| // SPDX-License-Identifier: GPL-2.0 |
| #include <linux/types.h> |
| #include <linux/i8253.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/smp.h> |
| #include <linux/time.h> |
| #include <linux/clockchips.h> |
| |
| #include <asm/sni.h> |
| #include <asm/time.h> |
| |
| #define SNI_CLOCK_TICK_RATE 3686400 |
| #define SNI_COUNTER2_DIV 64 |
| #define SNI_COUNTER0_DIV ((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ) |
| |
| static int a20r_set_periodic(struct clock_event_device *evt) |
| { |
| *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34; |
| wmb(); |
| *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV & 0xff; |
| wmb(); |
| *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV >> 8; |
| wmb(); |
| |
| *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4; |
| wmb(); |
| *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV & 0xff; |
| wmb(); |
| *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV >> 8; |
| wmb(); |
| return 0; |
| } |
| |
| static struct clock_event_device a20r_clockevent_device = { |
| .name = "a20r-timer", |
| .features = CLOCK_EVT_FEAT_PERIODIC, |
| |
| /* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */ |
| |
| .rating = 300, |
| .irq = SNI_A20R_IRQ_TIMER, |
| .set_state_periodic = a20r_set_periodic, |
| }; |
| |
| static irqreturn_t a20r_interrupt(int irq, void *dev_id) |
| { |
| struct clock_event_device *cd = dev_id; |
| |
| *(volatile u8 *)A20R_PT_TIM0_ACK = 0; |
| wmb(); |
| |
| cd->event_handler(cd); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * a20r platform uses 2 counters to divide the input frequency. |
| * Counter 2 output is connected to Counter 0 & 1 input. |
| */ |
| static void __init sni_a20r_timer_setup(void) |
| { |
| struct clock_event_device *cd = &a20r_clockevent_device; |
| unsigned int cpu = smp_processor_id(); |
| |
| cd->cpumask = cpumask_of(cpu); |
| clockevents_register_device(cd); |
| if (request_irq(SNI_A20R_IRQ_TIMER, a20r_interrupt, |
| IRQF_PERCPU | IRQF_TIMER, "a20r-timer", cd)) |
| pr_err("Failed to register a20r-timer interrupt\n"); |
| } |
| |
| #define SNI_8254_TICK_RATE 1193182UL |
| |
| #define SNI_8254_TCSAMP_COUNTER ((SNI_8254_TICK_RATE / HZ) + 255) |
| |
| static __init unsigned long dosample(void) |
| { |
| u32 ct0, ct1; |
| volatile u8 msb; |
| |
| /* Start the counter. */ |
| outb_p(0x34, 0x43); |
| outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40); |
| outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40); |
| |
| /* Get initial counter invariant */ |
| ct0 = read_c0_count(); |
| |
| /* Latch and spin until top byte of counter0 is zero */ |
| do { |
| outb(0x00, 0x43); |
| (void) inb(0x40); |
| msb = inb(0x40); |
| ct1 = read_c0_count(); |
| } while (msb); |
| |
| /* Stop the counter. */ |
| outb(0x38, 0x43); |
| /* |
| * Return the difference, this is how far the r4k counter increments |
| * for every 1/HZ seconds. We round off the nearest 1 MHz of master |
| * clock (= 1000000 / HZ / 2). |
| */ |
| /*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/ |
| return (ct1 - ct0) / (500000/HZ) * (500000/HZ); |
| } |
| |
| /* |
| * Here we need to calibrate the cycle counter to at least be close. |
| */ |
| void __init plat_time_init(void) |
| { |
| unsigned long r4k_ticks[3]; |
| unsigned long r4k_tick; |
| |
| /* |
| * Figure out the r4k offset, the algorithm is very simple and works in |
| * _all_ cases as long as the 8254 counter register itself works ok (as |
| * an interrupt driving timer it does not because of bug, this is why |
| * we are using the onchip r4k counter/compare register to serve this |
| * purpose, but for r4k_offset calculation it will work ok for us). |
| * There are other very complicated ways of performing this calculation |
| * but this one works just fine so I am not going to futz around. ;-) |
| */ |
| printk(KERN_INFO "Calibrating system timer... "); |
| dosample(); /* Prime cache. */ |
| dosample(); /* Prime cache. */ |
| /* Zero is NOT an option. */ |
| do { |
| r4k_ticks[0] = dosample(); |
| } while (!r4k_ticks[0]); |
| do { |
| r4k_ticks[1] = dosample(); |
| } while (!r4k_ticks[1]); |
| |
| if (r4k_ticks[0] != r4k_ticks[1]) { |
| printk("warning: timer counts differ, retrying... "); |
| r4k_ticks[2] = dosample(); |
| if (r4k_ticks[2] == r4k_ticks[0] |
| || r4k_ticks[2] == r4k_ticks[1]) |
| r4k_tick = r4k_ticks[2]; |
| else { |
| printk("disagreement, using average... "); |
| r4k_tick = (r4k_ticks[0] + r4k_ticks[1] |
| + r4k_ticks[2]) / 3; |
| } |
| } else |
| r4k_tick = r4k_ticks[0]; |
| |
| printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick, |
| (int) (r4k_tick / (500000 / HZ)), |
| (int) (r4k_tick % (500000 / HZ))); |
| |
| mips_hpt_frequency = r4k_tick * HZ; |
| |
| switch (sni_brd_type) { |
| case SNI_BRD_10: |
| case SNI_BRD_10NEW: |
| case SNI_BRD_TOWER_OASIC: |
| case SNI_BRD_MINITOWER: |
| sni_a20r_timer_setup(); |
| break; |
| } |
| setup_pit_timer(); |
| } |