| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com> |
| * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org> |
| * swiped from i386, and cloned for MIPS by Geert, polished by Ralf. |
| */ |
| #include <linux/dma-direct.h> |
| #include <linux/dma-map-ops.h> |
| #include <linux/highmem.h> |
| |
| #include <asm/cache.h> |
| #include <asm/cpu-type.h> |
| #include <asm/io.h> |
| |
| /* |
| * The affected CPUs below in 'cpu_needs_post_dma_flush()' can speculatively |
| * fill random cachelines with stale data at any time, requiring an extra |
| * flush post-DMA. |
| * |
| * Warning on the terminology - Linux calls an uncached area coherent; MIPS |
| * terminology calls memory areas with hardware maintained coherency coherent. |
| * |
| * Note that the R14000 and R16000 should also be checked for in this condition. |
| * However this function is only called on non-I/O-coherent systems and only the |
| * R10000 and R12000 are used in such systems, the SGI IP28 Indigo² rsp. |
| * SGI IP32 aka O2. |
| */ |
| static inline bool cpu_needs_post_dma_flush(void) |
| { |
| switch (boot_cpu_type()) { |
| case CPU_R10000: |
| case CPU_R12000: |
| case CPU_BMIPS5000: |
| case CPU_LOONGSON2EF: |
| case CPU_XBURST: |
| return true; |
| default: |
| /* |
| * Presence of MAARs suggests that the CPU supports |
| * speculatively prefetching data, and therefore requires |
| * the post-DMA flush/invalidate. |
| */ |
| return cpu_has_maar; |
| } |
| } |
| |
| void arch_dma_prep_coherent(struct page *page, size_t size) |
| { |
| dma_cache_wback_inv((unsigned long)page_address(page), size); |
| } |
| |
| void *arch_dma_set_uncached(void *addr, size_t size) |
| { |
| return (void *)(__pa(addr) + UNCAC_BASE); |
| } |
| |
| static inline void dma_sync_virt_for_device(void *addr, size_t size, |
| enum dma_data_direction dir) |
| { |
| switch (dir) { |
| case DMA_TO_DEVICE: |
| dma_cache_wback((unsigned long)addr, size); |
| break; |
| case DMA_FROM_DEVICE: |
| dma_cache_inv((unsigned long)addr, size); |
| break; |
| case DMA_BIDIRECTIONAL: |
| dma_cache_wback_inv((unsigned long)addr, size); |
| break; |
| default: |
| BUG(); |
| } |
| } |
| |
| static inline void dma_sync_virt_for_cpu(void *addr, size_t size, |
| enum dma_data_direction dir) |
| { |
| switch (dir) { |
| case DMA_TO_DEVICE: |
| break; |
| case DMA_FROM_DEVICE: |
| case DMA_BIDIRECTIONAL: |
| dma_cache_inv((unsigned long)addr, size); |
| break; |
| default: |
| BUG(); |
| } |
| } |
| |
| /* |
| * A single sg entry may refer to multiple physically contiguous pages. But |
| * we still need to process highmem pages individually. If highmem is not |
| * configured then the bulk of this loop gets optimized out. |
| */ |
| static inline void dma_sync_phys(phys_addr_t paddr, size_t size, |
| enum dma_data_direction dir, bool for_device) |
| { |
| struct page *page = pfn_to_page(paddr >> PAGE_SHIFT); |
| unsigned long offset = paddr & ~PAGE_MASK; |
| size_t left = size; |
| |
| do { |
| size_t len = left; |
| void *addr; |
| |
| if (PageHighMem(page)) { |
| if (offset + len > PAGE_SIZE) |
| len = PAGE_SIZE - offset; |
| } |
| |
| addr = kmap_atomic(page); |
| if (for_device) |
| dma_sync_virt_for_device(addr + offset, len, dir); |
| else |
| dma_sync_virt_for_cpu(addr + offset, len, dir); |
| kunmap_atomic(addr); |
| |
| offset = 0; |
| page++; |
| left -= len; |
| } while (left); |
| } |
| |
| void arch_sync_dma_for_device(phys_addr_t paddr, size_t size, |
| enum dma_data_direction dir) |
| { |
| dma_sync_phys(paddr, size, dir, true); |
| } |
| |
| #ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU |
| void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size, |
| enum dma_data_direction dir) |
| { |
| if (cpu_needs_post_dma_flush()) |
| dma_sync_phys(paddr, size, dir, false); |
| } |
| #endif |
| |
| #ifdef CONFIG_ARCH_HAS_SETUP_DMA_OPS |
| void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, |
| bool coherent) |
| { |
| dev->dma_coherent = coherent; |
| } |
| #endif |