| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * linux/fs/file.c |
| * |
| * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes |
| * |
| * Manage the dynamic fd arrays in the process files_struct. |
| */ |
| |
| #include <linux/syscalls.h> |
| #include <linux/export.h> |
| #include <linux/fs.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/sched/signal.h> |
| #include <linux/slab.h> |
| #include <linux/file.h> |
| #include <linux/fdtable.h> |
| #include <linux/bitops.h> |
| #include <linux/spinlock.h> |
| #include <linux/rcupdate.h> |
| #include <linux/close_range.h> |
| #include <net/sock.h> |
| |
| #include "internal.h" |
| |
| unsigned int sysctl_nr_open __read_mostly = 1024*1024; |
| unsigned int sysctl_nr_open_min = BITS_PER_LONG; |
| /* our min() is unusable in constant expressions ;-/ */ |
| #define __const_min(x, y) ((x) < (y) ? (x) : (y)) |
| unsigned int sysctl_nr_open_max = |
| __const_min(INT_MAX, ~(size_t)0/sizeof(void *)) & -BITS_PER_LONG; |
| |
| static void __free_fdtable(struct fdtable *fdt) |
| { |
| kvfree(fdt->fd); |
| kvfree(fdt->open_fds); |
| kfree(fdt); |
| } |
| |
| static void free_fdtable_rcu(struct rcu_head *rcu) |
| { |
| __free_fdtable(container_of(rcu, struct fdtable, rcu)); |
| } |
| |
| #define BITBIT_NR(nr) BITS_TO_LONGS(BITS_TO_LONGS(nr)) |
| #define BITBIT_SIZE(nr) (BITBIT_NR(nr) * sizeof(long)) |
| |
| /* |
| * Copy 'count' fd bits from the old table to the new table and clear the extra |
| * space if any. This does not copy the file pointers. Called with the files |
| * spinlock held for write. |
| */ |
| static void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt, |
| unsigned int count) |
| { |
| unsigned int cpy, set; |
| |
| cpy = count / BITS_PER_BYTE; |
| set = (nfdt->max_fds - count) / BITS_PER_BYTE; |
| memcpy(nfdt->open_fds, ofdt->open_fds, cpy); |
| memset((char *)nfdt->open_fds + cpy, 0, set); |
| memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy); |
| memset((char *)nfdt->close_on_exec + cpy, 0, set); |
| |
| cpy = BITBIT_SIZE(count); |
| set = BITBIT_SIZE(nfdt->max_fds) - cpy; |
| memcpy(nfdt->full_fds_bits, ofdt->full_fds_bits, cpy); |
| memset((char *)nfdt->full_fds_bits + cpy, 0, set); |
| } |
| |
| /* |
| * Copy all file descriptors from the old table to the new, expanded table and |
| * clear the extra space. Called with the files spinlock held for write. |
| */ |
| static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt) |
| { |
| size_t cpy, set; |
| |
| BUG_ON(nfdt->max_fds < ofdt->max_fds); |
| |
| cpy = ofdt->max_fds * sizeof(struct file *); |
| set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *); |
| memcpy(nfdt->fd, ofdt->fd, cpy); |
| memset((char *)nfdt->fd + cpy, 0, set); |
| |
| copy_fd_bitmaps(nfdt, ofdt, ofdt->max_fds); |
| } |
| |
| /* |
| * Note how the fdtable bitmap allocations very much have to be a multiple of |
| * BITS_PER_LONG. This is not only because we walk those things in chunks of |
| * 'unsigned long' in some places, but simply because that is how the Linux |
| * kernel bitmaps are defined to work: they are not "bits in an array of bytes", |
| * they are very much "bits in an array of unsigned long". |
| * |
| * The ALIGN(nr, BITS_PER_LONG) here is for clarity: since we just multiplied |
| * by that "1024/sizeof(ptr)" before, we already know there are sufficient |
| * clear low bits. Clang seems to realize that, gcc ends up being confused. |
| * |
| * On a 128-bit machine, the ALIGN() would actually matter. In the meantime, |
| * let's consider it documentation (and maybe a test-case for gcc to improve |
| * its code generation ;) |
| */ |
| static struct fdtable * alloc_fdtable(unsigned int nr) |
| { |
| struct fdtable *fdt; |
| void *data; |
| |
| /* |
| * Figure out how many fds we actually want to support in this fdtable. |
| * Allocation steps are keyed to the size of the fdarray, since it |
| * grows far faster than any of the other dynamic data. We try to fit |
| * the fdarray into comfortable page-tuned chunks: starting at 1024B |
| * and growing in powers of two from there on. |
| */ |
| nr /= (1024 / sizeof(struct file *)); |
| nr = roundup_pow_of_two(nr + 1); |
| nr *= (1024 / sizeof(struct file *)); |
| nr = ALIGN(nr, BITS_PER_LONG); |
| /* |
| * Note that this can drive nr *below* what we had passed if sysctl_nr_open |
| * had been set lower between the check in expand_files() and here. Deal |
| * with that in caller, it's cheaper that way. |
| * |
| * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise |
| * bitmaps handling below becomes unpleasant, to put it mildly... |
| */ |
| if (unlikely(nr > sysctl_nr_open)) |
| nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1; |
| |
| fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT); |
| if (!fdt) |
| goto out; |
| fdt->max_fds = nr; |
| data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT); |
| if (!data) |
| goto out_fdt; |
| fdt->fd = data; |
| |
| data = kvmalloc(max_t(size_t, |
| 2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES), |
| GFP_KERNEL_ACCOUNT); |
| if (!data) |
| goto out_arr; |
| fdt->open_fds = data; |
| data += nr / BITS_PER_BYTE; |
| fdt->close_on_exec = data; |
| data += nr / BITS_PER_BYTE; |
| fdt->full_fds_bits = data; |
| |
| return fdt; |
| |
| out_arr: |
| kvfree(fdt->fd); |
| out_fdt: |
| kfree(fdt); |
| out: |
| return NULL; |
| } |
| |
| /* |
| * Expand the file descriptor table. |
| * This function will allocate a new fdtable and both fd array and fdset, of |
| * the given size. |
| * Return <0 error code on error; 1 on successful completion. |
| * The files->file_lock should be held on entry, and will be held on exit. |
| */ |
| static int expand_fdtable(struct files_struct *files, unsigned int nr) |
| __releases(files->file_lock) |
| __acquires(files->file_lock) |
| { |
| struct fdtable *new_fdt, *cur_fdt; |
| |
| spin_unlock(&files->file_lock); |
| new_fdt = alloc_fdtable(nr); |
| |
| /* make sure all fd_install() have seen resize_in_progress |
| * or have finished their rcu_read_lock_sched() section. |
| */ |
| if (atomic_read(&files->count) > 1) |
| synchronize_rcu(); |
| |
| spin_lock(&files->file_lock); |
| if (!new_fdt) |
| return -ENOMEM; |
| /* |
| * extremely unlikely race - sysctl_nr_open decreased between the check in |
| * caller and alloc_fdtable(). Cheaper to catch it here... |
| */ |
| if (unlikely(new_fdt->max_fds <= nr)) { |
| __free_fdtable(new_fdt); |
| return -EMFILE; |
| } |
| cur_fdt = files_fdtable(files); |
| BUG_ON(nr < cur_fdt->max_fds); |
| copy_fdtable(new_fdt, cur_fdt); |
| rcu_assign_pointer(files->fdt, new_fdt); |
| if (cur_fdt != &files->fdtab) |
| call_rcu(&cur_fdt->rcu, free_fdtable_rcu); |
| /* coupled with smp_rmb() in fd_install() */ |
| smp_wmb(); |
| return 1; |
| } |
| |
| /* |
| * Expand files. |
| * This function will expand the file structures, if the requested size exceeds |
| * the current capacity and there is room for expansion. |
| * Return <0 error code on error; 0 when nothing done; 1 when files were |
| * expanded and execution may have blocked. |
| * The files->file_lock should be held on entry, and will be held on exit. |
| */ |
| static int expand_files(struct files_struct *files, unsigned int nr) |
| __releases(files->file_lock) |
| __acquires(files->file_lock) |
| { |
| struct fdtable *fdt; |
| int expanded = 0; |
| |
| repeat: |
| fdt = files_fdtable(files); |
| |
| /* Do we need to expand? */ |
| if (nr < fdt->max_fds) |
| return expanded; |
| |
| /* Can we expand? */ |
| if (nr >= sysctl_nr_open) |
| return -EMFILE; |
| |
| if (unlikely(files->resize_in_progress)) { |
| spin_unlock(&files->file_lock); |
| expanded = 1; |
| wait_event(files->resize_wait, !files->resize_in_progress); |
| spin_lock(&files->file_lock); |
| goto repeat; |
| } |
| |
| /* All good, so we try */ |
| files->resize_in_progress = true; |
| expanded = expand_fdtable(files, nr); |
| files->resize_in_progress = false; |
| |
| wake_up_all(&files->resize_wait); |
| return expanded; |
| } |
| |
| static inline void __set_close_on_exec(unsigned int fd, struct fdtable *fdt) |
| { |
| __set_bit(fd, fdt->close_on_exec); |
| } |
| |
| static inline void __clear_close_on_exec(unsigned int fd, struct fdtable *fdt) |
| { |
| if (test_bit(fd, fdt->close_on_exec)) |
| __clear_bit(fd, fdt->close_on_exec); |
| } |
| |
| static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt) |
| { |
| __set_bit(fd, fdt->open_fds); |
| fd /= BITS_PER_LONG; |
| if (!~fdt->open_fds[fd]) |
| __set_bit(fd, fdt->full_fds_bits); |
| } |
| |
| static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt) |
| { |
| __clear_bit(fd, fdt->open_fds); |
| __clear_bit(fd / BITS_PER_LONG, fdt->full_fds_bits); |
| } |
| |
| static unsigned int count_open_files(struct fdtable *fdt) |
| { |
| unsigned int size = fdt->max_fds; |
| unsigned int i; |
| |
| /* Find the last open fd */ |
| for (i = size / BITS_PER_LONG; i > 0; ) { |
| if (fdt->open_fds[--i]) |
| break; |
| } |
| i = (i + 1) * BITS_PER_LONG; |
| return i; |
| } |
| |
| /* |
| * Note that a sane fdtable size always has to be a multiple of |
| * BITS_PER_LONG, since we have bitmaps that are sized by this. |
| * |
| * 'max_fds' will normally already be properly aligned, but it |
| * turns out that in the close_range() -> __close_range() -> |
| * unshare_fd() -> dup_fd() -> sane_fdtable_size() we can end |
| * up having a 'max_fds' value that isn't already aligned. |
| * |
| * Rather than make close_range() have to worry about this, |
| * just make that BITS_PER_LONG alignment be part of a sane |
| * fdtable size. Becuase that's really what it is. |
| */ |
| static unsigned int sane_fdtable_size(struct fdtable *fdt, unsigned int max_fds) |
| { |
| unsigned int count; |
| |
| count = count_open_files(fdt); |
| if (max_fds < NR_OPEN_DEFAULT) |
| max_fds = NR_OPEN_DEFAULT; |
| return ALIGN(min(count, max_fds), BITS_PER_LONG); |
| } |
| |
| /* |
| * Allocate a new files structure and copy contents from the |
| * passed in files structure. |
| * errorp will be valid only when the returned files_struct is NULL. |
| */ |
| struct files_struct *dup_fd(struct files_struct *oldf, unsigned int max_fds, int *errorp) |
| { |
| struct files_struct *newf; |
| struct file **old_fds, **new_fds; |
| unsigned int open_files, i; |
| struct fdtable *old_fdt, *new_fdt; |
| |
| *errorp = -ENOMEM; |
| newf = kmem_cache_alloc(files_cachep, GFP_KERNEL); |
| if (!newf) |
| goto out; |
| |
| atomic_set(&newf->count, 1); |
| |
| spin_lock_init(&newf->file_lock); |
| newf->resize_in_progress = false; |
| init_waitqueue_head(&newf->resize_wait); |
| newf->next_fd = 0; |
| new_fdt = &newf->fdtab; |
| new_fdt->max_fds = NR_OPEN_DEFAULT; |
| new_fdt->close_on_exec = newf->close_on_exec_init; |
| new_fdt->open_fds = newf->open_fds_init; |
| new_fdt->full_fds_bits = newf->full_fds_bits_init; |
| new_fdt->fd = &newf->fd_array[0]; |
| |
| spin_lock(&oldf->file_lock); |
| old_fdt = files_fdtable(oldf); |
| open_files = sane_fdtable_size(old_fdt, max_fds); |
| |
| /* |
| * Check whether we need to allocate a larger fd array and fd set. |
| */ |
| while (unlikely(open_files > new_fdt->max_fds)) { |
| spin_unlock(&oldf->file_lock); |
| |
| if (new_fdt != &newf->fdtab) |
| __free_fdtable(new_fdt); |
| |
| new_fdt = alloc_fdtable(open_files - 1); |
| if (!new_fdt) { |
| *errorp = -ENOMEM; |
| goto out_release; |
| } |
| |
| /* beyond sysctl_nr_open; nothing to do */ |
| if (unlikely(new_fdt->max_fds < open_files)) { |
| __free_fdtable(new_fdt); |
| *errorp = -EMFILE; |
| goto out_release; |
| } |
| |
| /* |
| * Reacquire the oldf lock and a pointer to its fd table |
| * who knows it may have a new bigger fd table. We need |
| * the latest pointer. |
| */ |
| spin_lock(&oldf->file_lock); |
| old_fdt = files_fdtable(oldf); |
| open_files = sane_fdtable_size(old_fdt, max_fds); |
| } |
| |
| copy_fd_bitmaps(new_fdt, old_fdt, open_files); |
| |
| old_fds = old_fdt->fd; |
| new_fds = new_fdt->fd; |
| |
| for (i = open_files; i != 0; i--) { |
| struct file *f = *old_fds++; |
| if (f) { |
| get_file(f); |
| } else { |
| /* |
| * The fd may be claimed in the fd bitmap but not yet |
| * instantiated in the files array if a sibling thread |
| * is partway through open(). So make sure that this |
| * fd is available to the new process. |
| */ |
| __clear_open_fd(open_files - i, new_fdt); |
| } |
| rcu_assign_pointer(*new_fds++, f); |
| } |
| spin_unlock(&oldf->file_lock); |
| |
| /* clear the remainder */ |
| memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *)); |
| |
| rcu_assign_pointer(newf->fdt, new_fdt); |
| |
| return newf; |
| |
| out_release: |
| kmem_cache_free(files_cachep, newf); |
| out: |
| return NULL; |
| } |
| |
| static struct fdtable *close_files(struct files_struct * files) |
| { |
| /* |
| * It is safe to dereference the fd table without RCU or |
| * ->file_lock because this is the last reference to the |
| * files structure. |
| */ |
| struct fdtable *fdt = rcu_dereference_raw(files->fdt); |
| unsigned int i, j = 0; |
| |
| for (;;) { |
| unsigned long set; |
| i = j * BITS_PER_LONG; |
| if (i >= fdt->max_fds) |
| break; |
| set = fdt->open_fds[j++]; |
| while (set) { |
| if (set & 1) { |
| struct file * file = xchg(&fdt->fd[i], NULL); |
| if (file) { |
| filp_close(file, files); |
| cond_resched(); |
| } |
| } |
| i++; |
| set >>= 1; |
| } |
| } |
| |
| return fdt; |
| } |
| |
| void put_files_struct(struct files_struct *files) |
| { |
| if (atomic_dec_and_test(&files->count)) { |
| struct fdtable *fdt = close_files(files); |
| |
| /* free the arrays if they are not embedded */ |
| if (fdt != &files->fdtab) |
| __free_fdtable(fdt); |
| kmem_cache_free(files_cachep, files); |
| } |
| } |
| |
| void exit_files(struct task_struct *tsk) |
| { |
| struct files_struct * files = tsk->files; |
| |
| if (files) { |
| task_lock(tsk); |
| tsk->files = NULL; |
| task_unlock(tsk); |
| put_files_struct(files); |
| } |
| } |
| |
| struct files_struct init_files = { |
| .count = ATOMIC_INIT(1), |
| .fdt = &init_files.fdtab, |
| .fdtab = { |
| .max_fds = NR_OPEN_DEFAULT, |
| .fd = &init_files.fd_array[0], |
| .close_on_exec = init_files.close_on_exec_init, |
| .open_fds = init_files.open_fds_init, |
| .full_fds_bits = init_files.full_fds_bits_init, |
| }, |
| .file_lock = __SPIN_LOCK_UNLOCKED(init_files.file_lock), |
| .resize_wait = __WAIT_QUEUE_HEAD_INITIALIZER(init_files.resize_wait), |
| }; |
| |
| static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start) |
| { |
| unsigned int maxfd = fdt->max_fds; |
| unsigned int maxbit = maxfd / BITS_PER_LONG; |
| unsigned int bitbit = start / BITS_PER_LONG; |
| |
| bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG; |
| if (bitbit > maxfd) |
| return maxfd; |
| if (bitbit > start) |
| start = bitbit; |
| return find_next_zero_bit(fdt->open_fds, maxfd, start); |
| } |
| |
| /* |
| * allocate a file descriptor, mark it busy. |
| */ |
| static int alloc_fd(unsigned start, unsigned end, unsigned flags) |
| { |
| struct files_struct *files = current->files; |
| unsigned int fd; |
| int error; |
| struct fdtable *fdt; |
| |
| spin_lock(&files->file_lock); |
| repeat: |
| fdt = files_fdtable(files); |
| fd = start; |
| if (fd < files->next_fd) |
| fd = files->next_fd; |
| |
| if (fd < fdt->max_fds) |
| fd = find_next_fd(fdt, fd); |
| |
| /* |
| * N.B. For clone tasks sharing a files structure, this test |
| * will limit the total number of files that can be opened. |
| */ |
| error = -EMFILE; |
| if (fd >= end) |
| goto out; |
| |
| error = expand_files(files, fd); |
| if (error < 0) |
| goto out; |
| |
| /* |
| * If we needed to expand the fs array we |
| * might have blocked - try again. |
| */ |
| if (error) |
| goto repeat; |
| |
| if (start <= files->next_fd) |
| files->next_fd = fd + 1; |
| |
| __set_open_fd(fd, fdt); |
| if (flags & O_CLOEXEC) |
| __set_close_on_exec(fd, fdt); |
| else |
| __clear_close_on_exec(fd, fdt); |
| error = fd; |
| #if 1 |
| /* Sanity check */ |
| if (rcu_access_pointer(fdt->fd[fd]) != NULL) { |
| printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd); |
| rcu_assign_pointer(fdt->fd[fd], NULL); |
| } |
| #endif |
| |
| out: |
| spin_unlock(&files->file_lock); |
| return error; |
| } |
| |
| int __get_unused_fd_flags(unsigned flags, unsigned long nofile) |
| { |
| return alloc_fd(0, nofile, flags); |
| } |
| |
| int get_unused_fd_flags(unsigned flags) |
| { |
| return __get_unused_fd_flags(flags, rlimit(RLIMIT_NOFILE)); |
| } |
| EXPORT_SYMBOL(get_unused_fd_flags); |
| |
| static void __put_unused_fd(struct files_struct *files, unsigned int fd) |
| { |
| struct fdtable *fdt = files_fdtable(files); |
| __clear_open_fd(fd, fdt); |
| if (fd < files->next_fd) |
| files->next_fd = fd; |
| } |
| |
| void put_unused_fd(unsigned int fd) |
| { |
| struct files_struct *files = current->files; |
| spin_lock(&files->file_lock); |
| __put_unused_fd(files, fd); |
| spin_unlock(&files->file_lock); |
| } |
| |
| EXPORT_SYMBOL(put_unused_fd); |
| |
| /* |
| * Install a file pointer in the fd array. |
| * |
| * The VFS is full of places where we drop the files lock between |
| * setting the open_fds bitmap and installing the file in the file |
| * array. At any such point, we are vulnerable to a dup2() race |
| * installing a file in the array before us. We need to detect this and |
| * fput() the struct file we are about to overwrite in this case. |
| * |
| * It should never happen - if we allow dup2() do it, _really_ bad things |
| * will follow. |
| * |
| * This consumes the "file" refcount, so callers should treat it |
| * as if they had called fput(file). |
| */ |
| |
| void fd_install(unsigned int fd, struct file *file) |
| { |
| struct files_struct *files = current->files; |
| struct fdtable *fdt; |
| |
| if (WARN_ON_ONCE(unlikely(file->f_mode & FMODE_BACKING))) |
| return; |
| |
| rcu_read_lock_sched(); |
| |
| if (unlikely(files->resize_in_progress)) { |
| rcu_read_unlock_sched(); |
| spin_lock(&files->file_lock); |
| fdt = files_fdtable(files); |
| BUG_ON(fdt->fd[fd] != NULL); |
| rcu_assign_pointer(fdt->fd[fd], file); |
| spin_unlock(&files->file_lock); |
| return; |
| } |
| /* coupled with smp_wmb() in expand_fdtable() */ |
| smp_rmb(); |
| fdt = rcu_dereference_sched(files->fdt); |
| BUG_ON(fdt->fd[fd] != NULL); |
| rcu_assign_pointer(fdt->fd[fd], file); |
| rcu_read_unlock_sched(); |
| } |
| |
| EXPORT_SYMBOL(fd_install); |
| |
| /** |
| * file_close_fd_locked - return file associated with fd |
| * @files: file struct to retrieve file from |
| * @fd: file descriptor to retrieve file for |
| * |
| * Doesn't take a separate reference count. |
| * |
| * Context: files_lock must be held. |
| * |
| * Returns: The file associated with @fd (NULL if @fd is not open) |
| */ |
| struct file *file_close_fd_locked(struct files_struct *files, unsigned fd) |
| { |
| struct fdtable *fdt = files_fdtable(files); |
| struct file *file; |
| |
| lockdep_assert_held(&files->file_lock); |
| |
| if (fd >= fdt->max_fds) |
| return NULL; |
| |
| fd = array_index_nospec(fd, fdt->max_fds); |
| file = fdt->fd[fd]; |
| if (file) { |
| rcu_assign_pointer(fdt->fd[fd], NULL); |
| __put_unused_fd(files, fd); |
| } |
| return file; |
| } |
| |
| int close_fd(unsigned fd) |
| { |
| struct files_struct *files = current->files; |
| struct file *file; |
| |
| spin_lock(&files->file_lock); |
| file = file_close_fd_locked(files, fd); |
| spin_unlock(&files->file_lock); |
| if (!file) |
| return -EBADF; |
| |
| return filp_close(file, files); |
| } |
| EXPORT_SYMBOL(close_fd); /* for ksys_close() */ |
| |
| /** |
| * last_fd - return last valid index into fd table |
| * @fdt: File descriptor table. |
| * |
| * Context: Either rcu read lock or files_lock must be held. |
| * |
| * Returns: Last valid index into fdtable. |
| */ |
| static inline unsigned last_fd(struct fdtable *fdt) |
| { |
| return fdt->max_fds - 1; |
| } |
| |
| static inline void __range_cloexec(struct files_struct *cur_fds, |
| unsigned int fd, unsigned int max_fd) |
| { |
| struct fdtable *fdt; |
| |
| /* make sure we're using the correct maximum value */ |
| spin_lock(&cur_fds->file_lock); |
| fdt = files_fdtable(cur_fds); |
| max_fd = min(last_fd(fdt), max_fd); |
| if (fd <= max_fd) |
| bitmap_set(fdt->close_on_exec, fd, max_fd - fd + 1); |
| spin_unlock(&cur_fds->file_lock); |
| } |
| |
| static inline void __range_close(struct files_struct *files, unsigned int fd, |
| unsigned int max_fd) |
| { |
| struct file *file; |
| unsigned n; |
| |
| spin_lock(&files->file_lock); |
| n = last_fd(files_fdtable(files)); |
| max_fd = min(max_fd, n); |
| |
| for (; fd <= max_fd; fd++) { |
| file = file_close_fd_locked(files, fd); |
| if (file) { |
| spin_unlock(&files->file_lock); |
| filp_close(file, files); |
| cond_resched(); |
| spin_lock(&files->file_lock); |
| } else if (need_resched()) { |
| spin_unlock(&files->file_lock); |
| cond_resched(); |
| spin_lock(&files->file_lock); |
| } |
| } |
| spin_unlock(&files->file_lock); |
| } |
| |
| /** |
| * __close_range() - Close all file descriptors in a given range. |
| * |
| * @fd: starting file descriptor to close |
| * @max_fd: last file descriptor to close |
| * @flags: CLOSE_RANGE flags. |
| * |
| * This closes a range of file descriptors. All file descriptors |
| * from @fd up to and including @max_fd are closed. |
| */ |
| int __close_range(unsigned fd, unsigned max_fd, unsigned int flags) |
| { |
| struct task_struct *me = current; |
| struct files_struct *cur_fds = me->files, *fds = NULL; |
| |
| if (flags & ~(CLOSE_RANGE_UNSHARE | CLOSE_RANGE_CLOEXEC)) |
| return -EINVAL; |
| |
| if (fd > max_fd) |
| return -EINVAL; |
| |
| if (flags & CLOSE_RANGE_UNSHARE) { |
| int ret; |
| unsigned int max_unshare_fds = NR_OPEN_MAX; |
| |
| /* |
| * If the caller requested all fds to be made cloexec we always |
| * copy all of the file descriptors since they still want to |
| * use them. |
| */ |
| if (!(flags & CLOSE_RANGE_CLOEXEC)) { |
| /* |
| * If the requested range is greater than the current |
| * maximum, we're closing everything so only copy all |
| * file descriptors beneath the lowest file descriptor. |
| */ |
| rcu_read_lock(); |
| if (max_fd >= last_fd(files_fdtable(cur_fds))) |
| max_unshare_fds = fd; |
| rcu_read_unlock(); |
| } |
| |
| ret = unshare_fd(CLONE_FILES, max_unshare_fds, &fds); |
| if (ret) |
| return ret; |
| |
| /* |
| * We used to share our file descriptor table, and have now |
| * created a private one, make sure we're using it below. |
| */ |
| if (fds) |
| swap(cur_fds, fds); |
| } |
| |
| if (flags & CLOSE_RANGE_CLOEXEC) |
| __range_cloexec(cur_fds, fd, max_fd); |
| else |
| __range_close(cur_fds, fd, max_fd); |
| |
| if (fds) { |
| /* |
| * We're done closing the files we were supposed to. Time to install |
| * the new file descriptor table and drop the old one. |
| */ |
| task_lock(me); |
| me->files = cur_fds; |
| task_unlock(me); |
| put_files_struct(fds); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * file_close_fd - return file associated with fd |
| * @fd: file descriptor to retrieve file for |
| * |
| * Doesn't take a separate reference count. |
| * |
| * Returns: The file associated with @fd (NULL if @fd is not open) |
| */ |
| struct file *file_close_fd(unsigned int fd) |
| { |
| struct files_struct *files = current->files; |
| struct file *file; |
| |
| spin_lock(&files->file_lock); |
| file = file_close_fd_locked(files, fd); |
| spin_unlock(&files->file_lock); |
| |
| return file; |
| } |
| |
| void do_close_on_exec(struct files_struct *files) |
| { |
| unsigned i; |
| struct fdtable *fdt; |
| |
| /* exec unshares first */ |
| spin_lock(&files->file_lock); |
| for (i = 0; ; i++) { |
| unsigned long set; |
| unsigned fd = i * BITS_PER_LONG; |
| fdt = files_fdtable(files); |
| if (fd >= fdt->max_fds) |
| break; |
| set = fdt->close_on_exec[i]; |
| if (!set) |
| continue; |
| fdt->close_on_exec[i] = 0; |
| for ( ; set ; fd++, set >>= 1) { |
| struct file *file; |
| if (!(set & 1)) |
| continue; |
| file = fdt->fd[fd]; |
| if (!file) |
| continue; |
| rcu_assign_pointer(fdt->fd[fd], NULL); |
| __put_unused_fd(files, fd); |
| spin_unlock(&files->file_lock); |
| filp_close(file, files); |
| cond_resched(); |
| spin_lock(&files->file_lock); |
| } |
| |
| } |
| spin_unlock(&files->file_lock); |
| } |
| |
| static struct file *__get_file_rcu(struct file __rcu **f) |
| { |
| struct file __rcu *file; |
| struct file __rcu *file_reloaded; |
| struct file __rcu *file_reloaded_cmp; |
| |
| file = rcu_dereference_raw(*f); |
| if (!file) |
| return NULL; |
| |
| if (unlikely(!atomic_long_inc_not_zero(&file->f_count))) |
| return ERR_PTR(-EAGAIN); |
| |
| file_reloaded = rcu_dereference_raw(*f); |
| |
| /* |
| * Ensure that all accesses have a dependency on the load from |
| * rcu_dereference_raw() above so we get correct ordering |
| * between reuse/allocation and the pointer check below. |
| */ |
| file_reloaded_cmp = file_reloaded; |
| OPTIMIZER_HIDE_VAR(file_reloaded_cmp); |
| |
| /* |
| * atomic_long_inc_not_zero() above provided a full memory |
| * barrier when we acquired a reference. |
| * |
| * This is paired with the write barrier from assigning to the |
| * __rcu protected file pointer so that if that pointer still |
| * matches the current file, we know we have successfully |
| * acquired a reference to the right file. |
| * |
| * If the pointers don't match the file has been reallocated by |
| * SLAB_TYPESAFE_BY_RCU. |
| */ |
| if (file == file_reloaded_cmp) |
| return file_reloaded; |
| |
| fput(file); |
| return ERR_PTR(-EAGAIN); |
| } |
| |
| /** |
| * get_file_rcu - try go get a reference to a file under rcu |
| * @f: the file to get a reference on |
| * |
| * This function tries to get a reference on @f carefully verifying that |
| * @f hasn't been reused. |
| * |
| * This function should rarely have to be used and only by users who |
| * understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it. |
| * |
| * Return: Returns @f with the reference count increased or NULL. |
| */ |
| struct file *get_file_rcu(struct file __rcu **f) |
| { |
| for (;;) { |
| struct file __rcu *file; |
| |
| file = __get_file_rcu(f); |
| if (unlikely(!file)) |
| return NULL; |
| |
| if (unlikely(IS_ERR(file))) |
| continue; |
| |
| return file; |
| } |
| } |
| EXPORT_SYMBOL_GPL(get_file_rcu); |
| |
| /** |
| * get_file_active - try go get a reference to a file |
| * @f: the file to get a reference on |
| * |
| * In contast to get_file_rcu() the pointer itself isn't part of the |
| * reference counting. |
| * |
| * This function should rarely have to be used and only by users who |
| * understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it. |
| * |
| * Return: Returns @f with the reference count increased or NULL. |
| */ |
| struct file *get_file_active(struct file **f) |
| { |
| struct file __rcu *file; |
| |
| rcu_read_lock(); |
| file = __get_file_rcu(f); |
| rcu_read_unlock(); |
| if (IS_ERR(file)) |
| file = NULL; |
| return file; |
| } |
| EXPORT_SYMBOL_GPL(get_file_active); |
| |
| static inline struct file *__fget_files_rcu(struct files_struct *files, |
| unsigned int fd, fmode_t mask) |
| { |
| for (;;) { |
| struct file *file; |
| struct fdtable *fdt = rcu_dereference_raw(files->fdt); |
| struct file __rcu **fdentry; |
| unsigned long nospec_mask; |
| |
| /* Mask is a 0 for invalid fd's, ~0 for valid ones */ |
| nospec_mask = array_index_mask_nospec(fd, fdt->max_fds); |
| |
| /* |
| * fdentry points to the 'fd' offset, or fdt->fd[0]. |
| * Loading from fdt->fd[0] is always safe, because the |
| * array always exists. |
| */ |
| fdentry = fdt->fd + (fd & nospec_mask); |
| |
| /* Do the load, then mask any invalid result */ |
| file = rcu_dereference_raw(*fdentry); |
| file = (void *)(nospec_mask & (unsigned long)file); |
| if (unlikely(!file)) |
| return NULL; |
| |
| /* |
| * Ok, we have a file pointer that was valid at |
| * some point, but it might have become stale since. |
| * |
| * We need to confirm it by incrementing the refcount |
| * and then check the lookup again. |
| * |
| * atomic_long_inc_not_zero() gives us a full memory |
| * barrier. We only really need an 'acquire' one to |
| * protect the loads below, but we don't have that. |
| */ |
| if (unlikely(!atomic_long_inc_not_zero(&file->f_count))) |
| continue; |
| |
| /* |
| * Such a race can take two forms: |
| * |
| * (a) the file ref already went down to zero and the |
| * file hasn't been reused yet or the file count |
| * isn't zero but the file has already been reused. |
| * |
| * (b) the file table entry has changed under us. |
| * Note that we don't need to re-check the 'fdt->fd' |
| * pointer having changed, because it always goes |
| * hand-in-hand with 'fdt'. |
| * |
| * If so, we need to put our ref and try again. |
| */ |
| if (unlikely(file != rcu_dereference_raw(*fdentry)) || |
| unlikely(rcu_dereference_raw(files->fdt) != fdt)) { |
| fput(file); |
| continue; |
| } |
| |
| /* |
| * This isn't the file we're looking for or we're not |
| * allowed to get a reference to it. |
| */ |
| if (unlikely(file->f_mode & mask)) { |
| fput(file); |
| return NULL; |
| } |
| |
| /* |
| * Ok, we have a ref to the file, and checked that it |
| * still exists. |
| */ |
| return file; |
| } |
| } |
| |
| static struct file *__fget_files(struct files_struct *files, unsigned int fd, |
| fmode_t mask) |
| { |
| struct file *file; |
| |
| rcu_read_lock(); |
| file = __fget_files_rcu(files, fd, mask); |
| rcu_read_unlock(); |
| |
| return file; |
| } |
| |
| static inline struct file *__fget(unsigned int fd, fmode_t mask) |
| { |
| return __fget_files(current->files, fd, mask); |
| } |
| |
| struct file *fget(unsigned int fd) |
| { |
| return __fget(fd, FMODE_PATH); |
| } |
| EXPORT_SYMBOL(fget); |
| |
| struct file *fget_raw(unsigned int fd) |
| { |
| return __fget(fd, 0); |
| } |
| EXPORT_SYMBOL(fget_raw); |
| |
| struct file *fget_task(struct task_struct *task, unsigned int fd) |
| { |
| struct file *file = NULL; |
| |
| task_lock(task); |
| if (task->files) |
| file = __fget_files(task->files, fd, 0); |
| task_unlock(task); |
| |
| return file; |
| } |
| |
| struct file *lookup_fdget_rcu(unsigned int fd) |
| { |
| return __fget_files_rcu(current->files, fd, 0); |
| |
| } |
| EXPORT_SYMBOL_GPL(lookup_fdget_rcu); |
| |
| struct file *task_lookup_fdget_rcu(struct task_struct *task, unsigned int fd) |
| { |
| /* Must be called with rcu_read_lock held */ |
| struct files_struct *files; |
| struct file *file = NULL; |
| |
| task_lock(task); |
| files = task->files; |
| if (files) |
| file = __fget_files_rcu(files, fd, 0); |
| task_unlock(task); |
| |
| return file; |
| } |
| |
| struct file *task_lookup_next_fdget_rcu(struct task_struct *task, unsigned int *ret_fd) |
| { |
| /* Must be called with rcu_read_lock held */ |
| struct files_struct *files; |
| unsigned int fd = *ret_fd; |
| struct file *file = NULL; |
| |
| task_lock(task); |
| files = task->files; |
| if (files) { |
| for (; fd < files_fdtable(files)->max_fds; fd++) { |
| file = __fget_files_rcu(files, fd, 0); |
| if (file) |
| break; |
| } |
| } |
| task_unlock(task); |
| *ret_fd = fd; |
| return file; |
| } |
| EXPORT_SYMBOL(task_lookup_next_fdget_rcu); |
| |
| /* |
| * Lightweight file lookup - no refcnt increment if fd table isn't shared. |
| * |
| * You can use this instead of fget if you satisfy all of the following |
| * conditions: |
| * 1) You must call fput_light before exiting the syscall and returning control |
| * to userspace (i.e. you cannot remember the returned struct file * after |
| * returning to userspace). |
| * 2) You must not call filp_close on the returned struct file * in between |
| * calls to fget_light and fput_light. |
| * 3) You must not clone the current task in between the calls to fget_light |
| * and fput_light. |
| * |
| * The fput_needed flag returned by fget_light should be passed to the |
| * corresponding fput_light. |
| */ |
| static unsigned long __fget_light(unsigned int fd, fmode_t mask) |
| { |
| struct files_struct *files = current->files; |
| struct file *file; |
| |
| /* |
| * If another thread is concurrently calling close_fd() followed |
| * by put_files_struct(), we must not observe the old table |
| * entry combined with the new refcount - otherwise we could |
| * return a file that is concurrently being freed. |
| * |
| * atomic_read_acquire() pairs with atomic_dec_and_test() in |
| * put_files_struct(). |
| */ |
| if (likely(atomic_read_acquire(&files->count) == 1)) { |
| file = files_lookup_fd_raw(files, fd); |
| if (!file || unlikely(file->f_mode & mask)) |
| return 0; |
| return (unsigned long)file; |
| } else { |
| file = __fget_files(files, fd, mask); |
| if (!file) |
| return 0; |
| return FDPUT_FPUT | (unsigned long)file; |
| } |
| } |
| unsigned long __fdget(unsigned int fd) |
| { |
| return __fget_light(fd, FMODE_PATH); |
| } |
| EXPORT_SYMBOL(__fdget); |
| |
| unsigned long __fdget_raw(unsigned int fd) |
| { |
| return __fget_light(fd, 0); |
| } |
| |
| /* |
| * Try to avoid f_pos locking. We only need it if the |
| * file is marked for FMODE_ATOMIC_POS, and it can be |
| * accessed multiple ways. |
| * |
| * Always do it for directories, because pidfd_getfd() |
| * can make a file accessible even if it otherwise would |
| * not be, and for directories this is a correctness |
| * issue, not a "POSIX requirement". |
| */ |
| static inline bool file_needs_f_pos_lock(struct file *file) |
| { |
| return (file->f_mode & FMODE_ATOMIC_POS) && |
| (file_count(file) > 1 || file->f_op->iterate_shared); |
| } |
| |
| unsigned long __fdget_pos(unsigned int fd) |
| { |
| unsigned long v = __fdget(fd); |
| struct file *file = (struct file *)(v & ~3); |
| |
| if (file && file_needs_f_pos_lock(file)) { |
| v |= FDPUT_POS_UNLOCK; |
| mutex_lock(&file->f_pos_lock); |
| } |
| return v; |
| } |
| |
| void __f_unlock_pos(struct file *f) |
| { |
| mutex_unlock(&f->f_pos_lock); |
| } |
| |
| /* |
| * We only lock f_pos if we have threads or if the file might be |
| * shared with another process. In both cases we'll have an elevated |
| * file count (done either by fdget() or by fork()). |
| */ |
| |
| void set_close_on_exec(unsigned int fd, int flag) |
| { |
| struct files_struct *files = current->files; |
| struct fdtable *fdt; |
| spin_lock(&files->file_lock); |
| fdt = files_fdtable(files); |
| if (flag) |
| __set_close_on_exec(fd, fdt); |
| else |
| __clear_close_on_exec(fd, fdt); |
| spin_unlock(&files->file_lock); |
| } |
| |
| bool get_close_on_exec(unsigned int fd) |
| { |
| struct files_struct *files = current->files; |
| struct fdtable *fdt; |
| bool res; |
| rcu_read_lock(); |
| fdt = files_fdtable(files); |
| res = close_on_exec(fd, fdt); |
| rcu_read_unlock(); |
| return res; |
| } |
| |
| static int do_dup2(struct files_struct *files, |
| struct file *file, unsigned fd, unsigned flags) |
| __releases(&files->file_lock) |
| { |
| struct file *tofree; |
| struct fdtable *fdt; |
| |
| /* |
| * We need to detect attempts to do dup2() over allocated but still |
| * not finished descriptor. NB: OpenBSD avoids that at the price of |
| * extra work in their equivalent of fget() - they insert struct |
| * file immediately after grabbing descriptor, mark it larval if |
| * more work (e.g. actual opening) is needed and make sure that |
| * fget() treats larval files as absent. Potentially interesting, |
| * but while extra work in fget() is trivial, locking implications |
| * and amount of surgery on open()-related paths in VFS are not. |
| * FreeBSD fails with -EBADF in the same situation, NetBSD "solution" |
| * deadlocks in rather amusing ways, AFAICS. All of that is out of |
| * scope of POSIX or SUS, since neither considers shared descriptor |
| * tables and this condition does not arise without those. |
| */ |
| fdt = files_fdtable(files); |
| tofree = fdt->fd[fd]; |
| if (!tofree && fd_is_open(fd, fdt)) |
| goto Ebusy; |
| get_file(file); |
| rcu_assign_pointer(fdt->fd[fd], file); |
| __set_open_fd(fd, fdt); |
| if (flags & O_CLOEXEC) |
| __set_close_on_exec(fd, fdt); |
| else |
| __clear_close_on_exec(fd, fdt); |
| spin_unlock(&files->file_lock); |
| |
| if (tofree) |
| filp_close(tofree, files); |
| |
| return fd; |
| |
| Ebusy: |
| spin_unlock(&files->file_lock); |
| return -EBUSY; |
| } |
| |
| int replace_fd(unsigned fd, struct file *file, unsigned flags) |
| { |
| int err; |
| struct files_struct *files = current->files; |
| |
| if (!file) |
| return close_fd(fd); |
| |
| if (fd >= rlimit(RLIMIT_NOFILE)) |
| return -EBADF; |
| |
| spin_lock(&files->file_lock); |
| err = expand_files(files, fd); |
| if (unlikely(err < 0)) |
| goto out_unlock; |
| return do_dup2(files, file, fd, flags); |
| |
| out_unlock: |
| spin_unlock(&files->file_lock); |
| return err; |
| } |
| |
| /** |
| * receive_fd() - Install received file into file descriptor table |
| * @file: struct file that was received from another process |
| * @ufd: __user pointer to write new fd number to |
| * @o_flags: the O_* flags to apply to the new fd entry |
| * |
| * Installs a received file into the file descriptor table, with appropriate |
| * checks and count updates. Optionally writes the fd number to userspace, if |
| * @ufd is non-NULL. |
| * |
| * This helper handles its own reference counting of the incoming |
| * struct file. |
| * |
| * Returns newly install fd or -ve on error. |
| */ |
| int receive_fd(struct file *file, int __user *ufd, unsigned int o_flags) |
| { |
| int new_fd; |
| int error; |
| |
| error = security_file_receive(file); |
| if (error) |
| return error; |
| |
| new_fd = get_unused_fd_flags(o_flags); |
| if (new_fd < 0) |
| return new_fd; |
| |
| if (ufd) { |
| error = put_user(new_fd, ufd); |
| if (error) { |
| put_unused_fd(new_fd); |
| return error; |
| } |
| } |
| |
| fd_install(new_fd, get_file(file)); |
| __receive_sock(file); |
| return new_fd; |
| } |
| EXPORT_SYMBOL_GPL(receive_fd); |
| |
| int receive_fd_replace(int new_fd, struct file *file, unsigned int o_flags) |
| { |
| int error; |
| |
| error = security_file_receive(file); |
| if (error) |
| return error; |
| error = replace_fd(new_fd, file, o_flags); |
| if (error) |
| return error; |
| __receive_sock(file); |
| return new_fd; |
| } |
| |
| static int ksys_dup3(unsigned int oldfd, unsigned int newfd, int flags) |
| { |
| int err = -EBADF; |
| struct file *file; |
| struct files_struct *files = current->files; |
| |
| if ((flags & ~O_CLOEXEC) != 0) |
| return -EINVAL; |
| |
| if (unlikely(oldfd == newfd)) |
| return -EINVAL; |
| |
| if (newfd >= rlimit(RLIMIT_NOFILE)) |
| return -EBADF; |
| |
| spin_lock(&files->file_lock); |
| err = expand_files(files, newfd); |
| file = files_lookup_fd_locked(files, oldfd); |
| if (unlikely(!file)) |
| goto Ebadf; |
| if (unlikely(err < 0)) { |
| if (err == -EMFILE) |
| goto Ebadf; |
| goto out_unlock; |
| } |
| return do_dup2(files, file, newfd, flags); |
| |
| Ebadf: |
| err = -EBADF; |
| out_unlock: |
| spin_unlock(&files->file_lock); |
| return err; |
| } |
| |
| SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags) |
| { |
| return ksys_dup3(oldfd, newfd, flags); |
| } |
| |
| SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd) |
| { |
| if (unlikely(newfd == oldfd)) { /* corner case */ |
| struct files_struct *files = current->files; |
| struct file *f; |
| int retval = oldfd; |
| |
| rcu_read_lock(); |
| f = __fget_files_rcu(files, oldfd, 0); |
| if (!f) |
| retval = -EBADF; |
| rcu_read_unlock(); |
| if (f) |
| fput(f); |
| return retval; |
| } |
| return ksys_dup3(oldfd, newfd, 0); |
| } |
| |
| SYSCALL_DEFINE1(dup, unsigned int, fildes) |
| { |
| int ret = -EBADF; |
| struct file *file = fget_raw(fildes); |
| |
| if (file) { |
| ret = get_unused_fd_flags(0); |
| if (ret >= 0) |
| fd_install(ret, file); |
| else |
| fput(file); |
| } |
| return ret; |
| } |
| |
| int f_dupfd(unsigned int from, struct file *file, unsigned flags) |
| { |
| unsigned long nofile = rlimit(RLIMIT_NOFILE); |
| int err; |
| if (from >= nofile) |
| return -EINVAL; |
| err = alloc_fd(from, nofile, flags); |
| if (err >= 0) { |
| get_file(file); |
| fd_install(err, file); |
| } |
| return err; |
| } |
| |
| int iterate_fd(struct files_struct *files, unsigned n, |
| int (*f)(const void *, struct file *, unsigned), |
| const void *p) |
| { |
| struct fdtable *fdt; |
| int res = 0; |
| if (!files) |
| return 0; |
| spin_lock(&files->file_lock); |
| for (fdt = files_fdtable(files); n < fdt->max_fds; n++) { |
| struct file *file; |
| file = rcu_dereference_check_fdtable(files, fdt->fd[n]); |
| if (!file) |
| continue; |
| res = f(p, file, n); |
| if (res) |
| break; |
| } |
| spin_unlock(&files->file_lock); |
| return res; |
| } |
| EXPORT_SYMBOL(iterate_fd); |