blob: 43741bed874e275d2ad343370a539663d456e17c [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* SM4 Cipher Algorithm, using ARMv8 Crypto Extensions
* as specified in
* https://tools.ietf.org/id/draft-ribose-cfrg-sm4-10.html
*
* Copyright (C) 2022, Alibaba Group.
* Copyright (C) 2022 Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
*/
#include <linux/module.h>
#include <linux/crypto.h>
#include <linux/kernel.h>
#include <linux/cpufeature.h>
#include <asm/neon.h>
#include <asm/simd.h>
#include <crypto/b128ops.h>
#include <crypto/internal/simd.h>
#include <crypto/internal/skcipher.h>
#include <crypto/internal/hash.h>
#include <crypto/scatterwalk.h>
#include <crypto/xts.h>
#include <crypto/sm4.h>
#define BYTES2BLKS(nbytes) ((nbytes) >> 4)
asmlinkage void sm4_ce_expand_key(const u8 *key, u32 *rkey_enc, u32 *rkey_dec,
const u32 *fk, const u32 *ck);
asmlinkage void sm4_ce_crypt_block(const u32 *rkey, u8 *dst, const u8 *src);
asmlinkage void sm4_ce_crypt(const u32 *rkey, u8 *dst, const u8 *src,
unsigned int nblks);
asmlinkage void sm4_ce_cbc_enc(const u32 *rkey, u8 *dst, const u8 *src,
u8 *iv, unsigned int nblocks);
asmlinkage void sm4_ce_cbc_dec(const u32 *rkey, u8 *dst, const u8 *src,
u8 *iv, unsigned int nblocks);
asmlinkage void sm4_ce_cbc_cts_enc(const u32 *rkey, u8 *dst, const u8 *src,
u8 *iv, unsigned int nbytes);
asmlinkage void sm4_ce_cbc_cts_dec(const u32 *rkey, u8 *dst, const u8 *src,
u8 *iv, unsigned int nbytes);
asmlinkage void sm4_ce_ctr_enc(const u32 *rkey, u8 *dst, const u8 *src,
u8 *iv, unsigned int nblks);
asmlinkage void sm4_ce_xts_enc(const u32 *rkey1, u8 *dst, const u8 *src,
u8 *tweak, unsigned int nbytes,
const u32 *rkey2_enc);
asmlinkage void sm4_ce_xts_dec(const u32 *rkey1, u8 *dst, const u8 *src,
u8 *tweak, unsigned int nbytes,
const u32 *rkey2_enc);
asmlinkage void sm4_ce_mac_update(const u32 *rkey_enc, u8 *digest,
const u8 *src, unsigned int nblocks,
bool enc_before, bool enc_after);
EXPORT_SYMBOL(sm4_ce_expand_key);
EXPORT_SYMBOL(sm4_ce_crypt_block);
EXPORT_SYMBOL(sm4_ce_cbc_enc);
struct sm4_xts_ctx {
struct sm4_ctx key1;
struct sm4_ctx key2;
};
struct sm4_mac_tfm_ctx {
struct sm4_ctx key;
u8 __aligned(8) consts[];
};
struct sm4_mac_desc_ctx {
unsigned int len;
u8 digest[SM4_BLOCK_SIZE];
};
static int sm4_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int key_len)
{
struct sm4_ctx *ctx = crypto_skcipher_ctx(tfm);
if (key_len != SM4_KEY_SIZE)
return -EINVAL;
kernel_neon_begin();
sm4_ce_expand_key(key, ctx->rkey_enc, ctx->rkey_dec,
crypto_sm4_fk, crypto_sm4_ck);
kernel_neon_end();
return 0;
}
static int sm4_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int key_len)
{
struct sm4_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
int ret;
if (key_len != SM4_KEY_SIZE * 2)
return -EINVAL;
ret = xts_verify_key(tfm, key, key_len);
if (ret)
return ret;
kernel_neon_begin();
sm4_ce_expand_key(key, ctx->key1.rkey_enc,
ctx->key1.rkey_dec, crypto_sm4_fk, crypto_sm4_ck);
sm4_ce_expand_key(&key[SM4_KEY_SIZE], ctx->key2.rkey_enc,
ctx->key2.rkey_dec, crypto_sm4_fk, crypto_sm4_ck);
kernel_neon_end();
return 0;
}
static int sm4_ecb_do_crypt(struct skcipher_request *req, const u32 *rkey)
{
struct skcipher_walk walk;
unsigned int nbytes;
int err;
err = skcipher_walk_virt(&walk, req, false);
while ((nbytes = walk.nbytes) > 0) {
const u8 *src = walk.src.virt.addr;
u8 *dst = walk.dst.virt.addr;
unsigned int nblks;
kernel_neon_begin();
nblks = BYTES2BLKS(nbytes);
if (nblks) {
sm4_ce_crypt(rkey, dst, src, nblks);
nbytes -= nblks * SM4_BLOCK_SIZE;
}
kernel_neon_end();
err = skcipher_walk_done(&walk, nbytes);
}
return err;
}
static int sm4_ecb_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct sm4_ctx *ctx = crypto_skcipher_ctx(tfm);
return sm4_ecb_do_crypt(req, ctx->rkey_enc);
}
static int sm4_ecb_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct sm4_ctx *ctx = crypto_skcipher_ctx(tfm);
return sm4_ecb_do_crypt(req, ctx->rkey_dec);
}
static int sm4_cbc_crypt(struct skcipher_request *req,
struct sm4_ctx *ctx, bool encrypt)
{
struct skcipher_walk walk;
unsigned int nbytes;
int err;
err = skcipher_walk_virt(&walk, req, false);
if (err)
return err;
while ((nbytes = walk.nbytes) > 0) {
const u8 *src = walk.src.virt.addr;
u8 *dst = walk.dst.virt.addr;
unsigned int nblocks;
nblocks = nbytes / SM4_BLOCK_SIZE;
if (nblocks) {
kernel_neon_begin();
if (encrypt)
sm4_ce_cbc_enc(ctx->rkey_enc, dst, src,
walk.iv, nblocks);
else
sm4_ce_cbc_dec(ctx->rkey_dec, dst, src,
walk.iv, nblocks);
kernel_neon_end();
}
err = skcipher_walk_done(&walk, nbytes % SM4_BLOCK_SIZE);
}
return err;
}
static int sm4_cbc_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct sm4_ctx *ctx = crypto_skcipher_ctx(tfm);
return sm4_cbc_crypt(req, ctx, true);
}
static int sm4_cbc_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct sm4_ctx *ctx = crypto_skcipher_ctx(tfm);
return sm4_cbc_crypt(req, ctx, false);
}
static int sm4_cbc_cts_crypt(struct skcipher_request *req, bool encrypt)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct sm4_ctx *ctx = crypto_skcipher_ctx(tfm);
struct scatterlist *src = req->src;
struct scatterlist *dst = req->dst;
struct scatterlist sg_src[2], sg_dst[2];
struct skcipher_request subreq;
struct skcipher_walk walk;
int cbc_blocks;
int err;
if (req->cryptlen < SM4_BLOCK_SIZE)
return -EINVAL;
if (req->cryptlen == SM4_BLOCK_SIZE)
return sm4_cbc_crypt(req, ctx, encrypt);
skcipher_request_set_tfm(&subreq, tfm);
skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
NULL, NULL);
/* handle the CBC cryption part */
cbc_blocks = DIV_ROUND_UP(req->cryptlen, SM4_BLOCK_SIZE) - 2;
if (cbc_blocks) {
skcipher_request_set_crypt(&subreq, src, dst,
cbc_blocks * SM4_BLOCK_SIZE,
req->iv);
err = sm4_cbc_crypt(&subreq, ctx, encrypt);
if (err)
return err;
dst = src = scatterwalk_ffwd(sg_src, src, subreq.cryptlen);
if (req->dst != req->src)
dst = scatterwalk_ffwd(sg_dst, req->dst,
subreq.cryptlen);
}
/* handle ciphertext stealing */
skcipher_request_set_crypt(&subreq, src, dst,
req->cryptlen - cbc_blocks * SM4_BLOCK_SIZE,
req->iv);
err = skcipher_walk_virt(&walk, &subreq, false);
if (err)
return err;
kernel_neon_begin();
if (encrypt)
sm4_ce_cbc_cts_enc(ctx->rkey_enc, walk.dst.virt.addr,
walk.src.virt.addr, walk.iv, walk.nbytes);
else
sm4_ce_cbc_cts_dec(ctx->rkey_dec, walk.dst.virt.addr,
walk.src.virt.addr, walk.iv, walk.nbytes);
kernel_neon_end();
return skcipher_walk_done(&walk, 0);
}
static int sm4_cbc_cts_encrypt(struct skcipher_request *req)
{
return sm4_cbc_cts_crypt(req, true);
}
static int sm4_cbc_cts_decrypt(struct skcipher_request *req)
{
return sm4_cbc_cts_crypt(req, false);
}
static int sm4_ctr_crypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct sm4_ctx *ctx = crypto_skcipher_ctx(tfm);
struct skcipher_walk walk;
unsigned int nbytes;
int err;
err = skcipher_walk_virt(&walk, req, false);
while ((nbytes = walk.nbytes) > 0) {
const u8 *src = walk.src.virt.addr;
u8 *dst = walk.dst.virt.addr;
unsigned int nblks;
kernel_neon_begin();
nblks = BYTES2BLKS(nbytes);
if (nblks) {
sm4_ce_ctr_enc(ctx->rkey_enc, dst, src, walk.iv, nblks);
dst += nblks * SM4_BLOCK_SIZE;
src += nblks * SM4_BLOCK_SIZE;
nbytes -= nblks * SM4_BLOCK_SIZE;
}
/* tail */
if (walk.nbytes == walk.total && nbytes > 0) {
u8 keystream[SM4_BLOCK_SIZE];
sm4_ce_crypt_block(ctx->rkey_enc, keystream, walk.iv);
crypto_inc(walk.iv, SM4_BLOCK_SIZE);
crypto_xor_cpy(dst, src, keystream, nbytes);
nbytes = 0;
}
kernel_neon_end();
err = skcipher_walk_done(&walk, nbytes);
}
return err;
}
static int sm4_xts_crypt(struct skcipher_request *req, bool encrypt)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct sm4_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
int tail = req->cryptlen % SM4_BLOCK_SIZE;
const u32 *rkey2_enc = ctx->key2.rkey_enc;
struct scatterlist sg_src[2], sg_dst[2];
struct skcipher_request subreq;
struct scatterlist *src, *dst;
struct skcipher_walk walk;
unsigned int nbytes;
int err;
if (req->cryptlen < SM4_BLOCK_SIZE)
return -EINVAL;
err = skcipher_walk_virt(&walk, req, false);
if (err)
return err;
if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
int nblocks = DIV_ROUND_UP(req->cryptlen, SM4_BLOCK_SIZE) - 2;
skcipher_walk_abort(&walk);
skcipher_request_set_tfm(&subreq, tfm);
skcipher_request_set_callback(&subreq,
skcipher_request_flags(req),
NULL, NULL);
skcipher_request_set_crypt(&subreq, req->src, req->dst,
nblocks * SM4_BLOCK_SIZE, req->iv);
err = skcipher_walk_virt(&walk, &subreq, false);
if (err)
return err;
} else {
tail = 0;
}
while ((nbytes = walk.nbytes) >= SM4_BLOCK_SIZE) {
if (nbytes < walk.total)
nbytes &= ~(SM4_BLOCK_SIZE - 1);
kernel_neon_begin();
if (encrypt)
sm4_ce_xts_enc(ctx->key1.rkey_enc, walk.dst.virt.addr,
walk.src.virt.addr, walk.iv, nbytes,
rkey2_enc);
else
sm4_ce_xts_dec(ctx->key1.rkey_dec, walk.dst.virt.addr,
walk.src.virt.addr, walk.iv, nbytes,
rkey2_enc);
kernel_neon_end();
rkey2_enc = NULL;
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
if (err)
return err;
}
if (likely(tail == 0))
return 0;
/* handle ciphertext stealing */
dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
if (req->dst != req->src)
dst = scatterwalk_ffwd(sg_dst, req->dst, subreq.cryptlen);
skcipher_request_set_crypt(&subreq, src, dst, SM4_BLOCK_SIZE + tail,
req->iv);
err = skcipher_walk_virt(&walk, &subreq, false);
if (err)
return err;
kernel_neon_begin();
if (encrypt)
sm4_ce_xts_enc(ctx->key1.rkey_enc, walk.dst.virt.addr,
walk.src.virt.addr, walk.iv, walk.nbytes,
rkey2_enc);
else
sm4_ce_xts_dec(ctx->key1.rkey_dec, walk.dst.virt.addr,
walk.src.virt.addr, walk.iv, walk.nbytes,
rkey2_enc);
kernel_neon_end();
return skcipher_walk_done(&walk, 0);
}
static int sm4_xts_encrypt(struct skcipher_request *req)
{
return sm4_xts_crypt(req, true);
}
static int sm4_xts_decrypt(struct skcipher_request *req)
{
return sm4_xts_crypt(req, false);
}
static struct skcipher_alg sm4_algs[] = {
{
.base = {
.cra_name = "ecb(sm4)",
.cra_driver_name = "ecb-sm4-ce",
.cra_priority = 400,
.cra_blocksize = SM4_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct sm4_ctx),
.cra_module = THIS_MODULE,
},
.min_keysize = SM4_KEY_SIZE,
.max_keysize = SM4_KEY_SIZE,
.setkey = sm4_setkey,
.encrypt = sm4_ecb_encrypt,
.decrypt = sm4_ecb_decrypt,
}, {
.base = {
.cra_name = "cbc(sm4)",
.cra_driver_name = "cbc-sm4-ce",
.cra_priority = 400,
.cra_blocksize = SM4_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct sm4_ctx),
.cra_module = THIS_MODULE,
},
.min_keysize = SM4_KEY_SIZE,
.max_keysize = SM4_KEY_SIZE,
.ivsize = SM4_BLOCK_SIZE,
.setkey = sm4_setkey,
.encrypt = sm4_cbc_encrypt,
.decrypt = sm4_cbc_decrypt,
}, {
.base = {
.cra_name = "ctr(sm4)",
.cra_driver_name = "ctr-sm4-ce",
.cra_priority = 400,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct sm4_ctx),
.cra_module = THIS_MODULE,
},
.min_keysize = SM4_KEY_SIZE,
.max_keysize = SM4_KEY_SIZE,
.ivsize = SM4_BLOCK_SIZE,
.chunksize = SM4_BLOCK_SIZE,
.setkey = sm4_setkey,
.encrypt = sm4_ctr_crypt,
.decrypt = sm4_ctr_crypt,
}, {
.base = {
.cra_name = "cts(cbc(sm4))",
.cra_driver_name = "cts-cbc-sm4-ce",
.cra_priority = 400,
.cra_blocksize = SM4_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct sm4_ctx),
.cra_module = THIS_MODULE,
},
.min_keysize = SM4_KEY_SIZE,
.max_keysize = SM4_KEY_SIZE,
.ivsize = SM4_BLOCK_SIZE,
.walksize = SM4_BLOCK_SIZE * 2,
.setkey = sm4_setkey,
.encrypt = sm4_cbc_cts_encrypt,
.decrypt = sm4_cbc_cts_decrypt,
}, {
.base = {
.cra_name = "xts(sm4)",
.cra_driver_name = "xts-sm4-ce",
.cra_priority = 400,
.cra_blocksize = SM4_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct sm4_xts_ctx),
.cra_module = THIS_MODULE,
},
.min_keysize = SM4_KEY_SIZE * 2,
.max_keysize = SM4_KEY_SIZE * 2,
.ivsize = SM4_BLOCK_SIZE,
.walksize = SM4_BLOCK_SIZE * 2,
.setkey = sm4_xts_setkey,
.encrypt = sm4_xts_encrypt,
.decrypt = sm4_xts_decrypt,
}
};
static int sm4_cbcmac_setkey(struct crypto_shash *tfm, const u8 *key,
unsigned int key_len)
{
struct sm4_mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
if (key_len != SM4_KEY_SIZE)
return -EINVAL;
kernel_neon_begin();
sm4_ce_expand_key(key, ctx->key.rkey_enc, ctx->key.rkey_dec,
crypto_sm4_fk, crypto_sm4_ck);
kernel_neon_end();
return 0;
}
static int sm4_cmac_setkey(struct crypto_shash *tfm, const u8 *key,
unsigned int key_len)
{
struct sm4_mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
be128 *consts = (be128 *)ctx->consts;
u64 a, b;
if (key_len != SM4_KEY_SIZE)
return -EINVAL;
memset(consts, 0, SM4_BLOCK_SIZE);
kernel_neon_begin();
sm4_ce_expand_key(key, ctx->key.rkey_enc, ctx->key.rkey_dec,
crypto_sm4_fk, crypto_sm4_ck);
/* encrypt the zero block */
sm4_ce_crypt_block(ctx->key.rkey_enc, (u8 *)consts, (const u8 *)consts);
kernel_neon_end();
/* gf(2^128) multiply zero-ciphertext with u and u^2 */
a = be64_to_cpu(consts[0].a);
b = be64_to_cpu(consts[0].b);
consts[0].a = cpu_to_be64((a << 1) | (b >> 63));
consts[0].b = cpu_to_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0));
a = be64_to_cpu(consts[0].a);
b = be64_to_cpu(consts[0].b);
consts[1].a = cpu_to_be64((a << 1) | (b >> 63));
consts[1].b = cpu_to_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0));
return 0;
}
static int sm4_xcbc_setkey(struct crypto_shash *tfm, const u8 *key,
unsigned int key_len)
{
struct sm4_mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
u8 __aligned(8) key2[SM4_BLOCK_SIZE];
static u8 const ks[3][SM4_BLOCK_SIZE] = {
{ [0 ... SM4_BLOCK_SIZE - 1] = 0x1},
{ [0 ... SM4_BLOCK_SIZE - 1] = 0x2},
{ [0 ... SM4_BLOCK_SIZE - 1] = 0x3},
};
if (key_len != SM4_KEY_SIZE)
return -EINVAL;
kernel_neon_begin();
sm4_ce_expand_key(key, ctx->key.rkey_enc, ctx->key.rkey_dec,
crypto_sm4_fk, crypto_sm4_ck);
sm4_ce_crypt_block(ctx->key.rkey_enc, key2, ks[0]);
sm4_ce_crypt(ctx->key.rkey_enc, ctx->consts, ks[1], 2);
sm4_ce_expand_key(key2, ctx->key.rkey_enc, ctx->key.rkey_dec,
crypto_sm4_fk, crypto_sm4_ck);
kernel_neon_end();
return 0;
}
static int sm4_mac_init(struct shash_desc *desc)
{
struct sm4_mac_desc_ctx *ctx = shash_desc_ctx(desc);
memset(ctx->digest, 0, SM4_BLOCK_SIZE);
ctx->len = 0;
return 0;
}
static int sm4_mac_update(struct shash_desc *desc, const u8 *p,
unsigned int len)
{
struct sm4_mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
struct sm4_mac_desc_ctx *ctx = shash_desc_ctx(desc);
unsigned int l, nblocks;
if (len == 0)
return 0;
if (ctx->len || ctx->len + len < SM4_BLOCK_SIZE) {
l = min(len, SM4_BLOCK_SIZE - ctx->len);
crypto_xor(ctx->digest + ctx->len, p, l);
ctx->len += l;
len -= l;
p += l;
}
if (len && (ctx->len % SM4_BLOCK_SIZE) == 0) {
kernel_neon_begin();
if (len < SM4_BLOCK_SIZE && ctx->len == SM4_BLOCK_SIZE) {
sm4_ce_crypt_block(tctx->key.rkey_enc,
ctx->digest, ctx->digest);
ctx->len = 0;
} else {
nblocks = len / SM4_BLOCK_SIZE;
len %= SM4_BLOCK_SIZE;
sm4_ce_mac_update(tctx->key.rkey_enc, ctx->digest, p,
nblocks, (ctx->len == SM4_BLOCK_SIZE),
(len != 0));
p += nblocks * SM4_BLOCK_SIZE;
if (len == 0)
ctx->len = SM4_BLOCK_SIZE;
}
kernel_neon_end();
if (len) {
crypto_xor(ctx->digest, p, len);
ctx->len = len;
}
}
return 0;
}
static int sm4_cmac_final(struct shash_desc *desc, u8 *out)
{
struct sm4_mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
struct sm4_mac_desc_ctx *ctx = shash_desc_ctx(desc);
const u8 *consts = tctx->consts;
if (ctx->len != SM4_BLOCK_SIZE) {
ctx->digest[ctx->len] ^= 0x80;
consts += SM4_BLOCK_SIZE;
}
kernel_neon_begin();
sm4_ce_mac_update(tctx->key.rkey_enc, ctx->digest, consts, 1,
false, true);
kernel_neon_end();
memcpy(out, ctx->digest, SM4_BLOCK_SIZE);
return 0;
}
static int sm4_cbcmac_final(struct shash_desc *desc, u8 *out)
{
struct sm4_mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
struct sm4_mac_desc_ctx *ctx = shash_desc_ctx(desc);
if (ctx->len) {
kernel_neon_begin();
sm4_ce_crypt_block(tctx->key.rkey_enc, ctx->digest,
ctx->digest);
kernel_neon_end();
}
memcpy(out, ctx->digest, SM4_BLOCK_SIZE);
return 0;
}
static struct shash_alg sm4_mac_algs[] = {
{
.base = {
.cra_name = "cmac(sm4)",
.cra_driver_name = "cmac-sm4-ce",
.cra_priority = 400,
.cra_blocksize = SM4_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct sm4_mac_tfm_ctx)
+ SM4_BLOCK_SIZE * 2,
.cra_module = THIS_MODULE,
},
.digestsize = SM4_BLOCK_SIZE,
.init = sm4_mac_init,
.update = sm4_mac_update,
.final = sm4_cmac_final,
.setkey = sm4_cmac_setkey,
.descsize = sizeof(struct sm4_mac_desc_ctx),
}, {
.base = {
.cra_name = "xcbc(sm4)",
.cra_driver_name = "xcbc-sm4-ce",
.cra_priority = 400,
.cra_blocksize = SM4_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct sm4_mac_tfm_ctx)
+ SM4_BLOCK_SIZE * 2,
.cra_module = THIS_MODULE,
},
.digestsize = SM4_BLOCK_SIZE,
.init = sm4_mac_init,
.update = sm4_mac_update,
.final = sm4_cmac_final,
.setkey = sm4_xcbc_setkey,
.descsize = sizeof(struct sm4_mac_desc_ctx),
}, {
.base = {
.cra_name = "cbcmac(sm4)",
.cra_driver_name = "cbcmac-sm4-ce",
.cra_priority = 400,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct sm4_mac_tfm_ctx),
.cra_module = THIS_MODULE,
},
.digestsize = SM4_BLOCK_SIZE,
.init = sm4_mac_init,
.update = sm4_mac_update,
.final = sm4_cbcmac_final,
.setkey = sm4_cbcmac_setkey,
.descsize = sizeof(struct sm4_mac_desc_ctx),
}
};
static int __init sm4_init(void)
{
int err;
err = crypto_register_skciphers(sm4_algs, ARRAY_SIZE(sm4_algs));
if (err)
return err;
err = crypto_register_shashes(sm4_mac_algs, ARRAY_SIZE(sm4_mac_algs));
if (err)
goto out_err;
return 0;
out_err:
crypto_unregister_skciphers(sm4_algs, ARRAY_SIZE(sm4_algs));
return err;
}
static void __exit sm4_exit(void)
{
crypto_unregister_shashes(sm4_mac_algs, ARRAY_SIZE(sm4_mac_algs));
crypto_unregister_skciphers(sm4_algs, ARRAY_SIZE(sm4_algs));
}
module_cpu_feature_match(SM4, sm4_init);
module_exit(sm4_exit);
MODULE_DESCRIPTION("SM4 ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
MODULE_ALIAS_CRYPTO("sm4-ce");
MODULE_ALIAS_CRYPTO("sm4");
MODULE_ALIAS_CRYPTO("ecb(sm4)");
MODULE_ALIAS_CRYPTO("cbc(sm4)");
MODULE_ALIAS_CRYPTO("ctr(sm4)");
MODULE_ALIAS_CRYPTO("cts(cbc(sm4))");
MODULE_ALIAS_CRYPTO("xts(sm4)");
MODULE_ALIAS_CRYPTO("cmac(sm4)");
MODULE_ALIAS_CRYPTO("xcbc(sm4)");
MODULE_ALIAS_CRYPTO("cbcmac(sm4)");
MODULE_AUTHOR("Tianjia Zhang <tianjia.zhang@linux.alibaba.com>");
MODULE_LICENSE("GPL v2");