blob: 8ded225e8c5b1313d800c8f87878212c48c9b250 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2020 Western Digital Corporation or its affiliates.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/perf_event.h>
#include <linux/irq.h>
#include <linux/stringify.h>
#include <asm/processor.h>
#include <asm/ptrace.h>
#include <asm/csr.h>
#include <asm/entry-common.h>
#include <asm/hwprobe.h>
#include <asm/cpufeature.h>
#define INSN_MATCH_LB 0x3
#define INSN_MASK_LB 0x707f
#define INSN_MATCH_LH 0x1003
#define INSN_MASK_LH 0x707f
#define INSN_MATCH_LW 0x2003
#define INSN_MASK_LW 0x707f
#define INSN_MATCH_LD 0x3003
#define INSN_MASK_LD 0x707f
#define INSN_MATCH_LBU 0x4003
#define INSN_MASK_LBU 0x707f
#define INSN_MATCH_LHU 0x5003
#define INSN_MASK_LHU 0x707f
#define INSN_MATCH_LWU 0x6003
#define INSN_MASK_LWU 0x707f
#define INSN_MATCH_SB 0x23
#define INSN_MASK_SB 0x707f
#define INSN_MATCH_SH 0x1023
#define INSN_MASK_SH 0x707f
#define INSN_MATCH_SW 0x2023
#define INSN_MASK_SW 0x707f
#define INSN_MATCH_SD 0x3023
#define INSN_MASK_SD 0x707f
#define INSN_MATCH_FLW 0x2007
#define INSN_MASK_FLW 0x707f
#define INSN_MATCH_FLD 0x3007
#define INSN_MASK_FLD 0x707f
#define INSN_MATCH_FLQ 0x4007
#define INSN_MASK_FLQ 0x707f
#define INSN_MATCH_FSW 0x2027
#define INSN_MASK_FSW 0x707f
#define INSN_MATCH_FSD 0x3027
#define INSN_MASK_FSD 0x707f
#define INSN_MATCH_FSQ 0x4027
#define INSN_MASK_FSQ 0x707f
#define INSN_MATCH_C_LD 0x6000
#define INSN_MASK_C_LD 0xe003
#define INSN_MATCH_C_SD 0xe000
#define INSN_MASK_C_SD 0xe003
#define INSN_MATCH_C_LW 0x4000
#define INSN_MASK_C_LW 0xe003
#define INSN_MATCH_C_SW 0xc000
#define INSN_MASK_C_SW 0xe003
#define INSN_MATCH_C_LDSP 0x6002
#define INSN_MASK_C_LDSP 0xe003
#define INSN_MATCH_C_SDSP 0xe002
#define INSN_MASK_C_SDSP 0xe003
#define INSN_MATCH_C_LWSP 0x4002
#define INSN_MASK_C_LWSP 0xe003
#define INSN_MATCH_C_SWSP 0xc002
#define INSN_MASK_C_SWSP 0xe003
#define INSN_MATCH_C_FLD 0x2000
#define INSN_MASK_C_FLD 0xe003
#define INSN_MATCH_C_FLW 0x6000
#define INSN_MASK_C_FLW 0xe003
#define INSN_MATCH_C_FSD 0xa000
#define INSN_MASK_C_FSD 0xe003
#define INSN_MATCH_C_FSW 0xe000
#define INSN_MASK_C_FSW 0xe003
#define INSN_MATCH_C_FLDSP 0x2002
#define INSN_MASK_C_FLDSP 0xe003
#define INSN_MATCH_C_FSDSP 0xa002
#define INSN_MASK_C_FSDSP 0xe003
#define INSN_MATCH_C_FLWSP 0x6002
#define INSN_MASK_C_FLWSP 0xe003
#define INSN_MATCH_C_FSWSP 0xe002
#define INSN_MASK_C_FSWSP 0xe003
#define INSN_LEN(insn) ((((insn) & 0x3) < 0x3) ? 2 : 4)
#if defined(CONFIG_64BIT)
#define LOG_REGBYTES 3
#define XLEN 64
#else
#define LOG_REGBYTES 2
#define XLEN 32
#endif
#define REGBYTES (1 << LOG_REGBYTES)
#define XLEN_MINUS_16 ((XLEN) - 16)
#define SH_RD 7
#define SH_RS1 15
#define SH_RS2 20
#define SH_RS2C 2
#define RV_X(x, s, n) (((x) >> (s)) & ((1 << (n)) - 1))
#define RVC_LW_IMM(x) ((RV_X(x, 6, 1) << 2) | \
(RV_X(x, 10, 3) << 3) | \
(RV_X(x, 5, 1) << 6))
#define RVC_LD_IMM(x) ((RV_X(x, 10, 3) << 3) | \
(RV_X(x, 5, 2) << 6))
#define RVC_LWSP_IMM(x) ((RV_X(x, 4, 3) << 2) | \
(RV_X(x, 12, 1) << 5) | \
(RV_X(x, 2, 2) << 6))
#define RVC_LDSP_IMM(x) ((RV_X(x, 5, 2) << 3) | \
(RV_X(x, 12, 1) << 5) | \
(RV_X(x, 2, 3) << 6))
#define RVC_SWSP_IMM(x) ((RV_X(x, 9, 4) << 2) | \
(RV_X(x, 7, 2) << 6))
#define RVC_SDSP_IMM(x) ((RV_X(x, 10, 3) << 3) | \
(RV_X(x, 7, 3) << 6))
#define RVC_RS1S(insn) (8 + RV_X(insn, SH_RD, 3))
#define RVC_RS2S(insn) (8 + RV_X(insn, SH_RS2C, 3))
#define RVC_RS2(insn) RV_X(insn, SH_RS2C, 5)
#define SHIFT_RIGHT(x, y) \
((y) < 0 ? ((x) << -(y)) : ((x) >> (y)))
#define REG_MASK \
((1 << (5 + LOG_REGBYTES)) - (1 << LOG_REGBYTES))
#define REG_OFFSET(insn, pos) \
(SHIFT_RIGHT((insn), (pos) - LOG_REGBYTES) & REG_MASK)
#define REG_PTR(insn, pos, regs) \
(ulong *)((ulong)(regs) + REG_OFFSET(insn, pos))
#define GET_RM(insn) (((insn) >> 12) & 7)
#define GET_RS1(insn, regs) (*REG_PTR(insn, SH_RS1, regs))
#define GET_RS2(insn, regs) (*REG_PTR(insn, SH_RS2, regs))
#define GET_RS1S(insn, regs) (*REG_PTR(RVC_RS1S(insn), 0, regs))
#define GET_RS2S(insn, regs) (*REG_PTR(RVC_RS2S(insn), 0, regs))
#define GET_RS2C(insn, regs) (*REG_PTR(insn, SH_RS2C, regs))
#define GET_SP(regs) (*REG_PTR(2, 0, regs))
#define SET_RD(insn, regs, val) (*REG_PTR(insn, SH_RD, regs) = (val))
#define IMM_I(insn) ((s32)(insn) >> 20)
#define IMM_S(insn) (((s32)(insn) >> 25 << 5) | \
(s32)(((insn) >> 7) & 0x1f))
#define MASK_FUNCT3 0x7000
#define GET_PRECISION(insn) (((insn) >> 25) & 3)
#define GET_RM(insn) (((insn) >> 12) & 7)
#define PRECISION_S 0
#define PRECISION_D 1
#ifdef CONFIG_FPU
#define FP_GET_RD(insn) (insn >> 7 & 0x1F)
extern void put_f32_reg(unsigned long fp_reg, unsigned long value);
static int set_f32_rd(unsigned long insn, struct pt_regs *regs,
unsigned long val)
{
unsigned long fp_reg = FP_GET_RD(insn);
put_f32_reg(fp_reg, val);
regs->status |= SR_FS_DIRTY;
return 0;
}
extern void put_f64_reg(unsigned long fp_reg, unsigned long value);
static int set_f64_rd(unsigned long insn, struct pt_regs *regs, u64 val)
{
unsigned long fp_reg = FP_GET_RD(insn);
unsigned long value;
#if __riscv_xlen == 32
value = (unsigned long) &val;
#else
value = val;
#endif
put_f64_reg(fp_reg, value);
regs->status |= SR_FS_DIRTY;
return 0;
}
#if __riscv_xlen == 32
extern void get_f64_reg(unsigned long fp_reg, u64 *value);
static u64 get_f64_rs(unsigned long insn, u8 fp_reg_offset,
struct pt_regs *regs)
{
unsigned long fp_reg = (insn >> fp_reg_offset) & 0x1F;
u64 val;
get_f64_reg(fp_reg, &val);
regs->status |= SR_FS_DIRTY;
return val;
}
#else
extern unsigned long get_f64_reg(unsigned long fp_reg);
static unsigned long get_f64_rs(unsigned long insn, u8 fp_reg_offset,
struct pt_regs *regs)
{
unsigned long fp_reg = (insn >> fp_reg_offset) & 0x1F;
unsigned long val;
val = get_f64_reg(fp_reg);
regs->status |= SR_FS_DIRTY;
return val;
}
#endif
extern unsigned long get_f32_reg(unsigned long fp_reg);
static unsigned long get_f32_rs(unsigned long insn, u8 fp_reg_offset,
struct pt_regs *regs)
{
unsigned long fp_reg = (insn >> fp_reg_offset) & 0x1F;
unsigned long val;
val = get_f32_reg(fp_reg);
regs->status |= SR_FS_DIRTY;
return val;
}
#else /* CONFIG_FPU */
static void set_f32_rd(unsigned long insn, struct pt_regs *regs,
unsigned long val) {}
static void set_f64_rd(unsigned long insn, struct pt_regs *regs, u64 val) {}
static unsigned long get_f64_rs(unsigned long insn, u8 fp_reg_offset,
struct pt_regs *regs)
{
return 0;
}
static unsigned long get_f32_rs(unsigned long insn, u8 fp_reg_offset,
struct pt_regs *regs)
{
return 0;
}
#endif
#define GET_F64_RS2(insn, regs) (get_f64_rs(insn, 20, regs))
#define GET_F64_RS2C(insn, regs) (get_f64_rs(insn, 2, regs))
#define GET_F64_RS2S(insn, regs) (get_f64_rs(RVC_RS2S(insn), 0, regs))
#define GET_F32_RS2(insn, regs) (get_f32_rs(insn, 20, regs))
#define GET_F32_RS2C(insn, regs) (get_f32_rs(insn, 2, regs))
#define GET_F32_RS2S(insn, regs) (get_f32_rs(RVC_RS2S(insn), 0, regs))
#ifdef CONFIG_RISCV_M_MODE
static inline int load_u8(struct pt_regs *regs, const u8 *addr, u8 *r_val)
{
u8 val;
asm volatile("lbu %0, %1" : "=&r" (val) : "m" (*addr));
*r_val = val;
return 0;
}
static inline int store_u8(struct pt_regs *regs, u8 *addr, u8 val)
{
asm volatile ("sb %0, %1\n" : : "r" (val), "m" (*addr));
return 0;
}
static inline int get_insn(struct pt_regs *regs, ulong mepc, ulong *r_insn)
{
register ulong __mepc asm ("a2") = mepc;
ulong val, rvc_mask = 3, tmp;
asm ("and %[tmp], %[addr], 2\n"
"bnez %[tmp], 1f\n"
#if defined(CONFIG_64BIT)
__stringify(LWU) " %[insn], (%[addr])\n"
#else
__stringify(LW) " %[insn], (%[addr])\n"
#endif
"and %[tmp], %[insn], %[rvc_mask]\n"
"beq %[tmp], %[rvc_mask], 2f\n"
"sll %[insn], %[insn], %[xlen_minus_16]\n"
"srl %[insn], %[insn], %[xlen_minus_16]\n"
"j 2f\n"
"1:\n"
"lhu %[insn], (%[addr])\n"
"and %[tmp], %[insn], %[rvc_mask]\n"
"bne %[tmp], %[rvc_mask], 2f\n"
"lhu %[tmp], 2(%[addr])\n"
"sll %[tmp], %[tmp], 16\n"
"add %[insn], %[insn], %[tmp]\n"
"2:"
: [insn] "=&r" (val), [tmp] "=&r" (tmp)
: [addr] "r" (__mepc), [rvc_mask] "r" (rvc_mask),
[xlen_minus_16] "i" (XLEN_MINUS_16));
*r_insn = val;
return 0;
}
#else
static inline int load_u8(struct pt_regs *regs, const u8 *addr, u8 *r_val)
{
if (user_mode(regs)) {
return __get_user(*r_val, (u8 __user *)addr);
} else {
*r_val = *addr;
return 0;
}
}
static inline int store_u8(struct pt_regs *regs, u8 *addr, u8 val)
{
if (user_mode(regs)) {
return __put_user(val, (u8 __user *)addr);
} else {
*addr = val;
return 0;
}
}
#define __read_insn(regs, insn, insn_addr) \
({ \
int __ret; \
\
if (user_mode(regs)) { \
__ret = __get_user(insn, insn_addr); \
} else { \
insn = *(__force u16 *)insn_addr; \
__ret = 0; \
} \
\
__ret; \
})
static inline int get_insn(struct pt_regs *regs, ulong epc, ulong *r_insn)
{
ulong insn = 0;
if (epc & 0x2) {
ulong tmp = 0;
u16 __user *insn_addr = (u16 __user *)epc;
if (__read_insn(regs, insn, insn_addr))
return -EFAULT;
/* __get_user() uses regular "lw" which sign extend the loaded
* value make sure to clear higher order bits in case we "or" it
* below with the upper 16 bits half.
*/
insn &= GENMASK(15, 0);
if ((insn & __INSN_LENGTH_MASK) != __INSN_LENGTH_32) {
*r_insn = insn;
return 0;
}
insn_addr++;
if (__read_insn(regs, tmp, insn_addr))
return -EFAULT;
*r_insn = (tmp << 16) | insn;
return 0;
} else {
u32 __user *insn_addr = (u32 __user *)epc;
if (__read_insn(regs, insn, insn_addr))
return -EFAULT;
if ((insn & __INSN_LENGTH_MASK) == __INSN_LENGTH_32) {
*r_insn = insn;
return 0;
}
insn &= GENMASK(15, 0);
*r_insn = insn;
return 0;
}
}
#endif
union reg_data {
u8 data_bytes[8];
ulong data_ulong;
u64 data_u64;
};
static bool unaligned_ctl __read_mostly;
/* sysctl hooks */
int unaligned_enabled __read_mostly = 1; /* Enabled by default */
int handle_misaligned_load(struct pt_regs *regs)
{
union reg_data val;
unsigned long epc = regs->epc;
unsigned long insn;
unsigned long addr = regs->badaddr;
int i, fp = 0, shift = 0, len = 0;
perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr);
*this_cpu_ptr(&misaligned_access_speed) = RISCV_HWPROBE_MISALIGNED_EMULATED;
if (!unaligned_enabled)
return -1;
if (user_mode(regs) && (current->thread.align_ctl & PR_UNALIGN_SIGBUS))
return -1;
if (get_insn(regs, epc, &insn))
return -1;
regs->epc = 0;
if ((insn & INSN_MASK_LW) == INSN_MATCH_LW) {
len = 4;
shift = 8 * (sizeof(unsigned long) - len);
#if defined(CONFIG_64BIT)
} else if ((insn & INSN_MASK_LD) == INSN_MATCH_LD) {
len = 8;
shift = 8 * (sizeof(unsigned long) - len);
} else if ((insn & INSN_MASK_LWU) == INSN_MATCH_LWU) {
len = 4;
#endif
} else if ((insn & INSN_MASK_FLD) == INSN_MATCH_FLD) {
fp = 1;
len = 8;
} else if ((insn & INSN_MASK_FLW) == INSN_MATCH_FLW) {
fp = 1;
len = 4;
} else if ((insn & INSN_MASK_LH) == INSN_MATCH_LH) {
len = 2;
shift = 8 * (sizeof(unsigned long) - len);
} else if ((insn & INSN_MASK_LHU) == INSN_MATCH_LHU) {
len = 2;
#if defined(CONFIG_64BIT)
} else if ((insn & INSN_MASK_C_LD) == INSN_MATCH_C_LD) {
len = 8;
shift = 8 * (sizeof(unsigned long) - len);
insn = RVC_RS2S(insn) << SH_RD;
} else if ((insn & INSN_MASK_C_LDSP) == INSN_MATCH_C_LDSP &&
((insn >> SH_RD) & 0x1f)) {
len = 8;
shift = 8 * (sizeof(unsigned long) - len);
#endif
} else if ((insn & INSN_MASK_C_LW) == INSN_MATCH_C_LW) {
len = 4;
shift = 8 * (sizeof(unsigned long) - len);
insn = RVC_RS2S(insn) << SH_RD;
} else if ((insn & INSN_MASK_C_LWSP) == INSN_MATCH_C_LWSP &&
((insn >> SH_RD) & 0x1f)) {
len = 4;
shift = 8 * (sizeof(unsigned long) - len);
} else if ((insn & INSN_MASK_C_FLD) == INSN_MATCH_C_FLD) {
fp = 1;
len = 8;
insn = RVC_RS2S(insn) << SH_RD;
} else if ((insn & INSN_MASK_C_FLDSP) == INSN_MATCH_C_FLDSP) {
fp = 1;
len = 8;
#if defined(CONFIG_32BIT)
} else if ((insn & INSN_MASK_C_FLW) == INSN_MATCH_C_FLW) {
fp = 1;
len = 4;
insn = RVC_RS2S(insn) << SH_RD;
} else if ((insn & INSN_MASK_C_FLWSP) == INSN_MATCH_C_FLWSP) {
fp = 1;
len = 4;
#endif
} else {
regs->epc = epc;
return -1;
}
if (!IS_ENABLED(CONFIG_FPU) && fp)
return -EOPNOTSUPP;
val.data_u64 = 0;
for (i = 0; i < len; i++) {
if (load_u8(regs, (void *)(addr + i), &val.data_bytes[i]))
return -1;
}
if (!fp)
SET_RD(insn, regs, val.data_ulong << shift >> shift);
else if (len == 8)
set_f64_rd(insn, regs, val.data_u64);
else
set_f32_rd(insn, regs, val.data_ulong);
regs->epc = epc + INSN_LEN(insn);
return 0;
}
int handle_misaligned_store(struct pt_regs *regs)
{
union reg_data val;
unsigned long epc = regs->epc;
unsigned long insn;
unsigned long addr = regs->badaddr;
int i, len = 0, fp = 0;
perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr);
if (!unaligned_enabled)
return -1;
if (user_mode(regs) && (current->thread.align_ctl & PR_UNALIGN_SIGBUS))
return -1;
if (get_insn(regs, epc, &insn))
return -1;
regs->epc = 0;
val.data_ulong = GET_RS2(insn, regs);
if ((insn & INSN_MASK_SW) == INSN_MATCH_SW) {
len = 4;
#if defined(CONFIG_64BIT)
} else if ((insn & INSN_MASK_SD) == INSN_MATCH_SD) {
len = 8;
#endif
} else if ((insn & INSN_MASK_FSD) == INSN_MATCH_FSD) {
fp = 1;
len = 8;
val.data_u64 = GET_F64_RS2(insn, regs);
} else if ((insn & INSN_MASK_FSW) == INSN_MATCH_FSW) {
fp = 1;
len = 4;
val.data_ulong = GET_F32_RS2(insn, regs);
} else if ((insn & INSN_MASK_SH) == INSN_MATCH_SH) {
len = 2;
#if defined(CONFIG_64BIT)
} else if ((insn & INSN_MASK_C_SD) == INSN_MATCH_C_SD) {
len = 8;
val.data_ulong = GET_RS2S(insn, regs);
} else if ((insn & INSN_MASK_C_SDSP) == INSN_MATCH_C_SDSP) {
len = 8;
val.data_ulong = GET_RS2C(insn, regs);
#endif
} else if ((insn & INSN_MASK_C_SW) == INSN_MATCH_C_SW) {
len = 4;
val.data_ulong = GET_RS2S(insn, regs);
} else if ((insn & INSN_MASK_C_SWSP) == INSN_MATCH_C_SWSP) {
len = 4;
val.data_ulong = GET_RS2C(insn, regs);
} else if ((insn & INSN_MASK_C_FSD) == INSN_MATCH_C_FSD) {
fp = 1;
len = 8;
val.data_u64 = GET_F64_RS2S(insn, regs);
} else if ((insn & INSN_MASK_C_FSDSP) == INSN_MATCH_C_FSDSP) {
fp = 1;
len = 8;
val.data_u64 = GET_F64_RS2C(insn, regs);
#if !defined(CONFIG_64BIT)
} else if ((insn & INSN_MASK_C_FSW) == INSN_MATCH_C_FSW) {
fp = 1;
len = 4;
val.data_ulong = GET_F32_RS2S(insn, regs);
} else if ((insn & INSN_MASK_C_FSWSP) == INSN_MATCH_C_FSWSP) {
fp = 1;
len = 4;
val.data_ulong = GET_F32_RS2C(insn, regs);
#endif
} else {
regs->epc = epc;
return -1;
}
if (!IS_ENABLED(CONFIG_FPU) && fp)
return -EOPNOTSUPP;
for (i = 0; i < len; i++) {
if (store_u8(regs, (void *)(addr + i), val.data_bytes[i]))
return -1;
}
regs->epc = epc + INSN_LEN(insn);
return 0;
}
bool check_unaligned_access_emulated(int cpu)
{
long *mas_ptr = per_cpu_ptr(&misaligned_access_speed, cpu);
unsigned long tmp_var, tmp_val;
bool misaligned_emu_detected;
*mas_ptr = RISCV_HWPROBE_MISALIGNED_UNKNOWN;
__asm__ __volatile__ (
" "REG_L" %[tmp], 1(%[ptr])\n"
: [tmp] "=r" (tmp_val) : [ptr] "r" (&tmp_var) : "memory");
misaligned_emu_detected = (*mas_ptr == RISCV_HWPROBE_MISALIGNED_EMULATED);
/*
* If unaligned_ctl is already set, this means that we detected that all
* CPUS uses emulated misaligned access at boot time. If that changed
* when hotplugging the new cpu, this is something we don't handle.
*/
if (unlikely(unaligned_ctl && !misaligned_emu_detected)) {
pr_crit("CPU misaligned accesses non homogeneous (expected all emulated)\n");
while (true)
cpu_relax();
}
return misaligned_emu_detected;
}
void unaligned_emulation_finish(void)
{
int cpu;
/*
* We can only support PR_UNALIGN controls if all CPUs have misaligned
* accesses emulated since tasks requesting such control can run on any
* CPU.
*/
for_each_present_cpu(cpu) {
if (per_cpu(misaligned_access_speed, cpu) !=
RISCV_HWPROBE_MISALIGNED_EMULATED) {
return;
}
}
unaligned_ctl = true;
}
bool unaligned_ctl_available(void)
{
return unaligned_ctl;
}