (key_len == AES_KEYSIZE_192) { |
| if (i >= 7) |
| break; |
| rko[4] = rko[3] ^ rki[4]; |
| rko[5] = rko[4] ^ rki[5]; |
| } else if (key_len == AES_KEYSIZE_256) { |
| if (i >= 6) |
| break; |
| rko[4] = __aes_ce_sub(rko[3]) ^ rki[4]; |
| rko[5] = rko[4] ^ rki[5]; |
| rko[6] = rko[5] ^ rki[6]; |
| rko[7] = rko[6] ^ rki[7]; |
| } |
| } |
| |
| /* |
| * Generate the decryption keys for the Equivalent Inverse Cipher. |
| * This involves reversing the order of the round keys, and applying |
| * the Inverse Mix Columns transformation on all but the first and |
| * the last one. |
| */ |
| key_enc = (struct aes_block *)ctx->key_enc; |
| key_dec = (struct aes_block *)ctx->key_dec; |
| j = num_rounds(ctx); |
| |
| key_dec[0] = key_enc[j]; |
| for (i = 1, j--; j > 0; i++, j--) |
| __aes_ce_invert(key_dec + i, key_enc + j); |
| key_dec[i] = key_enc[0]; |
| |
| kernel_neon_end(); |
| return 0; |
| } |
| EXPORT_SYMBOL(ce_aes_expandkey); |
| |
| int ce_aes_setkey(struct crypto_tfm *tfm, const u8 *in_key, |
| unsigned int key_len) |
| { |
| struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm); |
| |
| return ce_aes_expandkey(ctx, in_key, key_len); |
| } |
| EXPORT_SYMBOL(ce_aes_setkey); |
| |
| static struct crypto_alg aes_alg = { |
| .cra_name = "aes", |
| .cra_driver_name = "aes-ce", |
| .cra_priority = 250, |
| .cra_flags = CRYPTO_ALG_TYPE_CIPHER, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct crypto_aes_ctx), |
| .cra_module = THIS_MODULE, |
| .cra_cipher = { |
| .cia_min_keysize = AES_MIN_KEY_SIZE, |
| .cia_max_keysize = AES_MAX_KEY_SIZE, |
| .cia_setkey = ce_aes_setkey, |
| .cia_encrypt = aes_cipher_encrypt, |
| .cia_decrypt = aes_cipher_decrypt |
| } |
| }; |
| |
| static int __init aes_mod_init(void) |
| { |
| return crypto_register_alg(&aes_alg); |
| } |
| |
| static void __exit aes_mod_exit(void) |
| { |
| crypto_unregister_alg(&aes_alg); |
| } |
| |
| module_cpu_feature_match(AES, aes_mod_init); |
| module_exit(aes_mod_exit); |