| // SPDX-License-Identifier: GPL-2.0-or-later |
| /****************************************************************************** |
| * |
| * (C)Copyright 1998,1999 SysKonnect, |
| * a business unit of Schneider & Koch & Co. Datensysteme GmbH. |
| * |
| * See the file "skfddi.c" for further information. |
| * |
| * The information in this file is provided "AS IS" without warranty. |
| * |
| ******************************************************************************/ |
| |
| /* |
| * FORMAC+ Driver for tag mode |
| */ |
| |
| #include "h/types.h" |
| #include "h/fddi.h" |
| #include "h/smc.h" |
| #include "h/supern_2.h" |
| #include <linux/bitrev.h> |
| #include <linux/etherdevice.h> |
| |
| #ifndef UNUSED |
| #ifdef lint |
| #define UNUSED(x) (x) = (x) |
| #else |
| #define UNUSED(x) |
| #endif |
| #endif |
| |
| #define FM_ADDRX (FM_ADDET|FM_EXGPA0|FM_EXGPA1) |
| #define MS2BCLK(x) ((x)*12500L) |
| #define US2BCLK(x) ((x)*1250L) |
| |
| /* |
| * prototypes for static function |
| */ |
| static void build_claim_beacon(struct s_smc *smc, u_long t_request); |
| static int init_mac(struct s_smc *smc, int all); |
| static void rtm_init(struct s_smc *smc); |
| static void smt_split_up_fifo(struct s_smc *smc); |
| |
| #if (!defined(NO_SMT_PANIC) || defined(DEBUG)) |
| static char write_mdr_warning [] = "E350 write_mdr() FM_SNPPND is set\n"; |
| static char cam_warning [] = "E_SMT_004: CAM still busy\n"; |
| #endif |
| |
| #define DUMMY_READ() smc->hw.mc_dummy = (u_short) inp(ADDR(B0_RAP)) |
| |
| #define CHECK_NPP() { unsigned int k = 10000 ;\ |
| while ((inpw(FM_A(FM_STMCHN)) & FM_SNPPND) && k) k--;\ |
| if (!k) { \ |
| SMT_PANIC(smc,SMT_E0130, SMT_E0130_MSG) ; \ |
| } \ |
| } |
| |
| #define CHECK_CAM() { unsigned int k = 10 ;\ |
| while (!(inpw(FM_A(FM_AFSTAT)) & FM_DONE) && k) k--;\ |
| if (!k) { \ |
| SMT_PANIC(smc,SMT_E0131, SMT_E0131_MSG) ; \ |
| } \ |
| } |
| |
| const struct fddi_addr fddi_broadcast = {{0xff,0xff,0xff,0xff,0xff,0xff}}; |
| static const struct fddi_addr null_addr = {{0,0,0,0,0,0}}; |
| static const struct fddi_addr dbeacon_multi = {{0x01,0x80,0xc2,0x00,0x01,0x00}}; |
| |
| static const u_short my_said = 0xffff ; /* short address (n.u.) */ |
| static const u_short my_sagp = 0xffff ; /* short group address (n.u.) */ |
| |
| /* |
| * define my address |
| */ |
| #ifdef USE_CAN_ADDR |
| #define MA smc->hw.fddi_canon_addr |
| #else |
| #define MA smc->hw.fddi_home_addr |
| #endif |
| |
| |
| /* |
| * useful interrupt bits |
| */ |
| static const int mac_imsk1u = FM_STXABRS | FM_STXABRA0 | FM_SXMTABT ; |
| static const int mac_imsk1l = FM_SQLCKS | FM_SQLCKA0 | FM_SPCEPDS | FM_SPCEPDA0| |
| FM_STBURS | FM_STBURA0 ; |
| |
| /* delete FM_SRBFL after tests */ |
| static const int mac_imsk2u = FM_SERRSF | FM_SNFSLD | FM_SRCVOVR | FM_SRBFL | |
| FM_SMYCLM ; |
| static const int mac_imsk2l = FM_STRTEXR | FM_SDUPCLM | FM_SFRMCTR | |
| FM_SERRCTR | FM_SLSTCTR | |
| FM_STRTEXP | FM_SMULTDA | FM_SRNGOP ; |
| |
| static const int mac_imsk3u = FM_SRCVOVR2 | FM_SRBFL2 ; |
| static const int mac_imsk3l = FM_SRPERRQ2 | FM_SRPERRQ1 ; |
| |
| static const int mac_beacon_imsk2u = FM_SOTRBEC | FM_SMYBEC | FM_SBEC | |
| FM_SLOCLM | FM_SHICLM | FM_SMYCLM | FM_SCLM ; |
| |
| |
| static u_long mac_get_tneg(struct s_smc *smc) |
| { |
| u_long tneg ; |
| |
| tneg = (u_long)((long)inpw(FM_A(FM_TNEG))<<5) ; |
| return (u_long)((tneg + ((inpw(FM_A(FM_TMRS))>>10)&0x1f)) | |
| 0xffe00000L) ; |
| } |
| |
| void mac_update_counter(struct s_smc *smc) |
| { |
| smc->mib.m[MAC0].fddiMACFrame_Ct = |
| (smc->mib.m[MAC0].fddiMACFrame_Ct & 0xffff0000L) |
| + (u_short) inpw(FM_A(FM_FCNTR)) ; |
| smc->mib.m[MAC0].fddiMACLost_Ct = |
| (smc->mib.m[MAC0].fddiMACLost_Ct & 0xffff0000L) |
| + (u_short) inpw(FM_A(FM_LCNTR)) ; |
| smc->mib.m[MAC0].fddiMACError_Ct = |
| (smc->mib.m[MAC0].fddiMACError_Ct & 0xffff0000L) |
| + (u_short) inpw(FM_A(FM_ECNTR)) ; |
| smc->mib.m[MAC0].fddiMACT_Neg = mac_get_tneg(smc) ; |
| #ifdef SMT_REAL_TOKEN_CT |
| /* |
| * If the token counter is emulated it is updated in smt_event. |
| */ |
| TBD |
| #else |
| smt_emulate_token_ct( smc, MAC0 ); |
| #endif |
| } |
| |
| /* |
| * write long value into buffer memory over memory data register (MDR), |
| */ |
| static void write_mdr(struct s_smc *smc, u_long val) |
| { |
| CHECK_NPP() ; |
| MDRW(val) ; |
| } |
| |
| #if 0 |
| /* |
| * read long value from buffer memory over memory data register (MDR), |
| */ |
| static u_long read_mdr(struct s_smc *smc, unsigned int addr) |
| { |
| long p ; |
| CHECK_NPP() ; |
| MARR(addr) ; |
| outpw(FM_A(FM_CMDREG1),FM_IRMEMWO) ; |
| CHECK_NPP() ; /* needed for PCI to prevent from timeing violations */ |
| /* p = MDRR() ; */ /* bad read values if the workaround */ |
| /* smc->hw.mc_dummy = *((short volatile far *)(addr)))*/ |
| /* is used */ |
| p = (u_long)inpw(FM_A(FM_MDRU))<<16 ; |
| p += (u_long)inpw(FM_A(FM_MDRL)) ; |
| return p; |
| } |
| #endif |
| |
| /* |
| * clear buffer memory |
| */ |
| static void init_ram(struct s_smc *smc) |
| { |
| u_short i ; |
| |
| smc->hw.fp.fifo.rbc_ram_start = 0 ; |
| smc->hw.fp.fifo.rbc_ram_end = |
| smc->hw.fp.fifo.rbc_ram_start + RBC_MEM_SIZE ; |
| CHECK_NPP() ; |
| MARW(smc->hw.fp.fifo.rbc_ram_start) ; |
| for (i = smc->hw.fp.fifo.rbc_ram_start; |
| i < (u_short) (smc->hw.fp.fifo.rbc_ram_end-1); i++) |
| write_mdr(smc,0L) ; |
| /* Erase the last byte too */ |
| write_mdr(smc,0L) ; |
| } |
| |
| /* |
| * set receive FIFO pointer |
| */ |
| static void set_recvptr(struct s_smc *smc) |
| { |
| /* |
| * initialize the pointer for receive queue 1 |
| */ |
| outpw(FM_A(FM_RPR1),smc->hw.fp.fifo.rx1_fifo_start) ; /* RPR1 */ |
| outpw(FM_A(FM_SWPR1),smc->hw.fp.fifo.rx1_fifo_start) ; /* SWPR1 */ |
| outpw(FM_A(FM_WPR1),smc->hw.fp.fifo.rx1_fifo_start) ; /* WPR1 */ |
| outpw(FM_A(FM_EARV1),smc->hw.fp.fifo.tx_s_start-1) ; /* EARV1 */ |
| |
| /* |
| * initialize the pointer for receive queue 2 |
| */ |
| if (smc->hw.fp.fifo.rx2_fifo_size) { |
| outpw(FM_A(FM_RPR2),smc->hw.fp.fifo.rx2_fifo_start) ; |
| outpw(FM_A(FM_SWPR2),smc->hw.fp.fifo.rx2_fifo_start) ; |
| outpw(FM_A(FM_WPR2),smc->hw.fp.fifo.rx2_fifo_start) ; |
| outpw(FM_A(FM_EARV2),smc->hw.fp.fifo.rbc_ram_end-1) ; |
| } |
| else { |
| outpw(FM_A(FM_RPR2),smc->hw.fp.fifo.rbc_ram_end-1) ; |
| outpw(FM_A(FM_SWPR2),smc->hw.fp.fifo.rbc_ram_end-1) ; |
| outpw(FM_A(FM_WPR2),smc->hw.fp.fifo.rbc_ram_end-1) ; |
| outpw(FM_A(FM_EARV2),smc->hw.fp.fifo.rbc_ram_end-1) ; |
| } |
| } |
| |
| /* |
| * set transmit FIFO pointer |
| */ |
| static void set_txptr(struct s_smc *smc) |
| { |
| outpw(FM_A(FM_CMDREG2),FM_IRSTQ) ; /* reset transmit queues */ |
| |
| /* |
| * initialize the pointer for asynchronous transmit queue |
| */ |
| outpw(FM_A(FM_RPXA0),smc->hw.fp.fifo.tx_a0_start) ; /* RPXA0 */ |
| outpw(FM_A(FM_SWPXA0),smc->hw.fp.fifo.tx_a0_start) ; /* SWPXA0 */ |
| outpw(FM_A(FM_WPXA0),smc->hw.fp.fifo.tx_a0_start) ; /* WPXA0 */ |
| outpw(FM_A(FM_EAA0),smc->hw.fp.fifo.rx2_fifo_start-1) ; /* EAA0 */ |
| |
| /* |
| * initialize the pointer for synchronous transmit queue |
| */ |
| if (smc->hw.fp.fifo.tx_s_size) { |
| outpw(FM_A(FM_RPXS),smc->hw.fp.fifo.tx_s_start) ; |
| outpw(FM_A(FM_SWPXS),smc->hw.fp.fifo.tx_s_start) ; |
| outpw(FM_A(FM_WPXS),smc->hw.fp.fifo.tx_s_start) ; |
| outpw(FM_A(FM_EAS),smc->hw.fp.fifo.tx_a0_start-1) ; |
| } |
| else { |
| outpw(FM_A(FM_RPXS),smc->hw.fp.fifo.tx_a0_start-1) ; |
| outpw(FM_A(FM_SWPXS),smc->hw.fp.fifo.tx_a0_start-1) ; |
| outpw(FM_A(FM_WPXS),smc->hw.fp.fifo.tx_a0_start-1) ; |
| outpw(FM_A(FM_EAS),smc->hw.fp.fifo.tx_a0_start-1) ; |
| } |
| } |
| |
| /* |
| * init memory buffer management registers |
| */ |
| static void init_rbc(struct s_smc *smc) |
| { |
| u_short rbc_ram_addr ; |
| |
| /* |
| * set unused pointers or permanent pointers |
| */ |
| rbc_ram_addr = smc->hw.fp.fifo.rx2_fifo_start - 1 ; |
| |
| outpw(FM_A(FM_RPXA1),rbc_ram_addr) ; /* a1-send pointer */ |
| outpw(FM_A(FM_WPXA1),rbc_ram_addr) ; |
| outpw(FM_A(FM_SWPXA1),rbc_ram_addr) ; |
| outpw(FM_A(FM_EAA1),rbc_ram_addr) ; |
| |
| set_recvptr(smc) ; |
| set_txptr(smc) ; |
| } |
| |
| /* |
| * init rx pointer |
| */ |
| static void init_rx(struct s_smc *smc) |
| { |
| struct s_smt_rx_queue *queue ; |
| |
| /* |
| * init all tx data structures for receive queue 1 |
| */ |
| smc->hw.fp.rx[QUEUE_R1] = queue = &smc->hw.fp.rx_q[QUEUE_R1] ; |
| queue->rx_bmu_ctl = (HW_PTR) ADDR(B0_R1_CSR) ; |
| queue->rx_bmu_dsc = (HW_PTR) ADDR(B4_R1_DA) ; |
| |
| /* |
| * init all tx data structures for receive queue 2 |
| */ |
| smc->hw.fp.rx[QUEUE_R2] = queue = &smc->hw.fp.rx_q[QUEUE_R2] ; |
| queue->rx_bmu_ctl = (HW_PTR) ADDR(B0_R2_CSR) ; |
| queue->rx_bmu_dsc = (HW_PTR) ADDR(B4_R2_DA) ; |
| } |
| |
| /* |
| * set the TSYNC register of the FORMAC to regulate synchronous transmission |
| */ |
| void set_formac_tsync(struct s_smc *smc, long sync_bw) |
| { |
| outpw(FM_A(FM_TSYNC),(unsigned int) (((-sync_bw) >> 5) & 0xffff) ) ; |
| } |
| |
| /* |
| * init all tx data structures |
| */ |
| static void init_tx(struct s_smc *smc) |
| { |
| struct s_smt_tx_queue *queue ; |
| |
| /* |
| * init all tx data structures for the synchronous queue |
| */ |
| smc->hw.fp.tx[QUEUE_S] = queue = &smc->hw.fp.tx_q[QUEUE_S] ; |
| queue->tx_bmu_ctl = (HW_PTR) ADDR(B0_XS_CSR) ; |
| queue->tx_bmu_dsc = (HW_PTR) ADDR(B5_XS_DA) ; |
| |
| #ifdef ESS |
| set_formac_tsync(smc,smc->ess.sync_bw) ; |
| #endif |
| |
| /* |
| * init all tx data structures for the asynchronous queue 0 |
| */ |
| smc->hw.fp.tx[QUEUE_A0] = queue = &smc->hw.fp.tx_q[QUEUE_A0] ; |
| queue->tx_bmu_ctl = (HW_PTR) ADDR(B0_XA_CSR) ; |
| queue->tx_bmu_dsc = (HW_PTR) ADDR(B5_XA_DA) ; |
| |
| |
| llc_recover_tx(smc) ; |
| } |
| |
| static void mac_counter_init(struct s_smc *smc) |
| { |
| int i ; |
| u_long *ec ; |
| |
| /* |
| * clear FORMAC+ frame-, lost- and error counter |
| */ |
| outpw(FM_A(FM_FCNTR),0) ; |
| outpw(FM_A(FM_LCNTR),0) ; |
| outpw(FM_A(FM_ECNTR),0) ; |
| /* |
| * clear internal error counter structure |
| */ |
| ec = (u_long *)&smc->hw.fp.err_stats ; |
| for (i = (sizeof(struct err_st)/sizeof(long)) ; i ; i--) |
| *ec++ = 0L ; |
| smc->mib.m[MAC0].fddiMACRingOp_Ct = 0 ; |
| } |
| |
| /* |
| * set FORMAC address, and t_request |
| */ |
| static void set_formac_addr(struct s_smc *smc) |
| { |
| long t_requ = smc->mib.m[MAC0].fddiMACT_Req ; |
| |
| outpw(FM_A(FM_SAID),my_said) ; /* set short address */ |
| outpw(FM_A(FM_LAIL),(unsigned short)((smc->hw.fddi_home_addr.a[4]<<8) + |
| smc->hw.fddi_home_addr.a[5])) ; |
| outpw(FM_A(FM_LAIC),(unsigned short)((smc->hw.fddi_home_addr.a[2]<<8) + |
| smc->hw.fddi_home_addr.a[3])) ; |
| outpw(FM_A(FM_LAIM),(unsigned short)((smc->hw.fddi_home_addr.a[0]<<8) + |
| smc->hw.fddi_home_addr.a[1])) ; |
| |
| outpw(FM_A(FM_SAGP),my_sagp) ; /* set short group address */ |
| |
| outpw(FM_A(FM_LAGL),(unsigned short)((smc->hw.fp.group_addr.a[4]<<8) + |
| smc->hw.fp.group_addr.a[5])) ; |
| outpw(FM_A(FM_LAGC),(unsigned short)((smc->hw.fp.group_addr.a[2]<<8) + |
| smc->hw.fp.group_addr.a[3])) ; |
| outpw(FM_A(FM_LAGM),(unsigned short)((smc->hw.fp.group_addr.a[0]<<8) + |
| smc->hw.fp.group_addr.a[1])) ; |
| |
| /* set r_request regs. (MSW & LSW of TRT ) */ |
| outpw(FM_A(FM_TREQ1),(unsigned short)(t_requ>>16)) ; |
| outpw(FM_A(FM_TREQ0),(unsigned short)t_requ) ; |
| } |
| |
| static void set_int(char *p, int l) |
| { |
| p[0] = (char)(l >> 24) ; |
| p[1] = (char)(l >> 16) ; |
| p[2] = (char)(l >> 8) ; |
| p[3] = (char)(l >> 0) ; |
| } |
| |
| /* |
| * copy TX descriptor to buffer mem |
| * append FC field and MAC frame |
| * if more bit is set in descr |
| * append pointer to descriptor (endless loop) |
| * else |
| * append 'end of chain' pointer |
| */ |
| static void copy_tx_mac(struct s_smc *smc, u_long td, struct fddi_mac *mac, |
| unsigned int off, int len) |
| /* u_long td; transmit descriptor */ |
| /* struct fddi_mac *mac; mac frame pointer */ |
| /* unsigned int off; start address within buffer memory */ |
| /* int len ; length of the frame including the FC */ |
| { |
| int i ; |
| __le32 *p ; |
| |
| CHECK_NPP() ; |
| MARW(off) ; /* set memory address reg for writes */ |
| |
| p = (__le32 *) mac ; |
| for (i = (len + 3)/4 ; i ; i--) { |
| if (i == 1) { |
| /* last word, set the tag bit */ |
| outpw(FM_A(FM_CMDREG2),FM_ISTTB) ; |
| } |
| write_mdr(smc,le32_to_cpu(*p)) ; |
| p++ ; |
| } |
| |
| outpw(FM_A(FM_CMDREG2),FM_ISTTB) ; /* set the tag bit */ |
| write_mdr(smc,td) ; /* write over memory data reg to buffer */ |
| } |
| |
| /* |
| BEGIN_MANUAL_ENTRY(module;tests;3) |
| How to test directed beacon frames |
| ---------------------------------------------------------------- |
| |
| o Insert a break point in the function build_claim_beacon() |
| before calling copy_tx_mac() for building the claim frame. |
| o Modify the RM3_DETECT case so that the RM6_DETECT state |
| will always entered from the RM3_DETECT state (function rmt_fsm(), |
| rmt.c) |
| o Compile the driver. |
| o Set the parameter TREQ in the protocol.ini or net.cfg to a |
| small value to make sure your station will win the claim |
| process. |
| o Start the driver. |
| o When you reach the break point, modify the SA and DA address |
| of the claim frame (e.g. SA = DA = 10005affffff). |
| o When you see RM3_DETECT and RM6_DETECT, observe the direct |
| beacon frames on the UPPSLANA. |
| |
| END_MANUAL_ENTRY |
| */ |
| static void directed_beacon(struct s_smc *smc) |
| { |
| SK_LOC_DECL(__le32,a[2]) ; |
| |
| /* |
| * set UNA in frame |
| * enable FORMAC to send endless queue of directed beacon |
| * important: the UNA starts at byte 1 (not at byte 0) |
| */ |
| * (char *) a = (char) ((long)DBEACON_INFO<<24L) ; |
| a[1] = 0 ; |
| memcpy((char *)a+1, (char *) &smc->mib.m[MAC0].fddiMACUpstreamNbr, ETH_ALEN); |
| |
| CHECK_NPP() ; |
| /* set memory address reg for writes */ |
| MARW(smc->hw.fp.fifo.rbc_ram_start+DBEACON_FRAME_OFF+4) ; |
| write_mdr(smc,le32_to_cpu(a[0])) ; |
| outpw(FM_A(FM_CMDREG2),FM_ISTTB) ; /* set the tag bit */ |
| write_mdr(smc,le32_to_cpu(a[1])) ; |
| |
| outpw(FM_A(FM_SABC),smc->hw.fp.fifo.rbc_ram_start + DBEACON_FRAME_OFF) ; |
| } |
| |
| /* |
| setup claim & beacon pointer |
| NOTE : |
| special frame packets end with a pointer to their own |
| descriptor, and the MORE bit is set in the descriptor |
| */ |
| static void build_claim_beacon(struct s_smc *smc, u_long t_request) |
| { |
| u_int td ; |
| int len ; |
| struct fddi_mac_sf *mac ; |
| |
| /* |
| * build claim packet |
| */ |
| len = 17 ; |
| td = TX_DESCRIPTOR | ((((u_int)len-1)&3)<<27) ; |
| mac = &smc->hw.fp.mac_sfb ; |
| mac->mac_fc = FC_CLAIM ; |
| /* DA == SA in claim frame */ |
| mac->mac_source = mac->mac_dest = MA ; |
| /* 2's complement */ |
| set_int((char *)mac->mac_info,(int)t_request) ; |
| |
| copy_tx_mac(smc,td,(struct fddi_mac *)mac, |
| smc->hw.fp.fifo.rbc_ram_start + CLAIM_FRAME_OFF,len) ; |
| /* set CLAIM start pointer */ |
| outpw(FM_A(FM_SACL),smc->hw.fp.fifo.rbc_ram_start + CLAIM_FRAME_OFF) ; |
| |
| /* |
| * build beacon packet |
| */ |
| len = 17 ; |
| td = TX_DESCRIPTOR | ((((u_int)len-1)&3)<<27) ; |
| mac->mac_fc = FC_BEACON ; |
| mac->mac_source = MA ; |
| mac->mac_dest = null_addr ; /* DA == 0 in beacon frame */ |
| set_int((char *) mac->mac_info,((int)BEACON_INFO<<24) + 0 ) ; |
| |
| copy_tx_mac(smc,td,(struct fddi_mac *)mac, |
| smc->hw.fp.fifo.rbc_ram_start + BEACON_FRAME_OFF,len) ; |
| /* set beacon start pointer */ |
| outpw(FM_A(FM_SABC),smc->hw.fp.fifo.rbc_ram_start + BEACON_FRAME_OFF) ; |
| |
| /* |
| * build directed beacon packet |
| * contains optional UNA |
| */ |
| len = 23 ; |
| td = TX_DESCRIPTOR | ((((u_int)len-1)&3)<<27) ; |
| mac->mac_fc = FC_BEACON ; |
| mac->mac_source = MA ; |
| mac->mac_dest = dbeacon_multi ; /* multicast */ |
| set_int((char *) mac->mac_info,((int)DBEACON_INFO<<24) + 0 ) ; |
| set_int((char *) mac->mac_info+4,0) ; |
| set_int((char *) mac->mac_info+8,0) ; |
| |
| copy_tx_mac(smc,td,(struct fddi_mac *)mac, |
| smc->hw.fp.fifo.rbc_ram_start + DBEACON_FRAME_OFF,len) ; |
| |
| /* end of claim/beacon queue */ |
| outpw(FM_A(FM_EACB),smc->hw.fp.fifo.rx1_fifo_start-1) ; |
| |
| outpw(FM_A(FM_WPXSF),0) ; |
| outpw(FM_A(FM_RPXSF),0) ; |
| } |
| |
| static void formac_rcv_restart(struct s_smc *smc) |
| { |
| /* enable receive function */ |
| SETMASK(FM_A(FM_MDREG1),smc->hw.fp.rx_mode,FM_ADDRX) ; |
| |
| outpw(FM_A(FM_CMDREG1),FM_ICLLR) ; /* clear receive lock */ |
| } |
| |
| void formac_tx_restart(struct s_smc *smc) |
| { |
| outpw(FM_A(FM_CMDREG1),FM_ICLLS) ; /* clear s-frame lock */ |
| outpw(FM_A(FM_CMDREG1),FM_ICLLA0) ; /* clear a-frame lock */ |
| } |
| |
| static void enable_formac(struct s_smc *smc) |
| { |
| /* set formac IMSK : 0 enables irq */ |
| outpw(FM_A(FM_IMSK1U),(unsigned short)~mac_imsk1u); |
| outpw(FM_A(FM_IMSK1L),(unsigned short)~mac_imsk1l); |
| outpw(FM_A(FM_IMSK2U),(unsigned short)~mac_imsk2u); |
| outpw(FM_A(FM_IMSK2L),(unsigned short)~mac_imsk2l); |
| outpw(FM_A(FM_IMSK3U),(unsigned short)~mac_imsk3u); |
| outpw(FM_A(FM_IMSK3L),(unsigned short)~mac_imsk3l); |
| } |
| |
| #if 0 /* Removed because the driver should use the ASICs TX complete IRQ. */ |
| /* The FORMACs tx complete IRQ should be used any longer */ |
| |
| /* |
| BEGIN_MANUAL_ENTRY(if,func;others;4) |
| |
| void enable_tx_irq(smc, queue) |
| struct s_smc *smc ; |
| u_short queue ; |
| |
| Function DOWNCALL (SMT, fplustm.c) |
| enable_tx_irq() enables the FORMACs transmit complete |
| interrupt of the queue. |
| |
| Para queue = QUEUE_S: synchronous queue |
| = QUEUE_A0: asynchronous queue |
| |
| Note After any ring operational change the transmit complete |
| interrupts are disabled. |
| The operating system dependent module must enable |
| the transmit complete interrupt of a queue, |
| - when it queues the first frame, |
| because of no transmit resources are beeing |
| available and |
| - when it escapes from the function llc_restart_tx |
| while some frames are still queued. |
| |
| END_MANUAL_ENTRY |
| */ |
| void enable_tx_irq(struct s_smc *smc, u_short queue) |
| /* u_short queue; 0 = synchronous queue, 1 = asynchronous queue 0 */ |
| { |
| u_short imask ; |
| |
| imask = ~(inpw(FM_A(FM_IMSK1U))) ; |
| |
| if (queue == 0) { |
| outpw(FM_A(FM_IMSK1U),~(imask|FM_STEFRMS)) ; |
| } |
| if (queue == 1) { |
| outpw(FM_A(FM_IMSK1U),~(imask|FM_STEFRMA0)) ; |
| } |
| } |
| |
| /* |
| BEGIN_MANUAL_ENTRY(if,func;others;4) |
| |
| void disable_tx_irq(smc, queue) |
| struct s_smc *smc ; |
| u_short queue ; |
| |
| Function DOWNCALL (SMT, fplustm.c) |
| disable_tx_irq disables the FORMACs transmit complete |
| interrupt of the queue |
| |
| Para queue = QUEUE_S: synchronous queue |
| = QUEUE_A0: asynchronous queue |
| |
| Note The operating system dependent module should disable |
| the transmit complete interrupts if it escapes from the |
| function llc_restart_tx and no frames are queued. |
| |
| END_MANUAL_ENTRY |
| */ |
| void disable_tx_irq(struct s_smc *smc, u_short queue) |
| /* u_short queue; 0 = synchronous queue, 1 = asynchronous queue 0 */ |
| { |
| u_short imask ; |
| |
| imask = ~(inpw(FM_A(FM_IMSK1U))) ; |
| |
| if (queue == 0) { |
| outpw(FM_A(FM_IMSK1U),~(imask&~FM_STEFRMS)) ; |
| } |
| if (queue == 1) { |
| outpw(FM_A(FM_IMSK1U),~(imask&~FM_STEFRMA0)) ; |
| } |
| } |
| #endif |
| |
| static void disable_formac(struct s_smc *smc) |
| { |
| /* clear formac IMSK : 1 disables irq */ |
| outpw(FM_A(FM_IMSK1U),MW) ; |
| outpw(FM_A(FM_IMSK1L),MW) ; |
| outpw(FM_A(FM_IMSK2U),MW) ; |
| outpw(FM_A(FM_IMSK2L),MW) ; |
| outpw(FM_A(FM_IMSK3U),MW) ; |
| outpw(FM_A(FM_IMSK3L),MW) ; |
| } |
| |
| |
| static void mac_ring_up(struct s_smc *smc, int up) |
| { |
| if (up) { |
| formac_rcv_restart(smc) ; /* enable receive function */ |
| smc->hw.mac_ring_is_up = TRUE ; |
| llc_restart_tx(smc) ; /* TX queue */ |
| } |
| else { |
| /* disable receive function */ |
| SETMASK(FM_A(FM_MDREG1),FM_MDISRCV,FM_ADDET) ; |
| |
| /* abort current transmit activity */ |
| outpw(FM_A(FM_CMDREG2),FM_IACTR) ; |
| |
| smc->hw.mac_ring_is_up = FALSE ; |
| } |
| } |
| |
| /*--------------------------- ISR handling ----------------------------------*/ |
| /* |
| * mac1_irq is in drvfbi.c |
| */ |
| |
| /* |
| * mac2_irq: status bits for the receive queue 1, and ring status |
| * ring status indication bits |
| */ |
| void mac2_irq(struct s_smc *smc, u_short code_s2u, u_short code_s2l) |
| { |
| u_short change_s2l ; |
| u_short change_s2u ; |
| |
| /* (jd) 22-Feb-1999 |
| * Restart 2_DMax Timer after end of claiming or beaconing |
| */ |
| if (code_s2u & (FM_SCLM|FM_SHICLM|FM_SBEC|FM_SOTRBEC)) { |
| queue_event(smc,EVENT_RMT,RM_TX_STATE_CHANGE) ; |
| } |
| else if (code_s2l & (FM_STKISS)) { |
| queue_event(smc,EVENT_RMT,RM_TX_STATE_CHANGE) ; |
| } |
| |
| /* |
| * XOR current st bits with the last to avoid useless RMT event queuing |
| */ |
| change_s2l = smc->hw.fp.s2l ^ code_s2l ; |
| change_s2u = smc->hw.fp.s2u ^ code_s2u ; |
| |
| if ((change_s2l & FM_SRNGOP) || |
| (!smc->hw.mac_ring_is_up && ((code_s2l & FM_SRNGOP)))) { |
| if (code_s2l & FM_SRNGOP) { |
| mac_ring_up(smc,1) ; |
| queue_event(smc,EVENT_RMT,RM_RING_OP) ; |
| smc->mib.m[MAC0].fddiMACRingOp_Ct++ ; |
| } |
| else { |
| mac_ring_up(smc,0) ; |
| queue_event(smc,EVENT_RMT,RM_RING_NON_OP) ; |
| } |
| goto mac2_end ; |
| } |
| if (code_s2l & FM_SMISFRM) { /* missed frame */ |
| smc->mib.m[MAC0].fddiMACNotCopied_Ct++ ; |
| } |
| if (code_s2u & (FM_SRCVOVR | /* recv. FIFO overflow */ |
| FM_SRBFL)) { /* recv. buffer full */ |
| smc->hw.mac_ct.mac_r_restart_counter++ ; |
| /* formac_rcv_restart(smc) ; */ |
| smt_stat_counter(smc,1) ; |
| /* goto mac2_end ; */ |
| } |
| if (code_s2u & FM_SOTRBEC) |
| queue_event(smc,EVENT_RMT,RM_OTHER_BEACON) ; |
| if (code_s2u & FM_SMYBEC) |
| queue_event(smc,EVENT_RMT,RM_MY_BEACON) ; |
| if (change_s2u & code_s2u & FM_SLOCLM) { |
| DB_RMTN(2, "RMT : lower claim received"); |
| } |
| if ((code_s2u & FM_SMYCLM) && !(code_s2l & FM_SDUPCLM)) { |
| /* |
| * This is my claim and that claim is not detected as a |
| * duplicate one. |
| */ |
| queue_event(smc,EVENT_RMT,RM_MY_CLAIM) ; |
| } |
| if (code_s2l & FM_SDUPCLM) { |
| /* |
| * If a duplicate claim frame (same SA but T_Bid != T_Req) |
| * this flag will be set. |
| * In the RMT state machine we need a RM_VALID_CLAIM event |
| * to do the appropriate state change. |
| * RM(34c) |
| */ |
| queue_event(smc,EVENT_RMT,RM_VALID_CLAIM) ; |
| } |
| if (change_s2u & code_s2u & FM_SHICLM) { |
| DB_RMTN(2, "RMT : higher claim received"); |
| } |
| if ( (code_s2l & FM_STRTEXP) || |
| (code_s2l & FM_STRTEXR) ) |
| queue_event(smc,EVENT_RMT,RM_TRT_EXP) ; |
| if (code_s2l & FM_SMULTDA) { |
| /* |
| * The MAC has found a 2. MAC with the same address. |
| * Signal dup_addr_test = failed to RMT state machine. |
| * RM(25) |
| */ |
| smc->r.dup_addr_test = DA_FAILED ; |
| queue_event(smc,EVENT_RMT,RM_DUP_ADDR) ; |
| } |
| if (code_s2u & FM_SBEC) |
| smc->hw.fp.err_stats.err_bec_stat++ ; |
| if (code_s2u & FM_SCLM) |
| smc->hw.fp.err_stats.err_clm_stat++ ; |
| if (code_s2l & FM_STVXEXP) |
| smc->mib.m[MAC0].fddiMACTvxExpired_Ct++ ; |
| if ((code_s2u & (FM_SBEC|FM_SCLM))) { |
| if (!(change_s2l & FM_SRNGOP) && (smc->hw.fp.s2l & FM_SRNGOP)) { |
| mac_ring_up(smc,0) ; |
| queue_event(smc,EVENT_RMT,RM_RING_NON_OP) ; |
| |
| mac_ring_up(smc,1) ; |
| queue_event(smc,EVENT_RMT,RM_RING_OP) ; |
| smc->mib.m[MAC0].fddiMACRingOp_Ct++ ; |
| } |
| } |
| if (code_s2l & FM_SPHINV) |
| smc->hw.fp.err_stats.err_phinv++ ; |
| if (code_s2l & FM_SSIFG) |
| smc->hw.fp.err_stats.err_sifg_det++ ; |
| if (code_s2l & FM_STKISS) |
| smc->hw.fp.err_stats.err_tkiss++ ; |
| if (code_s2l & FM_STKERR) |
| smc->hw.fp.err_stats.err_tkerr++ ; |
| if (code_s2l & FM_SFRMCTR) |
| smc->mib.m[MAC0].fddiMACFrame_Ct += 0x10000L ; |
| if (code_s2l & FM_SERRCTR) |
| smc->mib.m[MAC0].fddiMACError_Ct += 0x10000L ; |
| if (code_s2l & FM_SLSTCTR) |
| smc->mib.m[MAC0].fddiMACLost_Ct += 0x10000L ; |
| if (code_s2u & FM_SERRSF) { |
| SMT_PANIC(smc,SMT_E0114, SMT_E0114_MSG) ; |
| } |
| mac2_end: |
| /* notice old status */ |
| smc->hw.fp.s2l = code_s2l ; |
| smc->hw.fp.s2u = code_s2u ; |
| outpw(FM_A(FM_IMSK2U),~mac_imsk2u) ; |
| } |
| |
| /* |
| * mac3_irq: receive queue 2 bits and address detection bits |
| */ |
| void mac3_irq(struct s_smc *smc, u_short code_s3u, u_short code_s3l) |
| { |
| UNUSED(code_s3l) ; |
| |
| if (code_s3u & (FM_SRCVOVR2 | /* recv. FIFO overflow */ |
| FM_SRBFL2)) { /* recv. buffer full */ |
| smc->hw.mac_ct.mac_r_restart_counter++ ; |
| smt_stat_counter(smc,1); |
| } |
| |
| |
| if (code_s3u & FM_SRPERRQ2) { /* parity error receive queue 2 */ |
| SMT_PANIC(smc,SMT_E0115, SMT_E0115_MSG) ; |
| } |
| if (code_s3u & FM_SRPERRQ1) { /* parity error receive queue 2 */ |
| SMT_PANIC(smc,SMT_E0116, SMT_E0116_MSG) ; |
| } |
| } |
| |
| |
| /* |
| * take formac offline |
| */ |
| static void formac_offline(struct s_smc *smc) |
| { |
| outpw(FM_A(FM_CMDREG2),FM_IACTR) ;/* abort current transmit activity */ |
| |
| /* disable receive function */ |
| SETMASK(FM_A(FM_MDREG1),FM_MDISRCV,FM_ADDET) ; |
| |
| /* FORMAC+ 'Initialize Mode' */ |
| SETMASK(FM_A(FM_MDREG1),FM_MINIT,FM_MMODE) ; |
| |
| disable_formac(smc) ; |
| smc->hw.mac_ring_is_up = FALSE ; |
| smc->hw.hw_state = STOPPED ; |
| } |
| |
| /* |
| * bring formac online |
| */ |
| static void formac_online(struct s_smc *smc) |
| { |
| enable_formac(smc) ; |
| SETMASK(FM_A(FM_MDREG1),FM_MONLINE | FM_SELRA | MDR1INIT | |
| smc->hw.fp.rx_mode, FM_MMODE | FM_SELRA | FM_ADDRX) ; |
| } |
| |
| /* |
| * FORMAC+ full init. (tx, rx, timer, counter, claim & beacon) |
| */ |
| int init_fplus(struct s_smc *smc) |
| { |
| smc->hw.fp.nsa_mode = FM_MRNNSAFNMA ; |
| smc->hw.fp.rx_mode = FM_MDAMA ; |
| smc->hw.fp.group_addr = fddi_broadcast ; |
| smc->hw.fp.func_addr = 0 ; |
| smc->hw.fp.frselreg_init = 0 ; |
| |
| init_driver_fplus(smc) ; |
| if (smc->s.sas == SMT_DAS) |
| smc->hw.fp.mdr3init |= FM_MENDAS ; |
| |
| smc->hw.mac_ct.mac_nobuf_counter = 0 ; |
| smc->hw.mac_ct.mac_r_restart_counter = 0 ; |
| |
| smc->hw.fp.fm_st1u = (HW_PTR) ADDR(B0_ST1U) ; |
| smc->hw.fp.fm_st1l = (HW_PTR) ADDR(B0_ST1L) ; |
| smc->hw.fp.fm_st2u = (HW_PTR) ADDR(B0_ST2U) ; |
| smc->hw.fp.fm_st2l = (HW_PTR) ADDR(B0_ST2L) ; |
| smc->hw.fp.fm_st3u = (HW_PTR) ADDR(B0_ST3U) ; |
| smc->hw.fp.fm_st3l = (HW_PTR) ADDR(B0_ST3L) ; |
| |
| smc->hw.fp.s2l = smc->hw.fp.s2u = 0 ; |
| smc->hw.mac_ring_is_up = 0 ; |
| |
| mac_counter_init(smc) ; |
| |
| /* convert BCKL units to symbol time */ |
| smc->hw.mac_pa.t_neg = (u_long)0 ; |
| smc->hw.mac_pa.t_pri = (u_long)0 ; |
| |
| /* make sure all PCI settings are correct */ |
| mac_do_pci_fix(smc) ; |
| |
| return init_mac(smc, 1); |
| /* enable_formac(smc) ; */ |
| } |
| |
| static int init_mac(struct s_smc *smc, int all) |
| { |
| u_short t_max,x ; |
| u_long time=0 ; |
| |
| /* |
| * clear memory |
| */ |
| outpw(FM_A(FM_MDREG1),FM_MINIT) ; /* FORMAC+ init mode */ |
| set_formac_addr(smc) ; |
| outpw(FM_A(FM_MDREG1),FM_MMEMACT) ; /* FORMAC+ memory activ mode */ |
| /* Note: Mode register 2 is set here, incase parity is enabled. */ |
| outpw(FM_A(FM_MDREG2),smc->hw.fp.mdr2init) ; |
| |
| if (all) { |
| init_ram(smc) ; |
| } |
| else { |
| /* |
| * reset the HPI, the Master and the BMUs |
| */ |
| outp(ADDR(B0_CTRL), CTRL_HPI_SET) ; |
| time = hwt_quick_read(smc) ; |
| } |
| |
| /* |
| * set all pointers, frames etc |
| */ |
| smt_split_up_fifo(smc) ; |
| |
| init_tx(smc) ; |
| init_rx(smc) ; |
| init_rbc(smc) ; |
| |
| build_claim_beacon(smc,smc->mib.m[MAC0].fddiMACT_Req) ; |
| |
| /* set RX threshold */ |
| /* see Errata #SN2 Phantom receive overflow */ |
| outpw(FM_A(FM_FRMTHR),14<<12) ; /* switch on */ |
| |
| /* set formac work mode */ |
| outpw(FM_A(FM_MDREG1),MDR1INIT | FM_SELRA | smc->hw.fp.rx_mode) ; |
| outpw(FM_A(FM_MDREG2),smc->hw.fp.mdr2init) ; |
| outpw(FM_A(FM_MDREG3),smc->hw.fp.mdr3init) ; |
| outpw(FM_A(FM_FRSELREG),smc->hw.fp.frselreg_init) ; |
| |
| /* set timer */ |
| /* |
| * errata #22 fplus: |
| * T_MAX must not be FFFE |
| * or one of FFDF, FFB8, FF91 (-0x27 etc..) |
| */ |
| t_max = (u_short)(smc->mib.m[MAC0].fddiMACT_Max/32) ; |
| x = t_max/0x27 ; |
| x *= 0x27 ; |
| if ((t_max == 0xfffe) || (t_max - x == 0x16)) |
| t_max-- ; |
| outpw(FM_A(FM_TMAX),(u_short)t_max) ; |
| |
| /* BugFix for report #10204 */ |
| if (smc->mib.m[MAC0].fddiMACTvxValue < (u_long) (- US2BCLK(52))) { |
| outpw(FM_A(FM_TVX), (u_short) (- US2BCLK(52))/255 & MB) ; |
| } else { |
| outpw(FM_A(FM_TVX), |
| (u_short)((smc->mib.m[MAC0].fddiMACTvxValue/255) & MB)) ; |
| } |
| |
| outpw(FM_A(FM_CMDREG1),FM_ICLLS) ; /* clear s-frame lock */ |
| outpw(FM_A(FM_CMDREG1),FM_ICLLA0) ; /* clear a-frame lock */ |
| outpw(FM_A(FM_CMDREG1),FM_ICLLR); /* clear receive lock */ |
| |
| /* Auto unlock receice threshold for receive queue 1 and 2 */ |
| outpw(FM_A(FM_UNLCKDLY),(0xff|(0xff<<8))) ; |
| |
| rtm_init(smc) ; /* RT-Monitor */ |
| |
| if (!all) { |
| /* |
| * after 10ms, reset the BMUs and repair the rings |
| */ |
| hwt_wait_time(smc,time,MS2BCLK(10)) ; |
| outpd(ADDR(B0_R1_CSR),CSR_SET_RESET) ; |
| outpd(ADDR(B0_XA_CSR),CSR_SET_RESET) ; |
| outpd(ADDR(B0_XS_CSR),CSR_SET_RESET) ; |
| outp(ADDR(B0_CTRL), CTRL_HPI_CLR) ; |
| outpd(ADDR(B0_R1_CSR),CSR_CLR_RESET) ; |
| outpd(ADDR(B0_XA_CSR),CSR_CLR_RESET) ; |
| outpd(ADDR(B0_XS_CSR),CSR_CLR_RESET) ; |
| if (!smc->hw.hw_is_64bit) { |
| outpd(ADDR(B4_R1_F), RX_WATERMARK) ; |
| outpd(ADDR(B5_XA_F), TX_WATERMARK) ; |
| outpd(ADDR(B5_XS_F), TX_WATERMARK) ; |
| } |
| smc->hw.hw_state = STOPPED ; |
| mac_drv_repair_descr(smc) ; |
| } |
| smc->hw.hw_state = STARTED ; |
| |
| return 0; |
| } |
| |
| |
| /* |
| * called by CFM |
| */ |
| void config_mux(struct s_smc *smc, int mux) |
| { |
| plc_config_mux(smc,mux) ; |
| |
| SETMASK(FM_A(FM_MDREG1),FM_SELRA,FM_SELRA) ; |
| } |
| |
| /* |
| * called by RMT |
| * enable CLAIM/BEACON interrupts |
| * (only called if these events are of interest, e.g. in DETECT state |
| * the interrupt must not be permanently enabled |
| * RMT calls this function periodically (timer driven polling) |
| */ |
| void sm_mac_check_beacon_claim(struct s_smc *smc) |
| { |
| /* set formac IMSK : 0 enables irq */ |
| outpw(FM_A(FM_IMSK2U),~(mac_imsk2u | mac_beacon_imsk2u)) ; |
| /* the driver must receive the directed beacons */ |
| formac_rcv_restart(smc) ; |
| process_receive(smc) ; |
| } |
| |
| /*-------------------------- interface functions ----------------------------*/ |
| /* |
| * control MAC layer (called by RMT) |
| */ |
| void sm_ma_control(struct s_smc *smc, int mode) |
| { |
| switch(mode) { |
| case MA_OFFLINE : |
| /* Add to make the MAC offline in RM0_ISOLATED state */ |
| formac_offline(smc) ; |
| break ; |
| case MA_RESET : |
| (void)init_mac(smc,0) ; |
| break ; |
| case MA_BEACON : |
| formac_online(smc) ; |
| break ; |
| case MA_DIRECTED : |
| directed_beacon(smc) ; |
| break ; |
| case MA_TREQ : |
| /* |
| * no actions necessary, TREQ is already set |
| */ |
| break ; |
| } |
| } |
| |
| int sm_mac_get_tx_state(struct s_smc *smc) |
| { |
| return (inpw(FM_A(FM_STMCHN))>>4) & 7; |
| } |
| |
| /* |
| * multicast functions |
| */ |
| |
| static struct s_fpmc* mac_get_mc_table(struct s_smc *smc, |
| struct fddi_addr *user, |
| struct fddi_addr *own, |
| int del, int can) |
| { |
| struct s_fpmc *tb ; |
| struct s_fpmc *slot ; |
| u_char *p ; |
| int i ; |
| |
| /* |
| * set own = can(user) |
| */ |
| *own = *user ; |
| if (can) { |
| p = own->a ; |
| for (i = 0 ; i < 6 ; i++, p++) |
| *p = bitrev8(*p); |
| } |
| slot = NULL; |
| for (i = 0, tb = smc->hw.fp.mc.table ; i < FPMAX_MULTICAST ; i++, tb++){ |
| if (!tb->n) { /* not used */ |
| if (!del && !slot) /* if !del save first free */ |
| slot = tb ; |
| continue ; |
| } |
| if (!ether_addr_equal((char *)&tb->a, (char *)own)) |
| continue ; |
| return tb; |
| } |
| return slot; /* return first free or NULL */ |
| } |
| |
| /* |
| BEGIN_MANUAL_ENTRY(if,func;others;2) |
| |
| void mac_clear_multicast(smc) |
| struct s_smc *smc ; |
| |
| Function DOWNCALL (SMT, fplustm.c) |
| Clear all multicast entries |
| |
| END_MANUAL_ENTRY() |
| */ |
| void mac_clear_multicast(struct s_smc *smc) |
| { |
| struct s_fpmc *tb ; |
| int i ; |
| |
| smc->hw.fp.os_slots_used = 0 ; /* note the SMT addresses */ |
| /* will not be deleted */ |
| for (i = 0, tb = smc->hw.fp.mc.table ; i < FPMAX_MULTICAST ; i++, tb++){ |
| if (!tb->perm) { |
| tb->n = 0 ; |
| } |
| } |
| } |
| |
| /* |
| BEGIN_MANUAL_ENTRY(if,func;others;2) |
| |
| int mac_add_multicast(smc,addr,can) |
| struct s_smc *smc ; |
| struct fddi_addr *addr ; |
| int can ; |
| |
| Function DOWNCALL (SMC, fplustm.c) |
| Add an entry to the multicast table |
| |
| Para addr pointer to a multicast address |
| can = 0: the multicast address has the physical format |
| = 1: the multicast address has the canonical format |
| | 0x80 permanent |
| |
| Returns 0: success |
| 1: address table full |
| |
| Note After a 'driver reset' or a 'station set address' all |
| entries of the multicast table are cleared. |
| In this case the driver has to fill the multicast table again. |
| After the operating system dependent module filled |
| the multicast table it must call mac_update_multicast |
| to activate the new multicast addresses! |
| |
| END_MANUAL_ENTRY() |
| */ |
| int mac_add_multicast(struct s_smc *smc, struct fddi_addr *addr, int can) |
| { |
| SK_LOC_DECL(struct fddi_addr,own) ; |
| struct s_fpmc *tb ; |
| |
| /* |
| * check if there are free table entries |
| */ |
| if (can & 0x80) { |
| if (smc->hw.fp.smt_slots_used >= SMT_MAX_MULTI) { |
| return 1; |
| } |
| } |
| else { |
| if (smc->hw.fp.os_slots_used >= FPMAX_MULTICAST-SMT_MAX_MULTI) { |
| return 1; |
| } |
| } |
| |
| /* |
| * find empty slot |
| */ |
| if (!(tb = mac_get_mc_table(smc,addr,&own,0,can & ~0x80))) |
| return 1; |
| tb->n++ ; |
| tb->a = own ; |
| tb->perm = (can & 0x80) ? 1 : 0 ; |
| |
| if (can & 0x80) |
| smc->hw.fp.smt_slots_used++ ; |
| else |
| smc->hw.fp.os_slots_used++ ; |
| |
| return 0; |
| } |
| |
| /* |
| * mode |
| */ |
| |
| #define RX_MODE_PROM 0x1 |
| #define RX_MODE_ALL_MULTI 0x2 |
| |
| /* |
| BEGIN_MANUAL_ENTRY(if,func;others;2) |
| |
| void mac_update_multicast(smc) |
| struct s_smc *smc ; |
| |
| Function DOWNCALL (SMT, fplustm.c) |
| Update FORMAC multicast registers |
| |
| END_MANUAL_ENTRY() |
| */ |
| void mac_update_multicast(struct s_smc *smc) |
| { |
| struct s_fpmc *tb ; |
| u_char *fu ; |
| int i ; |
| |
| /* |
| * invalidate the CAM |
| */ |
| outpw(FM_A(FM_AFCMD),FM_IINV_CAM) ; |
| |
| /* |
| * set the functional address |
| */ |
| if (smc->hw.fp.func_addr) { |
| fu = (u_char *) &smc->hw.fp.func_addr ; |
| outpw(FM_A(FM_AFMASK2),0xffff) ; |
| outpw(FM_A(FM_AFMASK1),(u_short) ~((fu[0] << 8) + fu[1])) ; |
| outpw(FM_A(FM_AFMASK0),(u_short) ~((fu[2] << 8) + fu[3])) ; |
| outpw(FM_A(FM_AFPERS),FM_VALID|FM_DA) ; |
| outpw(FM_A(FM_AFCOMP2), 0xc000) ; |
| outpw(FM_A(FM_AFCOMP1), 0x0000) ; |
| outpw(FM_A(FM_AFCOMP0), 0x0000) ; |
| outpw(FM_A(FM_AFCMD),FM_IWRITE_CAM) ; |
| } |
| |
| /* |
| * set the mask and the personality register(s) |
| */ |
| outpw(FM_A(FM_AFMASK0),0xffff) ; |
| outpw(FM_A(FM_AFMASK1),0xffff) ; |
| outpw(FM_A(FM_AFMASK2),0xffff) ; |
| outpw(FM_A(FM_AFPERS),FM_VALID|FM_DA) ; |
| |
| for (i = 0, tb = smc->hw.fp.mc.table; i < FPMAX_MULTICAST; i++, tb++) { |
| if (tb->n) { |
| CHECK_CAM() ; |
| |
| /* |
| * write the multicast address into the CAM |
| */ |
| outpw(FM_A(FM_AFCOMP2), |
| (u_short)((tb->a.a[0]<<8)+tb->a.a[1])) ; |
| outpw(FM_A(FM_AFCOMP1), |
| (u_short)((tb->a.a[2]<<8)+tb->a.a[3])) ; |
| outpw(FM_A(FM_AFCOMP0), |
| (u_short)((tb->a.a[4]<<8)+tb->a.a[5])) ; |
| outpw(FM_A(FM_AFCMD),FM_IWRITE_CAM) ; |
| } |
| } |
| } |
| |
| /* |
| BEGIN_MANUAL_ENTRY(if,func;others;3) |
| |
| void mac_set_rx_mode(smc,mode) |
| struct s_smc *smc ; |
| int mode ; |
| |
| Function DOWNCALL/INTERN (SMT, fplustm.c) |
| This function enables / disables the selected receive. |
| Don't call this function if the hardware module is |
| used -- use mac_drv_rx_mode() instead of. |
| |
| Para mode = 1 RX_ENABLE_ALLMULTI enable all multicasts |
| 2 RX_DISABLE_ALLMULTI disable "enable all multicasts" |
| 3 RX_ENABLE_PROMISC enable promiscuous |
| 4 RX_DISABLE_PROMISC disable promiscuous |
| 5 RX_ENABLE_NSA enable reception of NSA frames |
| 6 RX_DISABLE_NSA disable reception of NSA frames |
| |
| Note The selected receive modes will be lost after 'driver reset' |
| or 'set station address' |
| |
| END_MANUAL_ENTRY |
| */ |
| void mac_set_rx_mode(struct s_smc *smc, int mode) |
| { |
| switch (mode) { |
| case RX_ENABLE_ALLMULTI : |
| smc->hw.fp.rx_prom |= RX_MODE_ALL_MULTI ; |
| break ; |
| case RX_DISABLE_ALLMULTI : |
| smc->hw.fp.rx_prom &= ~RX_MODE_ALL_MULTI ; |
| break ; |
| case RX_ENABLE_PROMISC : |
| smc->hw.fp.rx_prom |= RX_MODE_PROM ; |
| break ; |
| case RX_DISABLE_PROMISC : |
| smc->hw.fp.rx_prom &= ~RX_MODE_PROM ; |
| break ; |
| case RX_ENABLE_NSA : |
| smc->hw.fp.nsa_mode = FM_MDAMA ; |
| smc->hw.fp.rx_mode = (smc->hw.fp.rx_mode & ~FM_ADDET) | |
| smc->hw.fp.nsa_mode ; |
| break ; |
| case RX_DISABLE_NSA : |
| smc->hw.fp.nsa_mode = FM_MRNNSAFNMA ; |
| smc->hw.fp.rx_mode = (smc->hw.fp.rx_mode & ~FM_ADDET) | |
| smc->hw.fp.nsa_mode ; |
| break ; |
| } |
| if (smc->hw.fp.rx_prom & RX_MODE_PROM) { |
| smc->hw.fp.rx_mode = FM_MLIMPROM ; |
| } |
| else if (smc->hw.fp.rx_prom & RX_MODE_ALL_MULTI) { |
| smc->hw.fp.rx_mode = smc->hw.fp.nsa_mode | FM_EXGPA0 ; |
| } |
| else |
| smc->hw.fp.rx_mode = smc->hw.fp.nsa_mode ; |
| SETMASK(FM_A(FM_MDREG1),smc->hw.fp.rx_mode,FM_ADDRX) ; |
| mac_update_multicast(smc) ; |
| } |
| |
| /* |
| BEGIN_MANUAL_ENTRY(module;tests;3) |
| How to test the Restricted Token Monitor |
| ---------------------------------------------------------------- |
| |
| o Insert a break point in the function rtm_irq() |
| o Remove all stations with a restricted token monitor from the |
| network. |
| o Connect a UPPS ISA or EISA station to the network. |
| o Give the FORMAC of UPPS station the command to send |
| restricted tokens until the ring becomes instable. |
| o Now connect your test client. |
| o The restricted token monitor should detect the restricted token, |
| and your break point will be reached. |
| o You can ovserve how the station will clean the ring. |
| |
| END_MANUAL_ENTRY |
| */ |
| void rtm_irq(struct s_smc *smc) |
| { |
| outpw(ADDR(B2_RTM_CRTL),TIM_CL_IRQ) ; /* clear IRQ */ |
| if (inpw(ADDR(B2_RTM_CRTL)) & TIM_RES_TOK) { |
| outpw(FM_A(FM_CMDREG1),FM_ICL) ; /* force claim */ |
| DB_RMT("RMT: fddiPATHT_Rmode expired"); |
| AIX_EVENT(smc, (u_long) FDDI_RING_STATUS, |
| (u_long) FDDI_SMT_EVENT, |
| (u_long) FDDI_RTT, smt_get_event_word(smc)); |
| } |
| outpw(ADDR(B2_RTM_CRTL),TIM_START) ; /* enable RTM monitoring */ |
| } |
| |
| static void rtm_init(struct s_smc *smc) |
| { |
| outpd(ADDR(B2_RTM_INI),0) ; /* timer = 0 */ |
| outpw(ADDR(B2_RTM_CRTL),TIM_START) ; /* enable IRQ */ |
| } |
| |
| void rtm_set_timer(struct s_smc *smc) |
| { |
| /* |
| * MIB timer and hardware timer have the same resolution of 80nS |
| */ |
| DB_RMT("RMT: setting new fddiPATHT_Rmode, t = %d ns", |
| (int)smc->mib.a[PATH0].fddiPATHT_Rmode); |
| outpd(ADDR(B2_RTM_INI),smc->mib.a[PATH0].fddiPATHT_Rmode) ; |
| } |
| |
| static void smt_split_up_fifo(struct s_smc *smc) |
| { |
| |
| /* |
| BEGIN_MANUAL_ENTRY(module;mem;1) |
| ------------------------------------------------------------- |
| RECEIVE BUFFER MEMORY DIVERSION |
| ------------------------------------------------------------- |
| |
| R1_RxD == SMT_R1_RXD_COUNT |
| R2_RxD == SMT_R2_RXD_COUNT |
| |
| SMT_R1_RXD_COUNT must be unequal zero |
| |
| | R1_RxD R2_RxD |R1_RxD R2_RxD | R1_RxD R2_RxD |
| | x 0 | x 1-3 | x < 3 |
| ---------------------------------------------------------------------- |
| | 63,75 kB | 54,75 | R1_RxD |
| rx queue 1 | RX_FIFO_SPACE | RX_LARGE_FIFO| ------------- * 63,75 kB |
| | | | R1_RxD+R2_RxD |
| ---------------------------------------------------------------------- |
| | | 9 kB | R2_RxD |
| rx queue 2 | 0 kB | RX_SMALL_FIFO| ------------- * 63,75 kB |
| | (not used) | | R1_RxD+R2_RxD |
| |
| END_MANUAL_ENTRY |
| */ |
| |
| if (SMT_R1_RXD_COUNT == 0) { |
| SMT_PANIC(smc,SMT_E0117, SMT_E0117_MSG) ; |
| } |
| |
| switch(SMT_R2_RXD_COUNT) { |
| case 0: |
| smc->hw.fp.fifo.rx1_fifo_size = RX_FIFO_SPACE ; |
| smc->hw.fp.fifo.rx2_fifo_size = 0 ; |
| break ; |
| case 1: |
| case 2: |
| case 3: |
| smc->hw.fp.fifo.rx1_fifo_size = RX_LARGE_FIFO ; |
| smc->hw.fp.fifo.rx2_fifo_size = RX_SMALL_FIFO ; |
| break ; |
| default: /* this is not the real defaule */ |
| smc->hw.fp.fifo.rx1_fifo_size = RX_FIFO_SPACE * |
| SMT_R1_RXD_COUNT/(SMT_R1_RXD_COUNT+SMT_R2_RXD_COUNT) ; |
| smc->hw.fp.fifo.rx2_fifo_size = RX_FIFO_SPACE * |
| SMT_R2_RXD_COUNT/(SMT_R1_RXD_COUNT+SMT_R2_RXD_COUNT) ; |
| break ; |
| } |
| |
| /* |
| BEGIN_MANUAL_ENTRY(module;mem;1) |
| ------------------------------------------------------------- |
| TRANSMIT BUFFER MEMORY DIVERSION |
| ------------------------------------------------------------- |
| |
| |
| | no sync bw | sync bw available and | sync bw available and |
| | available | SynchTxMode = SPLIT | SynchTxMode = ALL |
| ----------------------------------------------------------------------- |
| sync tx | 0 kB | 32 kB | 55 kB |
| queue | | TX_MEDIUM_FIFO | TX_LARGE_FIFO |
| ----------------------------------------------------------------------- |
| async tx | 64 kB | 32 kB | 9 k |
| queue | TX_FIFO_SPACE| TX_MEDIUM_FIFO | TX_SMALL_FIFO |
| |
| END_MANUAL_ENTRY |
| */ |
| |
| /* |
| * set the tx mode bits |
| */ |
| if (smc->mib.a[PATH0].fddiPATHSbaPayload) { |
| #ifdef ESS |
| smc->hw.fp.fifo.fifo_config_mode |= |
| smc->mib.fddiESSSynchTxMode | SYNC_TRAFFIC_ON ; |
| #endif |
| } |
| else { |
| smc->hw.fp.fifo.fifo_config_mode &= |
| ~(SEND_ASYNC_AS_SYNC|SYNC_TRAFFIC_ON) ; |
| } |
| |
| /* |
| * split up the FIFO |
| */ |
| if (smc->hw.fp.fifo.fifo_config_mode & SYNC_TRAFFIC_ON) { |
| if (smc->hw.fp.fifo.fifo_config_mode & SEND_ASYNC_AS_SYNC) { |
| smc->hw.fp.fifo.tx_s_size = TX_LARGE_FIFO ; |
| smc->hw.fp.fifo.tx_a0_size = TX_SMALL_FIFO ; |
| } |
| else { |
| smc->hw.fp.fifo.tx_s_size = TX_MEDIUM_FIFO ; |
| smc->hw.fp.fifo.tx_a0_size = TX_MEDIUM_FIFO ; |
| } |
| } |
| else { |
| smc->hw.fp.fifo.tx_s_size = 0 ; |
| smc->hw.fp.fifo.tx_a0_size = TX_FIFO_SPACE ; |
| } |
| |
| smc->hw.fp.fifo.rx1_fifo_start = smc->hw.fp.fifo.rbc_ram_start + |
| RX_FIFO_OFF ; |
| smc->hw.fp.fifo.tx_s_start = smc->hw.fp.fifo.rx1_fifo_start + |
| smc->hw.fp.fifo.rx1_fifo_size ; |
| smc->hw.fp.fifo.tx_a0_start = smc->hw.fp.fifo.tx_s_start + |
| smc->hw.fp.fifo.tx_s_size ; |
| smc->hw.fp.fifo.rx2_fifo_start = smc->hw.fp.fifo.tx_a0_start + |
| smc->hw.fp.fifo.tx_a0_size ; |
| |
| DB_SMT("FIFO split: mode = %x", smc->hw.fp.fifo.fifo_config_mode); |
| DB_SMT("rbc_ram_start = %x rbc_ram_end = %x", |
| smc->hw.fp.fifo.rbc_ram_start, smc->hw.fp.fifo.rbc_ram_end); |
| DB_SMT("rx1_fifo_start = %x tx_s_start = %x", |
| smc->hw.fp.fifo.rx1_fifo_start, smc->hw.fp.fifo.tx_s_start); |
| DB_SMT("tx_a0_start = %x rx2_fifo_start = %x", |
| smc->hw.fp.fifo.tx_a0_start, smc->hw.fp.fifo.rx2_fifo_start); |
| } |
| |
| void formac_reinit_tx(struct s_smc *smc) |
| { |
| /* |
| * Split up the FIFO and reinitialize the MAC if synchronous |
| * bandwidth becomes available but no synchronous queue is |
| * configured. |
| */ |
| if (!smc->hw.fp.fifo.tx_s_size && smc->mib.a[PATH0].fddiPATHSbaPayload){ |
| (void)init_mac(smc,0) ; |
| } |
| } |
| |