| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Checksum library |
| * |
| * Influenced by arch/arm64/lib/csum.c |
| * Copyright (C) 2023 Rivos Inc. |
| */ |
| #include <linux/bitops.h> |
| #include <linux/compiler.h> |
| #include <linux/jump_label.h> |
| #include <linux/kasan-checks.h> |
| #include <linux/kernel.h> |
| |
| #include <asm/cpufeature.h> |
| |
| #include <net/checksum.h> |
| |
| /* Default version is sufficient for 32 bit */ |
| #ifndef CONFIG_32BIT |
| __sum16 csum_ipv6_magic(const struct in6_addr *saddr, |
| const struct in6_addr *daddr, |
| __u32 len, __u8 proto, __wsum csum) |
| { |
| unsigned int ulen, uproto; |
| unsigned long sum = (__force unsigned long)csum; |
| |
| sum += (__force unsigned long)saddr->s6_addr32[0]; |
| sum += (__force unsigned long)saddr->s6_addr32[1]; |
| sum += (__force unsigned long)saddr->s6_addr32[2]; |
| sum += (__force unsigned long)saddr->s6_addr32[3]; |
| |
| sum += (__force unsigned long)daddr->s6_addr32[0]; |
| sum += (__force unsigned long)daddr->s6_addr32[1]; |
| sum += (__force unsigned long)daddr->s6_addr32[2]; |
| sum += (__force unsigned long)daddr->s6_addr32[3]; |
| |
| ulen = (__force unsigned int)htonl((unsigned int)len); |
| sum += ulen; |
| |
| uproto = (__force unsigned int)htonl(proto); |
| sum += uproto; |
| |
| /* |
| * Zbb support saves 4 instructions, so not worth checking without |
| * alternatives if supported |
| */ |
| if (IS_ENABLED(CONFIG_RISCV_ISA_ZBB) && |
| IS_ENABLED(CONFIG_RISCV_ALTERNATIVE)) { |
| unsigned long fold_temp; |
| |
| /* |
| * Zbb is likely available when the kernel is compiled with Zbb |
| * support, so nop when Zbb is available and jump when Zbb is |
| * not available. |
| */ |
| asm goto(ALTERNATIVE("j %l[no_zbb]", "nop", 0, |
| RISCV_ISA_EXT_ZBB, 1) |
| : |
| : |
| : |
| : no_zbb); |
| asm(".option push \n\ |
| .option arch,+zbb \n\ |
| rori %[fold_temp], %[sum], 32 \n\ |
| add %[sum], %[fold_temp], %[sum] \n\ |
| srli %[sum], %[sum], 32 \n\ |
| not %[fold_temp], %[sum] \n\ |
| roriw %[sum], %[sum], 16 \n\ |
| subw %[sum], %[fold_temp], %[sum] \n\ |
| .option pop" |
| : [sum] "+r" (sum), [fold_temp] "=&r" (fold_temp)); |
| return (__force __sum16)(sum >> 16); |
| } |
| no_zbb: |
| sum += ror64(sum, 32); |
| sum >>= 32; |
| return csum_fold((__force __wsum)sum); |
| } |
| EXPORT_SYMBOL(csum_ipv6_magic); |
| #endif /* !CONFIG_32BIT */ |
| |
| #ifdef CONFIG_32BIT |
| #define OFFSET_MASK 3 |
| #elif CONFIG_64BIT |
| #define OFFSET_MASK 7 |
| #endif |
| |
| static inline __no_sanitize_address unsigned long |
| do_csum_common(const unsigned long *ptr, const unsigned long *end, |
| unsigned long data) |
| { |
| unsigned int shift; |
| unsigned long csum = 0, carry = 0; |
| |
| /* |
| * Do 32-bit reads on RV32 and 64-bit reads otherwise. This should be |
| * faster than doing 32-bit reads on architectures that support larger |
| * reads. |
| */ |
| while (ptr < end) { |
| csum += data; |
| carry += csum < data; |
| data = *(ptr++); |
| } |
| |
| /* |
| * Perform alignment (and over-read) bytes on the tail if any bytes |
| * leftover. |
| */ |
| shift = ((long)ptr - (long)end) * 8; |
| #ifdef __LITTLE_ENDIAN |
| data = (data << shift) >> shift; |
| #else |
| data = (data >> shift) << shift; |
| #endif |
| csum += data; |
| carry += csum < data; |
| csum += carry; |
| csum += csum < carry; |
| |
| return csum; |
| } |
| |
| /* |
| * Algorithm accounts for buff being misaligned. |
| * If buff is not aligned, will over-read bytes but not use the bytes that it |
| * shouldn't. The same thing will occur on the tail-end of the read. |
| */ |
| static inline __no_sanitize_address unsigned int |
| do_csum_with_alignment(const unsigned char *buff, int len) |
| { |
| unsigned int offset, shift; |
| unsigned long csum, data; |
| const unsigned long *ptr, *end; |
| |
| /* |
| * Align address to closest word (double word on rv64) that comes before |
| * buff. This should always be in the same page and cache line. |
| * Directly call KASAN with the alignment we will be using. |
| */ |
| offset = (unsigned long)buff & OFFSET_MASK; |
| kasan_check_read(buff, len); |
| ptr = (const unsigned long *)(buff - offset); |
| |
| /* |
| * Clear the most significant bytes that were over-read if buff was not |
| * aligned. |
| */ |
| shift = offset * 8; |
| data = *(ptr++); |
| #ifdef __LITTLE_ENDIAN |
| data = (data >> shift) << shift; |
| #else |
| data = (data << shift) >> shift; |
| #endif |
| end = (const unsigned long *)(buff + len); |
| csum = do_csum_common(ptr, end, data); |
| |
| #ifdef CC_HAS_ASM_GOTO_TIED_OUTPUT |
| /* |
| * Zbb support saves 6 instructions, so not worth checking without |
| * alternatives if supported |
| */ |
| if (IS_ENABLED(CONFIG_RISCV_ISA_ZBB) && |
| IS_ENABLED(CONFIG_RISCV_ALTERNATIVE)) { |
| unsigned long fold_temp; |
| |
| /* |
| * Zbb is likely available when the kernel is compiled with Zbb |
| * support, so nop when Zbb is available and jump when Zbb is |
| * not available. |
| */ |
| asm goto(ALTERNATIVE("j %l[no_zbb]", "nop", 0, |
| RISCV_ISA_EXT_ZBB, 1) |
| : |
| : |
| : |
| : no_zbb); |
| |
| #ifdef CONFIG_32BIT |
| asm_goto_output(".option push \n\ |
| .option arch,+zbb \n\ |
| rori %[fold_temp], %[csum], 16 \n\ |
| andi %[offset], %[offset], 1 \n\ |
| add %[csum], %[fold_temp], %[csum] \n\ |
| beq %[offset], zero, %l[end] \n\ |
| rev8 %[csum], %[csum] \n\ |
| .option pop" |
| : [csum] "+r" (csum), [fold_temp] "=&r" (fold_temp) |
| : [offset] "r" (offset) |
| : |
| : end); |
| |
| return (unsigned short)csum; |
| #else /* !CONFIG_32BIT */ |
| asm_goto_output(".option push \n\ |
| .option arch,+zbb \n\ |
| rori %[fold_temp], %[csum], 32 \n\ |
| add %[csum], %[fold_temp], %[csum] \n\ |
| srli %[csum], %[csum], 32 \n\ |
| roriw %[fold_temp], %[csum], 16 \n\ |
| addw %[csum], %[fold_temp], %[csum] \n\ |
| andi %[offset], %[offset], 1 \n\ |
| beq %[offset], zero, %l[end] \n\ |
| rev8 %[csum], %[csum] \n\ |
| .option pop" |
| : [csum] "+r" (csum), [fold_temp] "=&r" (fold_temp) |
| : [offset] "r" (offset) |
| : |
| : end); |
| |
| return (csum << 16) >> 48; |
| #endif /* !CONFIG_32BIT */ |
| end: |
| return csum >> 16; |
| } |
| no_zbb: |
| #endif /* CC_HAS_ASM_GOTO_TIED_OUTPUT */ |
| #ifndef CONFIG_32BIT |
| csum += ror64(csum, 32); |
| csum >>= 32; |
| #endif |
| csum = (u32)csum + ror32((u32)csum, 16); |
| if (offset & 1) |
| return (u16)swab32(csum); |
| return csum >> 16; |
| } |
| |
| /* |
| * Does not perform alignment, should only be used if machine has fast |
| * misaligned accesses, or when buff is known to be aligned. |
| */ |
| static inline __no_sanitize_address unsigned int |
| do_csum_no_alignment(const unsigned char *buff, int len) |
| { |
| unsigned long csum, data; |
| const unsigned long *ptr, *end; |
| |
| ptr = (const unsigned long *)(buff); |
| data = *(ptr++); |
| |
| kasan_check_read(buff, len); |
| |
| end = (const unsigned long *)(buff + len); |
| csum = do_csum_common(ptr, end, data); |
| |
| /* |
| * Zbb support saves 6 instructions, so not worth checking without |
| * alternatives if supported |
| */ |
| if (IS_ENABLED(CONFIG_RISCV_ISA_ZBB) && |
| IS_ENABLED(CONFIG_RISCV_ALTERNATIVE)) { |
| unsigned long fold_temp; |
| |
| /* |
| * Zbb is likely available when the kernel is compiled with Zbb |
| * support, so nop when Zbb is available and jump when Zbb is |
| * not available. |
| */ |
| asm goto(ALTERNATIVE("j %l[no_zbb]", "nop", 0, |
| RISCV_ISA_EXT_ZBB, 1) |
| : |
| : |
| : |
| : no_zbb); |
| |
| #ifdef CONFIG_32BIT |
| asm (".option push \n\ |
| .option arch,+zbb \n\ |
| rori %[fold_temp], %[csum], 16 \n\ |
| add %[csum], %[fold_temp], %[csum] \n\ |
| .option pop" |
| : [csum] "+r" (csum), [fold_temp] "=&r" (fold_temp) |
| : |
| : ); |
| |
| #else /* !CONFIG_32BIT */ |
| asm (".option push \n\ |
| .option arch,+zbb \n\ |
| rori %[fold_temp], %[csum], 32 \n\ |
| add %[csum], %[fold_temp], %[csum] \n\ |
| srli %[csum], %[csum], 32 \n\ |
| roriw %[fold_temp], %[csum], 16 \n\ |
| addw %[csum], %[fold_temp], %[csum] \n\ |
| .option pop" |
| : [csum] "+r" (csum), [fold_temp] "=&r" (fold_temp) |
| : |
| : ); |
| #endif /* !CONFIG_32BIT */ |
| return csum >> 16; |
| } |
| no_zbb: |
| #ifndef CONFIG_32BIT |
| csum += ror64(csum, 32); |
| csum >>= 32; |
| #endif |
| csum = (u32)csum + ror32((u32)csum, 16); |
| return csum >> 16; |
| } |
| |
| /* |
| * Perform a checksum on an arbitrary memory address. |
| * Will do a light-weight address alignment if buff is misaligned, unless |
| * cpu supports fast misaligned accesses. |
| */ |
| unsigned int do_csum(const unsigned char *buff, int len) |
| { |
| if (unlikely(len <= 0)) |
| return 0; |
| |
| /* |
| * Significant performance gains can be seen by not doing alignment |
| * on machines with fast misaligned accesses. |
| * |
| * There is some duplicate code between the "with_alignment" and |
| * "no_alignment" implmentations, but the overlap is too awkward to be |
| * able to fit in one function without introducing multiple static |
| * branches. The largest chunk of overlap was delegated into the |
| * do_csum_common function. |
| */ |
| if (static_branch_likely(&fast_misaligned_access_speed_key)) |
| return do_csum_no_alignment(buff, len); |
| |
| if (((unsigned long)buff & OFFSET_MASK) == 0) |
| return do_csum_no_alignment(buff, len); |
| |
| return do_csum_with_alignment(buff, len); |
| } |