blob: bfdb815998328d62c287b27cc9d9cf8e03247bae [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Test module for lockless object pool
*
* Copyright: wuqiang.matt@bytedance.com
*/
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/completion.h>
#include <linux/kthread.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/delay.h>
#include <linux/hrtimer.h>
#include <linux/objpool.h>
#define OT_NR_MAX_BULK (16)
/* memory usage */
struct ot_mem_stat {
atomic_long_t alloc;
atomic_long_t free;
};
/* object allocation results */
struct ot_obj_stat {
unsigned long nhits;
unsigned long nmiss;
};
/* control & results per testcase */
struct ot_data {
struct rw_semaphore start;
struct completion wait;
struct completion rcu;
atomic_t nthreads ____cacheline_aligned_in_smp;
atomic_t stop ____cacheline_aligned_in_smp;
struct ot_mem_stat kmalloc;
struct ot_mem_stat vmalloc;
struct ot_obj_stat objects;
u64 duration;
};
/* testcase */
struct ot_test {
int async; /* synchronous or asynchronous */
int mode; /* only mode 0 supported */
int objsz; /* object size */
int duration; /* ms */
int delay; /* ms */
int bulk_normal;
int bulk_irq;
unsigned long hrtimer; /* ms */
const char *name;
struct ot_data data;
};
/* per-cpu worker */
struct ot_item {
struct objpool_head *pool; /* pool head */
struct ot_test *test; /* test parameters */
void (*worker)(struct ot_item *item, int irq);
/* hrtimer control */
ktime_t hrtcycle;
struct hrtimer hrtimer;
int bulk[2]; /* for thread and irq */
int delay;
u32 niters;
/* summary per thread */
struct ot_obj_stat stat[2]; /* thread and irq */
u64 duration;
};
/*
* memory leakage checking
*/
static void *ot_kzalloc(struct ot_test *test, long size)
{
void *ptr = kzalloc(size, GFP_KERNEL);
if (ptr)
atomic_long_add(size, &test->data.kmalloc.alloc);
return ptr;
}
static void ot_kfree(struct ot_test *test, void *ptr, long size)
{
if (!ptr)
return;
atomic_long_add(size, &test->data.kmalloc.free);
kfree(ptr);
}
static void ot_mem_report(struct ot_test *test)
{
long alloc, free;
pr_info("memory allocation summary for %s\n", test->name);
alloc = atomic_long_read(&test->data.kmalloc.alloc);
free = atomic_long_read(&test->data.kmalloc.free);
pr_info(" kmalloc: %lu - %lu = %lu\n", alloc, free, alloc - free);
alloc = atomic_long_read(&test->data.vmalloc.alloc);
free = atomic_long_read(&test->data.vmalloc.free);
pr_info(" vmalloc: %lu - %lu = %lu\n", alloc, free, alloc - free);
}
/* user object instance */
struct ot_node {
void *owner;
unsigned long data;
unsigned long refs;
unsigned long payload[32];
};
/* user objpool manager */
struct ot_context {
struct objpool_head pool; /* objpool head */
struct ot_test *test; /* test parameters */
void *ptr; /* user pool buffer */
unsigned long size; /* buffer size */
struct rcu_head rcu;
};
static DEFINE_PER_CPU(struct ot_item, ot_pcup_items);
static int ot_init_data(struct ot_data *data)
{
memset(data, 0, sizeof(*data));
init_rwsem(&data->start);
init_completion(&data->wait);
init_completion(&data->rcu);
atomic_set(&data->nthreads, 1);
return 0;
}
static int ot_init_node(void *nod, void *context)
{
struct ot_context *sop = context;
struct ot_node *on = nod;
on->owner = &sop->pool;
return 0;
}
static enum hrtimer_restart ot_hrtimer_handler(struct hrtimer *hrt)
{
struct ot_item *item = container_of(hrt, struct ot_item, hrtimer);
struct ot_test *test = item->test;
if (atomic_read_acquire(&test->data.stop))
return HRTIMER_NORESTART;
/* do bulk-testings for objects pop/push */
item->worker(item, 1);
hrtimer_forward(hrt, hrt->base->get_time(), item->hrtcycle);
return HRTIMER_RESTART;
}
static void ot_start_hrtimer(struct ot_item *item)
{
if (!item->test->hrtimer)
return;
hrtimer_start(&item->hrtimer, item->hrtcycle, HRTIMER_MODE_REL);
}
static void ot_stop_hrtimer(struct ot_item *item)
{
if (!item->test->hrtimer)
return;
hrtimer_cancel(&item->hrtimer);
}
static int ot_init_hrtimer(struct ot_item *item, unsigned long hrtimer)
{
struct hrtimer *hrt = &item->hrtimer;
if (!hrtimer)
return -ENOENT;
item->hrtcycle = ktime_set(0, hrtimer * 1000000UL);
hrtimer_init(hrt, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
hrt->function = ot_hrtimer_handler;
return 0;
}
static int ot_init_cpu_item(struct ot_item *item,
struct ot_test *test,
struct objpool_head *pool,
void (*worker)(struct ot_item *, int))
{
memset(item, 0, sizeof(*item));
item->pool = pool;
item->test = test;
item->worker = worker;
item->bulk[0] = test->bulk_normal;
item->bulk[1] = test->bulk_irq;
item->delay = test->delay;
/* initialize hrtimer */
ot_init_hrtimer(item, item->test->hrtimer);
return 0;
}
static int ot_thread_worker(void *arg)
{
struct ot_item *item = arg;
struct ot_test *test = item->test;
ktime_t start;
atomic_inc(&test->data.nthreads);
down_read(&test->data.start);
up_read(&test->data.start);
start = ktime_get();
ot_start_hrtimer(item);
do {
if (atomic_read_acquire(&test->data.stop))
break;
/* do bulk-testings for objects pop/push */
item->worker(item, 0);
} while (!kthread_should_stop());
ot_stop_hrtimer(item);
item->duration = (u64) ktime_us_delta(ktime_get(), start);
if (atomic_dec_and_test(&test->data.nthreads))
complete(&test->data.wait);
return 0;
}
static void ot_perf_report(struct ot_test *test, u64 duration)
{
struct ot_obj_stat total, normal = {0}, irq = {0};
int cpu, nthreads = 0;
pr_info("\n");
pr_info("Testing summary for %s\n", test->name);
for_each_possible_cpu(cpu) {
struct ot_item *item = per_cpu_ptr(&ot_pcup_items, cpu);
if (!item->duration)
continue;
normal.nhits += item->stat[0].nhits;
normal.nmiss += item->stat[0].nmiss;
irq.nhits += item->stat[1].nhits;
irq.nmiss += item->stat[1].nmiss;
pr_info("CPU: %d duration: %lluus\n", cpu, item->duration);
pr_info("\tthread:\t%16lu hits \t%16lu miss\n",
item->stat[0].nhits, item->stat[0].nmiss);
pr_info("\tirq: \t%16lu hits \t%16lu miss\n",
item->stat[1].nhits, item->stat[1].nmiss);
pr_info("\ttotal: \t%16lu hits \t%16lu miss\n",
item->stat[0].nhits + item->stat[1].nhits,
item->stat[0].nmiss + item->stat[1].nmiss);
nthreads++;
}
total.nhits = normal.nhits + irq.nhits;
total.nmiss = normal.nmiss + irq.nmiss;
pr_info("ALL: \tnthreads: %d duration: %lluus\n", nthreads, duration);
pr_info("SUM: \t%16lu hits \t%16lu miss\n",
total.nhits, total.nmiss);
test->data.objects = total;
test->data.duration = duration;
}
/*
* synchronous test cases for objpool manipulation
*/
/* objpool manipulation for synchronous mode (percpu objpool) */
static struct ot_context *ot_init_sync_m0(struct ot_test *test)
{
struct ot_context *sop = NULL;
int max = num_possible_cpus() << 3;
gfp_t gfp = GFP_KERNEL;
sop = (struct ot_context *)ot_kzalloc(test, sizeof(*sop));
if (!sop)
return NULL;
sop->test = test;
if (test->objsz < 512)
gfp = GFP_ATOMIC;
if (objpool_init(&sop->pool, max, test->objsz,
gfp, sop, ot_init_node, NULL)) {
ot_kfree(test, sop, sizeof(*sop));
return NULL;
}
WARN_ON(max != sop->pool.nr_objs);
return sop;
}
static void ot_fini_sync(struct ot_context *sop)
{
objpool_fini(&sop->pool);
ot_kfree(sop->test, sop, sizeof(*sop));
}
static struct {
struct ot_context * (*init)(struct ot_test *oc);
void (*fini)(struct ot_context *sop);
} g_ot_sync_ops[] = {
{.init = ot_init_sync_m0, .fini = ot_fini_sync},
};
/*
* synchronous test cases: performance mode
*/
static void ot_bulk_sync(struct ot_item *item, int irq)
{
struct ot_node *nods[OT_NR_MAX_BULK];
int i;
for (i = 0; i < item->bulk[irq]; i++)
nods[i] = objpool_pop(item->pool);
if (!irq && (item->delay || !(++(item->niters) & 0x7FFF)))
msleep(item->delay);
while (i-- > 0) {
struct ot_node *on = nods[i];
if (on) {
on->refs++;
objpool_push(on, item->pool);
item->stat[irq].nhits++;
} else {
item->stat[irq].nmiss++;
}
}
}
static int ot_start_sync(struct ot_test *test)
{
struct ot_context *sop;
ktime_t start;
u64 duration;
unsigned long timeout;
int cpu;
/* initialize objpool for syncrhonous testcase */
sop = g_ot_sync_ops[test->mode].init(test);
if (!sop)
return -ENOMEM;
/* grab rwsem to block testing threads */
down_write(&test->data.start);
for_each_possible_cpu(cpu) {
struct ot_item *item = per_cpu_ptr(&ot_pcup_items, cpu);
struct task_struct *work;
ot_init_cpu_item(item, test, &sop->pool, ot_bulk_sync);
/* skip offline cpus */
if (!cpu_online(cpu))
continue;
work = kthread_create_on_node(ot_thread_worker, item,
cpu_to_node(cpu), "ot_worker_%d", cpu);
if (IS_ERR(work)) {
pr_err("failed to create thread for cpu %d\n", cpu);
} else {
kthread_bind(work, cpu);
wake_up_process(work);
}
}
/* wait a while to make sure all threads waiting at start line */
msleep(20);
/* in case no threads were created: memory insufficient ? */
if (atomic_dec_and_test(&test->data.nthreads))
complete(&test->data.wait);
// sched_set_fifo_low(current);
/* start objpool testing threads */
start = ktime_get();
up_write(&test->data.start);
/* yeild cpu to worker threads for duration ms */
timeout = msecs_to_jiffies(test->duration);
schedule_timeout_interruptible(timeout);
/* tell workers threads to quit */
atomic_set_release(&test->data.stop, 1);
/* wait all workers threads finish and quit */
wait_for_completion(&test->data.wait);
duration = (u64) ktime_us_delta(ktime_get(), start);
/* cleanup objpool */
g_ot_sync_ops[test->mode].fini(sop);
/* report testing summary and performance results */
ot_perf_report(test, duration);
/* report memory allocation summary */
ot_mem_report(test);
return 0;
}
/*
* asynchronous test cases: pool lifecycle controlled by refcount
*/
static void ot_fini_async_rcu(struct rcu_head *rcu)
{
struct ot_context *sop = container_of(rcu, struct ot_context, rcu);
struct ot_test *test = sop->test;
/* here all cpus are aware of the stop event: test->data.stop = 1 */
WARN_ON(!atomic_read_acquire(&test->data.stop));
objpool_fini(&sop->pool);
complete(&test->data.rcu);
}
static void ot_fini_async(struct ot_context *sop)
{
/* make sure the stop event is acknowledged by all cores */
call_rcu(&sop->rcu, ot_fini_async_rcu);
}
static int ot_objpool_release(struct objpool_head *head, void *context)
{
struct ot_context *sop = context;
WARN_ON(!head || !sop || head != &sop->pool);
/* do context cleaning if needed */
if (sop)
ot_kfree(sop->test, sop, sizeof(*sop));
return 0;
}
static struct ot_context *ot_init_async_m0(struct ot_test *test)
{
struct ot_context *sop = NULL;
int max = num_possible_cpus() << 3;
gfp_t gfp = GFP_KERNEL;
sop = (struct ot_context *)ot_kzalloc(test, sizeof(*sop));
if (!sop)
return NULL;
sop->test = test;
if (test->objsz < 512)
gfp = GFP_ATOMIC;
if (objpool_init(&sop->pool, max, test->objsz, gfp, sop,
ot_init_node, ot_objpool_release)) {
ot_kfree(test, sop, sizeof(*sop));
return NULL;
}
WARN_ON(max != sop->pool.nr_objs);
return sop;
}
static struct {
struct ot_context * (*init)(struct ot_test *oc);
void (*fini)(struct ot_context *sop);
} g_ot_async_ops[] = {
{.init = ot_init_async_m0, .fini = ot_fini_async},
};
static void ot_nod_recycle(struct ot_node *on, struct objpool_head *pool,
int release)
{
struct ot_context *sop;
on->refs++;
if (!release) {
/* push object back to opjpool for reuse */
objpool_push(on, pool);
return;
}
sop = container_of(pool, struct ot_context, pool);
WARN_ON(sop != pool->context);
/* unref objpool with nod removed forever */
objpool_drop(on, pool);
}
static void ot_bulk_async(struct ot_item *item, int irq)
{
struct ot_test *test = item->test;
struct ot_node *nods[OT_NR_MAX_BULK];
int i, stop;
for (i = 0; i < item->bulk[irq]; i++)
nods[i] = objpool_pop(item->pool);
if (!irq) {
if (item->delay || !(++(item->niters) & 0x7FFF))
msleep(item->delay);
get_cpu();
}
stop = atomic_read_acquire(&test->data.stop);
/* drop all objects and deref objpool */
while (i-- > 0) {
struct ot_node *on = nods[i];
if (on) {
on->refs++;
ot_nod_recycle(on, item->pool, stop);
item->stat[irq].nhits++;
} else {
item->stat[irq].nmiss++;
}
}
if (!irq)
put_cpu();
}
static int ot_start_async(struct ot_test *test)
{
struct ot_context *sop;
ktime_t start;
u64 duration;
unsigned long timeout;
int cpu;
/* initialize objpool for syncrhonous testcase */
sop = g_ot_async_ops[test->mode].init(test);
if (!sop)
return -ENOMEM;
/* grab rwsem to block testing threads */
down_write(&test->data.start);
for_each_possible_cpu(cpu) {
struct ot_item *item = per_cpu_ptr(&ot_pcup_items, cpu);
struct task_struct *work;
ot_init_cpu_item(item, test, &sop->pool, ot_bulk_async);
/* skip offline cpus */
if (!cpu_online(cpu))
continue;
work = kthread_create_on_node(ot_thread_worker, item,
cpu_to_node(cpu), "ot_worker_%d", cpu);
if (IS_ERR(work)) {
pr_err("failed to create thread for cpu %d\n", cpu);
} else {
kthread_bind(work, cpu);
wake_up_process(work);
}
}
/* wait a while to make sure all threads waiting at start line */
msleep(20);
/* in case no threads were created: memory insufficient ? */
if (atomic_dec_and_test(&test->data.nthreads))
complete(&test->data.wait);
/* start objpool testing threads */
start = ktime_get();
up_write(&test->data.start);
/* yeild cpu to worker threads for duration ms */
timeout = msecs_to_jiffies(test->duration);
schedule_timeout_interruptible(timeout);
/* tell workers threads to quit */
atomic_set_release(&test->data.stop, 1);
/* do async-finalization */
g_ot_async_ops[test->mode].fini(sop);
/* wait all workers threads finish and quit */
wait_for_completion(&test->data.wait);
duration = (u64) ktime_us_delta(ktime_get(), start);
/* assure rcu callback is triggered */
wait_for_completion(&test->data.rcu);
/*
* now we are sure that objpool is finalized either
* by rcu callback or by worker threads
*/
/* report testing summary and performance results */
ot_perf_report(test, duration);
/* report memory allocation summary */
ot_mem_report(test);
return 0;
}
/*
* predefined testing cases:
* synchronous case / overrun case / async case
*
* async: synchronous or asynchronous testing
* mode: only mode 0 supported
* objsz: object size
* duration: int, total test time in ms
* delay: int, delay (in ms) between each iteration
* bulk_normal: int, repeat times for thread worker
* bulk_irq: int, repeat times for irq consumer
* hrtimer: unsigned long, hrtimer intervnal in ms
* name: char *, tag for current test ot_item
*/
#define NODE_COMPACT sizeof(struct ot_node)
#define NODE_VMALLOC (512)
static struct ot_test g_testcases[] = {
/* sync & normal */
{0, 0, NODE_COMPACT, 1000, 0, 1, 0, 0, "sync: percpu objpool"},
{0, 0, NODE_VMALLOC, 1000, 0, 1, 0, 0, "sync: percpu objpool from vmalloc"},
/* sync & hrtimer */
{0, 0, NODE_COMPACT, 1000, 0, 1, 1, 4, "sync & hrtimer: percpu objpool"},
{0, 0, NODE_VMALLOC, 1000, 0, 1, 1, 4, "sync & hrtimer: percpu objpool from vmalloc"},
/* sync & overrun */
{0, 0, NODE_COMPACT, 1000, 0, 16, 0, 0, "sync overrun: percpu objpool"},
{0, 0, NODE_VMALLOC, 1000, 0, 16, 0, 0, "sync overrun: percpu objpool from vmalloc"},
/* async mode */
{1, 0, NODE_COMPACT, 1000, 100, 1, 0, 0, "async: percpu objpool"},
{1, 0, NODE_VMALLOC, 1000, 100, 1, 0, 0, "async: percpu objpool from vmalloc"},
/* async + hrtimer mode */
{1, 0, NODE_COMPACT, 1000, 0, 4, 4, 4, "async & hrtimer: percpu objpool"},
{1, 0, NODE_VMALLOC, 1000, 0, 4, 4, 4, "async & hrtimer: percpu objpool from vmalloc"},
};
static int __init ot_mod_init(void)
{
int i;
/* perform testings */
for (i = 0; i < ARRAY_SIZE(g_testcases); i++) {
ot_init_data(&g_testcases[i].data);
if (g_testcases[i].async)
ot_start_async(&g_testcases[i]);
else
ot_start_sync(&g_testcases[i]);
}
/* show tests summary */
pr_info("\n");
pr_info("Summary of testcases:\n");
for (i = 0; i < ARRAY_SIZE(g_testcases); i++) {
pr_info(" duration: %lluus \thits: %10lu \tmiss: %10lu \t%s\n",
g_testcases[i].data.duration, g_testcases[i].data.objects.nhits,
g_testcases[i].data.objects.nmiss, g_testcases[i].name);
}
return -EAGAIN;
}
static void __exit ot_mod_exit(void)
{
}
module_init(ot_mod_init);
module_exit(ot_mod_exit);
MODULE_LICENSE("GPL");