| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * mm/kmemleak.c |
| * |
| * Copyright (C) 2008 ARM Limited |
| * Written by Catalin Marinas <catalin.marinas@arm.com> |
| * |
| * For more information on the algorithm and kmemleak usage, please see |
| * Documentation/dev-tools/kmemleak.rst. |
| * |
| * Notes on locking |
| * ---------------- |
| * |
| * The following locks and mutexes are used by kmemleak: |
| * |
| * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as |
| * del_state modifications and accesses to the object trees |
| * (object_tree_root, object_phys_tree_root, object_percpu_tree_root). The |
| * object_list is the main list holding the metadata (struct |
| * kmemleak_object) for the allocated memory blocks. The object trees are |
| * red black trees used to look-up metadata based on a pointer to the |
| * corresponding memory block. The kmemleak_object structures are added to |
| * the object_list and the object tree root in the create_object() function |
| * called from the kmemleak_alloc{,_phys,_percpu}() callback and removed in |
| * delete_object() called from the kmemleak_free{,_phys,_percpu}() callback |
| * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object. |
| * Accesses to the metadata (e.g. count) are protected by this lock. Note |
| * that some members of this structure may be protected by other means |
| * (atomic or kmemleak_lock). This lock is also held when scanning the |
| * corresponding memory block to avoid the kernel freeing it via the |
| * kmemleak_free() callback. This is less heavyweight than holding a global |
| * lock like kmemleak_lock during scanning. |
| * - scan_mutex (mutex): ensures that only one thread may scan the memory for |
| * unreferenced objects at a time. The gray_list contains the objects which |
| * are already referenced or marked as false positives and need to be |
| * scanned. This list is only modified during a scanning episode when the |
| * scan_mutex is held. At the end of a scan, the gray_list is always empty. |
| * Note that the kmemleak_object.use_count is incremented when an object is |
| * added to the gray_list and therefore cannot be freed. This mutex also |
| * prevents multiple users of the "kmemleak" debugfs file together with |
| * modifications to the memory scanning parameters including the scan_thread |
| * pointer |
| * |
| * Locks and mutexes are acquired/nested in the following order: |
| * |
| * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) |
| * |
| * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex |
| * regions. |
| * |
| * The kmemleak_object structures have a use_count incremented or decremented |
| * using the get_object()/put_object() functions. When the use_count becomes |
| * 0, this count can no longer be incremented and put_object() schedules the |
| * kmemleak_object freeing via an RCU callback. All calls to the get_object() |
| * function must be protected by rcu_read_lock() to avoid accessing a freed |
| * structure. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/list.h> |
| #include <linux/sched/signal.h> |
| #include <linux/sched/task.h> |
| #include <linux/sched/task_stack.h> |
| #include <linux/jiffies.h> |
| #include <linux/delay.h> |
| #include <linux/export.h> |
| #include <linux/kthread.h> |
| #include <linux/rbtree.h> |
| #include <linux/fs.h> |
| #include <linux/debugfs.h> |
| #include <linux/seq_file.h> |
| #include <linux/cpumask.h> |
| #include <linux/spinlock.h> |
| #include <linux/module.h> |
| #include <linux/mutex.h> |
| #include <linux/rcupdate.h> |
| #include <linux/stacktrace.h> |
| #include <linux/stackdepot.h> |
| #include <linux/cache.h> |
| #include <linux/percpu.h> |
| #include <linux/memblock.h> |
| #include <linux/pfn.h> |
| #include <linux/mmzone.h> |
| #include <linux/slab.h> |
| #include <linux/thread_info.h> |
| #include <linux/err.h> |
| #include <linux/uaccess.h> |
| #include <linux/string.h> |
| #include <linux/nodemask.h> |
| #include <linux/mm.h> |
| #include <linux/workqueue.h> |
| #include <linux/crc32.h> |
| |
| #include <asm/sections.h> |
| #include <asm/processor.h> |
| #include <linux/atomic.h> |
| |
| #include <linux/kasan.h> |
| #include <linux/kfence.h> |
| #include <linux/kmemleak.h> |
| #include <linux/memory_hotplug.h> |
| |
| /* |
| * Kmemleak configuration and common defines. |
| */ |
| #define MAX_TRACE 16 /* stack trace length */ |
| #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ |
| #define SECS_FIRST_SCAN 60 /* delay before the first scan */ |
| #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ |
| #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ |
| |
| #define BYTES_PER_POINTER sizeof(void *) |
| |
| /* GFP bitmask for kmemleak internal allocations */ |
| #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \ |
| __GFP_NOLOCKDEP)) | \ |
| __GFP_NORETRY | __GFP_NOMEMALLOC | \ |
| __GFP_NOWARN) |
| |
| /* scanning area inside a memory block */ |
| struct kmemleak_scan_area { |
| struct hlist_node node; |
| unsigned long start; |
| size_t size; |
| }; |
| |
| #define KMEMLEAK_GREY 0 |
| #define KMEMLEAK_BLACK -1 |
| |
| /* |
| * Structure holding the metadata for each allocated memory block. |
| * Modifications to such objects should be made while holding the |
| * object->lock. Insertions or deletions from object_list, gray_list or |
| * rb_node are already protected by the corresponding locks or mutex (see |
| * the notes on locking above). These objects are reference-counted |
| * (use_count) and freed using the RCU mechanism. |
| */ |
| struct kmemleak_object { |
| raw_spinlock_t lock; |
| unsigned int flags; /* object status flags */ |
| struct list_head object_list; |
| struct list_head gray_list; |
| struct rb_node rb_node; |
| struct rcu_head rcu; /* object_list lockless traversal */ |
| /* object usage count; object freed when use_count == 0 */ |
| atomic_t use_count; |
| unsigned int del_state; /* deletion state */ |
| unsigned long pointer; |
| size_t size; |
| /* pass surplus references to this pointer */ |
| unsigned long excess_ref; |
| /* minimum number of a pointers found before it is considered leak */ |
| int min_count; |
| /* the total number of pointers found pointing to this object */ |
| int count; |
| /* checksum for detecting modified objects */ |
| u32 checksum; |
| /* memory ranges to be scanned inside an object (empty for all) */ |
| struct hlist_head area_list; |
| depot_stack_handle_t trace_handle; |
| unsigned long jiffies; /* creation timestamp */ |
| pid_t pid; /* pid of the current task */ |
| char comm[TASK_COMM_LEN]; /* executable name */ |
| }; |
| |
| /* flag representing the memory block allocation status */ |
| #define OBJECT_ALLOCATED (1 << 0) |
| /* flag set after the first reporting of an unreference object */ |
| #define OBJECT_REPORTED (1 << 1) |
| /* flag set to not scan the object */ |
| #define OBJECT_NO_SCAN (1 << 2) |
| /* flag set to fully scan the object when scan_area allocation failed */ |
| #define OBJECT_FULL_SCAN (1 << 3) |
| /* flag set for object allocated with physical address */ |
| #define OBJECT_PHYS (1 << 4) |
| /* flag set for per-CPU pointers */ |
| #define OBJECT_PERCPU (1 << 5) |
| |
| /* set when __remove_object() called */ |
| #define DELSTATE_REMOVED (1 << 0) |
| /* set to temporarily prevent deletion from object_list */ |
| #define DELSTATE_NO_DELETE (1 << 1) |
| |
| #define HEX_PREFIX " " |
| /* number of bytes to print per line; must be 16 or 32 */ |
| #define HEX_ROW_SIZE 16 |
| /* number of bytes to print at a time (1, 2, 4, 8) */ |
| #define HEX_GROUP_SIZE 1 |
| /* include ASCII after the hex output */ |
| #define HEX_ASCII 1 |
| /* max number of lines to be printed */ |
| #define HEX_MAX_LINES 2 |
| |
| /* the list of all allocated objects */ |
| static LIST_HEAD(object_list); |
| /* the list of gray-colored objects (see color_gray comment below) */ |
| static LIST_HEAD(gray_list); |
| /* memory pool allocation */ |
| static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE]; |
| static int mem_pool_free_count = ARRAY_SIZE(mem_pool); |
| static LIST_HEAD(mem_pool_free_list); |
| /* search tree for object boundaries */ |
| static struct rb_root object_tree_root = RB_ROOT; |
| /* search tree for object (with OBJECT_PHYS flag) boundaries */ |
| static struct rb_root object_phys_tree_root = RB_ROOT; |
| /* search tree for object (with OBJECT_PERCPU flag) boundaries */ |
| static struct rb_root object_percpu_tree_root = RB_ROOT; |
| /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */ |
| static DEFINE_RAW_SPINLOCK(kmemleak_lock); |
| |
| /* allocation caches for kmemleak internal data */ |
| static struct kmem_cache *object_cache; |
| static struct kmem_cache *scan_area_cache; |
| |
| /* set if tracing memory operations is enabled */ |
| static int kmemleak_enabled = 1; |
| /* same as above but only for the kmemleak_free() callback */ |
| static int kmemleak_free_enabled = 1; |
| /* set in the late_initcall if there were no errors */ |
| static int kmemleak_late_initialized; |
| /* set if a kmemleak warning was issued */ |
| static int kmemleak_warning; |
| /* set if a fatal kmemleak error has occurred */ |
| static int kmemleak_error; |
| |
| /* minimum and maximum address that may be valid pointers */ |
| static unsigned long min_addr = ULONG_MAX; |
| static unsigned long max_addr; |
| |
| static struct task_struct *scan_thread; |
| /* used to avoid reporting of recently allocated objects */ |
| static unsigned long jiffies_min_age; |
| static unsigned long jiffies_last_scan; |
| /* delay between automatic memory scannings */ |
| static unsigned long jiffies_scan_wait; |
| /* enables or disables the task stacks scanning */ |
| static int kmemleak_stack_scan = 1; |
| /* protects the memory scanning, parameters and debug/kmemleak file access */ |
| static DEFINE_MUTEX(scan_mutex); |
| /* setting kmemleak=on, will set this var, skipping the disable */ |
| static int kmemleak_skip_disable; |
| /* If there are leaks that can be reported */ |
| static bool kmemleak_found_leaks; |
| |
| static bool kmemleak_verbose; |
| module_param_named(verbose, kmemleak_verbose, bool, 0600); |
| |
| static void kmemleak_disable(void); |
| |
| /* |
| * Print a warning and dump the stack trace. |
| */ |
| #define kmemleak_warn(x...) do { \ |
| pr_warn(x); \ |
| dump_stack(); \ |
| kmemleak_warning = 1; \ |
| } while (0) |
| |
| /* |
| * Macro invoked when a serious kmemleak condition occurred and cannot be |
| * recovered from. Kmemleak will be disabled and further allocation/freeing |
| * tracing no longer available. |
| */ |
| #define kmemleak_stop(x...) do { \ |
| kmemleak_warn(x); \ |
| kmemleak_disable(); \ |
| } while (0) |
| |
| #define warn_or_seq_printf(seq, fmt, ...) do { \ |
| if (seq) \ |
| seq_printf(seq, fmt, ##__VA_ARGS__); \ |
| else \ |
| pr_warn(fmt, ##__VA_ARGS__); \ |
| } while (0) |
| |
| static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type, |
| int rowsize, int groupsize, const void *buf, |
| size_t len, bool ascii) |
| { |
| if (seq) |
| seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize, |
| buf, len, ascii); |
| else |
| print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type, |
| rowsize, groupsize, buf, len, ascii); |
| } |
| |
| /* |
| * Printing of the objects hex dump to the seq file. The number of lines to be |
| * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The |
| * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called |
| * with the object->lock held. |
| */ |
| static void hex_dump_object(struct seq_file *seq, |
| struct kmemleak_object *object) |
| { |
| const u8 *ptr = (const u8 *)object->pointer; |
| size_t len; |
| |
| if (WARN_ON_ONCE(object->flags & (OBJECT_PHYS | OBJECT_PERCPU))) |
| return; |
| |
| /* limit the number of lines to HEX_MAX_LINES */ |
| len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); |
| |
| warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len); |
| kasan_disable_current(); |
| warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE, |
| HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII); |
| kasan_enable_current(); |
| } |
| |
| /* |
| * Object colors, encoded with count and min_count: |
| * - white - orphan object, not enough references to it (count < min_count) |
| * - gray - not orphan, not marked as false positive (min_count == 0) or |
| * sufficient references to it (count >= min_count) |
| * - black - ignore, it doesn't contain references (e.g. text section) |
| * (min_count == -1). No function defined for this color. |
| * Newly created objects don't have any color assigned (object->count == -1) |
| * before the next memory scan when they become white. |
| */ |
| static bool color_white(const struct kmemleak_object *object) |
| { |
| return object->count != KMEMLEAK_BLACK && |
| object->count < object->min_count; |
| } |
| |
| static bool color_gray(const struct kmemleak_object *object) |
| { |
| return object->min_count != KMEMLEAK_BLACK && |
| object->count >= object->min_count; |
| } |
| |
| /* |
| * Objects are considered unreferenced only if their color is white, they have |
| * not be deleted and have a minimum age to avoid false positives caused by |
| * pointers temporarily stored in CPU registers. |
| */ |
| static bool unreferenced_object(struct kmemleak_object *object) |
| { |
| return (color_white(object) && object->flags & OBJECT_ALLOCATED) && |
| time_before_eq(object->jiffies + jiffies_min_age, |
| jiffies_last_scan); |
| } |
| |
| /* |
| * Printing of the unreferenced objects information to the seq file. The |
| * print_unreferenced function must be called with the object->lock held. |
| */ |
| static void print_unreferenced(struct seq_file *seq, |
| struct kmemleak_object *object) |
| { |
| int i; |
| unsigned long *entries; |
| unsigned int nr_entries; |
| |
| nr_entries = stack_depot_fetch(object->trace_handle, &entries); |
| warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", |
| object->pointer, object->size); |
| warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu\n", |
| object->comm, object->pid, object->jiffies); |
| hex_dump_object(seq, object); |
| warn_or_seq_printf(seq, " backtrace (crc %x):\n", object->checksum); |
| |
| for (i = 0; i < nr_entries; i++) { |
| void *ptr = (void *)entries[i]; |
| warn_or_seq_printf(seq, " [<%pK>] %pS\n", ptr, ptr); |
| } |
| } |
| |
| /* |
| * Print the kmemleak_object information. This function is used mainly for |
| * debugging special cases when kmemleak operations. It must be called with |
| * the object->lock held. |
| */ |
| static void dump_object_info(struct kmemleak_object *object) |
| { |
| pr_notice("Object 0x%08lx (size %zu):\n", |
| object->pointer, object->size); |
| pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", |
| object->comm, object->pid, object->jiffies); |
| pr_notice(" min_count = %d\n", object->min_count); |
| pr_notice(" count = %d\n", object->count); |
| pr_notice(" flags = 0x%x\n", object->flags); |
| pr_notice(" checksum = %u\n", object->checksum); |
| pr_notice(" backtrace:\n"); |
| if (object->trace_handle) |
| stack_depot_print(object->trace_handle); |
| } |
| |
| static struct rb_root *object_tree(unsigned long objflags) |
| { |
| if (objflags & OBJECT_PHYS) |
| return &object_phys_tree_root; |
| if (objflags & OBJECT_PERCPU) |
| return &object_percpu_tree_root; |
| return &object_tree_root; |
| } |
| |
| /* |
| * Look-up a memory block metadata (kmemleak_object) in the object search |
| * tree based on a pointer value. If alias is 0, only values pointing to the |
| * beginning of the memory block are allowed. The kmemleak_lock must be held |
| * when calling this function. |
| */ |
| static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias, |
| unsigned int objflags) |
| { |
| struct rb_node *rb = object_tree(objflags)->rb_node; |
| unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); |
| |
| while (rb) { |
| struct kmemleak_object *object; |
| unsigned long untagged_objp; |
| |
| object = rb_entry(rb, struct kmemleak_object, rb_node); |
| untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); |
| |
| if (untagged_ptr < untagged_objp) |
| rb = object->rb_node.rb_left; |
| else if (untagged_objp + object->size <= untagged_ptr) |
| rb = object->rb_node.rb_right; |
| else if (untagged_objp == untagged_ptr || alias) |
| return object; |
| else { |
| kmemleak_warn("Found object by alias at 0x%08lx\n", |
| ptr); |
| dump_object_info(object); |
| break; |
| } |
| } |
| return NULL; |
| } |
| |
| /* Look-up a kmemleak object which allocated with virtual address. */ |
| static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) |
| { |
| return __lookup_object(ptr, alias, 0); |
| } |
| |
| /* |
| * Increment the object use_count. Return 1 if successful or 0 otherwise. Note |
| * that once an object's use_count reached 0, the RCU freeing was already |
| * registered and the object should no longer be used. This function must be |
| * called under the protection of rcu_read_lock(). |
| */ |
| static int get_object(struct kmemleak_object *object) |
| { |
| return atomic_inc_not_zero(&object->use_count); |
| } |
| |
| /* |
| * Memory pool allocation and freeing. kmemleak_lock must not be held. |
| */ |
| static struct kmemleak_object *mem_pool_alloc(gfp_t gfp) |
| { |
| unsigned long flags; |
| struct kmemleak_object *object; |
| |
| /* try the slab allocator first */ |
| if (object_cache) { |
| object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); |
| if (object) |
| return object; |
| } |
| |
| /* slab allocation failed, try the memory pool */ |
| raw_spin_lock_irqsave(&kmemleak_lock, flags); |
| object = list_first_entry_or_null(&mem_pool_free_list, |
| typeof(*object), object_list); |
| if (object) |
| list_del(&object->object_list); |
| else if (mem_pool_free_count) |
| object = &mem_pool[--mem_pool_free_count]; |
| else |
| pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n"); |
| raw_spin_unlock_irqrestore(&kmemleak_lock, flags); |
| |
| return object; |
| } |
| |
| /* |
| * Return the object to either the slab allocator or the memory pool. |
| */ |
| static void mem_pool_free(struct kmemleak_object *object) |
| { |
| unsigned long flags; |
| |
| if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) { |
| kmem_cache_free(object_cache, object); |
| return; |
| } |
| |
| /* add the object to the memory pool free list */ |
| raw_spin_lock_irqsave(&kmemleak_lock, flags); |
| list_add(&object->object_list, &mem_pool_free_list); |
| raw_spin_unlock_irqrestore(&kmemleak_lock, flags); |
| } |
| |
| /* |
| * RCU callback to free a kmemleak_object. |
| */ |
| static void free_object_rcu(struct rcu_head *rcu) |
| { |
| struct hlist_node *tmp; |
| struct kmemleak_scan_area *area; |
| struct kmemleak_object *object = |
| container_of(rcu, struct kmemleak_object, rcu); |
| |
| /* |
| * Once use_count is 0 (guaranteed by put_object), there is no other |
| * code accessing this object, hence no need for locking. |
| */ |
| hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { |
| hlist_del(&area->node); |
| kmem_cache_free(scan_area_cache, area); |
| } |
| mem_pool_free(object); |
| } |
| |
| /* |
| * Decrement the object use_count. Once the count is 0, free the object using |
| * an RCU callback. Since put_object() may be called via the kmemleak_free() -> |
| * delete_object() path, the delayed RCU freeing ensures that there is no |
| * recursive call to the kernel allocator. Lock-less RCU object_list traversal |
| * is also possible. |
| */ |
| static void put_object(struct kmemleak_object *object) |
| { |
| if (!atomic_dec_and_test(&object->use_count)) |
| return; |
| |
| /* should only get here after delete_object was called */ |
| WARN_ON(object->flags & OBJECT_ALLOCATED); |
| |
| /* |
| * It may be too early for the RCU callbacks, however, there is no |
| * concurrent object_list traversal when !object_cache and all objects |
| * came from the memory pool. Free the object directly. |
| */ |
| if (object_cache) |
| call_rcu(&object->rcu, free_object_rcu); |
| else |
| free_object_rcu(&object->rcu); |
| } |
| |
| /* |
| * Look up an object in the object search tree and increase its use_count. |
| */ |
| static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias, |
| unsigned int objflags) |
| { |
| unsigned long flags; |
| struct kmemleak_object *object; |
| |
| rcu_read_lock(); |
| raw_spin_lock_irqsave(&kmemleak_lock, flags); |
| object = __lookup_object(ptr, alias, objflags); |
| raw_spin_unlock_irqrestore(&kmemleak_lock, flags); |
| |
| /* check whether the object is still available */ |
| if (object && !get_object(object)) |
| object = NULL; |
| rcu_read_unlock(); |
| |
| return object; |
| } |
| |
| /* Look up and get an object which allocated with virtual address. */ |
| static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) |
| { |
| return __find_and_get_object(ptr, alias, 0); |
| } |
| |
| /* |
| * Remove an object from its object tree and object_list. Must be called with |
| * the kmemleak_lock held _if_ kmemleak is still enabled. |
| */ |
| static void __remove_object(struct kmemleak_object *object) |
| { |
| rb_erase(&object->rb_node, object_tree(object->flags)); |
| if (!(object->del_state & DELSTATE_NO_DELETE)) |
| list_del_rcu(&object->object_list); |
| object->del_state |= DELSTATE_REMOVED; |
| } |
| |
| static struct kmemleak_object *__find_and_remove_object(unsigned long ptr, |
| int alias, |
| unsigned int objflags) |
| { |
| struct kmemleak_object *object; |
| |
| object = __lookup_object(ptr, alias, objflags); |
| if (object) |
| __remove_object(object); |
| |
| return object; |
| } |
| |
| /* |
| * Look up an object in the object search tree and remove it from both object |
| * tree root and object_list. The returned object's use_count should be at |
| * least 1, as initially set by create_object(). |
| */ |
| static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias, |
| unsigned int objflags) |
| { |
| unsigned long flags; |
| struct kmemleak_object *object; |
| |
| raw_spin_lock_irqsave(&kmemleak_lock, flags); |
| object = __find_and_remove_object(ptr, alias, objflags); |
| raw_spin_unlock_irqrestore(&kmemleak_lock, flags); |
| |
| return object; |
| } |
| |
| static noinline depot_stack_handle_t set_track_prepare(void) |
| { |
| depot_stack_handle_t trace_handle; |
| unsigned long entries[MAX_TRACE]; |
| unsigned int nr_entries; |
| |
| /* |
| * Use object_cache to determine whether kmemleak_init() has |
| * been invoked. stack_depot_early_init() is called before |
| * kmemleak_init() in mm_core_init(). |
| */ |
| if (!object_cache) |
| return 0; |
| nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); |
| trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); |
| |
| return trace_handle; |
| } |
| |
| static struct kmemleak_object *__alloc_object(gfp_t gfp) |
| { |
| struct kmemleak_object *object; |
| |
| object = mem_pool_alloc(gfp); |
| if (!object) { |
| pr_warn("Cannot allocate a kmemleak_object structure\n"); |
| kmemleak_disable(); |
| return NULL; |
| } |
| |
| INIT_LIST_HEAD(&object->object_list); |
| INIT_LIST_HEAD(&object->gray_list); |
| INIT_HLIST_HEAD(&object->area_list); |
| raw_spin_lock_init(&object->lock); |
| atomic_set(&object->use_count, 1); |
| object->excess_ref = 0; |
| object->count = 0; /* white color initially */ |
| object->checksum = 0; |
| object->del_state = 0; |
| |
| /* task information */ |
| if (in_hardirq()) { |
| object->pid = 0; |
| strncpy(object->comm, "hardirq", sizeof(object->comm)); |
| } else if (in_serving_softirq()) { |
| object->pid = 0; |
| strncpy(object->comm, "softirq", sizeof(object->comm)); |
| } else { |
| object->pid = current->pid; |
| /* |
| * There is a small chance of a race with set_task_comm(), |
| * however using get_task_comm() here may cause locking |
| * dependency issues with current->alloc_lock. In the worst |
| * case, the command line is not correct. |
| */ |
| strncpy(object->comm, current->comm, sizeof(object->comm)); |
| } |
| |
| /* kernel backtrace */ |
| object->trace_handle = set_track_prepare(); |
| |
| return object; |
| } |
| |
| static int __link_object(struct kmemleak_object *object, unsigned long ptr, |
| size_t size, int min_count, unsigned int objflags) |
| { |
| |
| struct kmemleak_object *parent; |
| struct rb_node **link, *rb_parent; |
| unsigned long untagged_ptr; |
| unsigned long untagged_objp; |
| |
| object->flags = OBJECT_ALLOCATED | objflags; |
| object->pointer = ptr; |
| object->size = kfence_ksize((void *)ptr) ?: size; |
| object->min_count = min_count; |
| object->jiffies = jiffies; |
| |
| untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); |
| /* |
| * Only update min_addr and max_addr with object |
| * storing virtual address. |
| */ |
| if (!(objflags & (OBJECT_PHYS | OBJECT_PERCPU))) { |
| min_addr = min(min_addr, untagged_ptr); |
| max_addr = max(max_addr, untagged_ptr + size); |
| } |
| link = &object_tree(objflags)->rb_node; |
| rb_parent = NULL; |
| while (*link) { |
| rb_parent = *link; |
| parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); |
| untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer); |
| if (untagged_ptr + size <= untagged_objp) |
| link = &parent->rb_node.rb_left; |
| else if (untagged_objp + parent->size <= untagged_ptr) |
| link = &parent->rb_node.rb_right; |
| else { |
| kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", |
| ptr); |
| /* |
| * No need for parent->lock here since "parent" cannot |
| * be freed while the kmemleak_lock is held. |
| */ |
| dump_object_info(parent); |
| return -EEXIST; |
| } |
| } |
| rb_link_node(&object->rb_node, rb_parent, link); |
| rb_insert_color(&object->rb_node, object_tree(objflags)); |
| list_add_tail_rcu(&object->object_list, &object_list); |
| |
| return 0; |
| } |
| |
| /* |
| * Create the metadata (struct kmemleak_object) corresponding to an allocated |
| * memory block and add it to the object_list and object tree. |
| */ |
| static void __create_object(unsigned long ptr, size_t size, |
| int min_count, gfp_t gfp, unsigned int objflags) |
| { |
| struct kmemleak_object *object; |
| unsigned long flags; |
| int ret; |
| |
| object = __alloc_object(gfp); |
| if (!object) |
| return; |
| |
| raw_spin_lock_irqsave(&kmemleak_lock, flags); |
| ret = __link_object(object, ptr, size, min_count, objflags); |
| raw_spin_unlock_irqrestore(&kmemleak_lock, flags); |
| if (ret) |
| mem_pool_free(object); |
| } |
| |
| /* Create kmemleak object which allocated with virtual address. */ |
| static void create_object(unsigned long ptr, size_t size, |
| int min_count, gfp_t gfp) |
| { |
| __create_object(ptr, size, min_count, gfp, 0); |
| } |
| |
| /* Create kmemleak object which allocated with physical address. */ |
| static void create_object_phys(unsigned long ptr, size_t size, |
| int min_count, gfp_t gfp) |
| { |
| __create_object(ptr, size, min_count, gfp, OBJECT_PHYS); |
| } |
| |
| /* Create kmemleak object corresponding to a per-CPU allocation. */ |
| static void create_object_percpu(unsigned long ptr, size_t size, |
| int min_count, gfp_t gfp) |
| { |
| __create_object(ptr, size, min_count, gfp, OBJECT_PERCPU); |
| } |
| |
| /* |
| * Mark the object as not allocated and schedule RCU freeing via put_object(). |
| */ |
| static void __delete_object(struct kmemleak_object *object) |
| { |
| unsigned long flags; |
| |
| WARN_ON(!(object->flags & OBJECT_ALLOCATED)); |
| WARN_ON(atomic_read(&object->use_count) < 1); |
| |
| /* |
| * Locking here also ensures that the corresponding memory block |
| * cannot be freed when it is being scanned. |
| */ |
| raw_spin_lock_irqsave(&object->lock, flags); |
| object->flags &= ~OBJECT_ALLOCATED; |
| raw_spin_unlock_irqrestore(&object->lock, flags); |
| put_object(object); |
| } |
| |
| /* |
| * Look up the metadata (struct kmemleak_object) corresponding to ptr and |
| * delete it. |
| */ |
| static void delete_object_full(unsigned long ptr, unsigned int objflags) |
| { |
| struct kmemleak_object *object; |
| |
| object = find_and_remove_object(ptr, 0, objflags); |
| if (!object) { |
| #ifdef DEBUG |
| kmemleak_warn("Freeing unknown object at 0x%08lx\n", |
| ptr); |
| #endif |
| return; |
| } |
| __delete_object(object); |
| } |
| |
| /* |
| * Look up the metadata (struct kmemleak_object) corresponding to ptr and |
| * delete it. If the memory block is partially freed, the function may create |
| * additional metadata for the remaining parts of the block. |
| */ |
| static void delete_object_part(unsigned long ptr, size_t size, |
| unsigned int objflags) |
| { |
| struct kmemleak_object *object, *object_l, *object_r; |
| unsigned long start, end, flags; |
| |
| object_l = __alloc_object(GFP_KERNEL); |
| if (!object_l) |
| return; |
| |
| object_r = __alloc_object(GFP_KERNEL); |
| if (!object_r) |
| goto out; |
| |
| raw_spin_lock_irqsave(&kmemleak_lock, flags); |
| object = __find_and_remove_object(ptr, 1, objflags); |
| if (!object) { |
| #ifdef DEBUG |
| kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", |
| ptr, size); |
| #endif |
| goto unlock; |
| } |
| |
| /* |
| * Create one or two objects that may result from the memory block |
| * split. Note that partial freeing is only done by free_bootmem() and |
| * this happens before kmemleak_init() is called. |
| */ |
| start = object->pointer; |
| end = object->pointer + object->size; |
| if ((ptr > start) && |
| !__link_object(object_l, start, ptr - start, |
| object->min_count, objflags)) |
| object_l = NULL; |
| if ((ptr + size < end) && |
| !__link_object(object_r, ptr + size, end - ptr - size, |
| object->min_count, objflags)) |
| object_r = NULL; |
| |
| unlock: |
| raw_spin_unlock_irqrestore(&kmemleak_lock, flags); |
| if (object) |
| __delete_object(object); |
| |
| out: |
| if (object_l) |
| mem_pool_free(object_l); |
| if (object_r) |
| mem_pool_free(object_r); |
| } |
| |
| static void __paint_it(struct kmemleak_object *object, int color) |
| { |
| object->min_count = color; |
| if (color == KMEMLEAK_BLACK) |
| object->flags |= OBJECT_NO_SCAN; |
| } |
| |
| static void paint_it(struct kmemleak_object *object, int color) |
| { |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&object->lock, flags); |
| __paint_it(object, color); |
| raw_spin_unlock_irqrestore(&object->lock, flags); |
| } |
| |
| static void paint_ptr(unsigned long ptr, int color, unsigned int objflags) |
| { |
| struct kmemleak_object *object; |
| |
| object = __find_and_get_object(ptr, 0, objflags); |
| if (!object) { |
| kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", |
| ptr, |
| (color == KMEMLEAK_GREY) ? "Grey" : |
| (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); |
| return; |
| } |
| paint_it(object, color); |
| put_object(object); |
| } |
| |
| /* |
| * Mark an object permanently as gray-colored so that it can no longer be |
| * reported as a leak. This is used in general to mark a false positive. |
| */ |
| static void make_gray_object(unsigned long ptr) |
| { |
| paint_ptr(ptr, KMEMLEAK_GREY, 0); |
| } |
| |
| /* |
| * Mark the object as black-colored so that it is ignored from scans and |
| * reporting. |
| */ |
| static void make_black_object(unsigned long ptr, unsigned int objflags) |
| { |
| paint_ptr(ptr, KMEMLEAK_BLACK, objflags); |
| } |
| |
| /* |
| * Add a scanning area to the object. If at least one such area is added, |
| * kmemleak will only scan these ranges rather than the whole memory block. |
| */ |
| static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) |
| { |
| unsigned long flags; |
| struct kmemleak_object *object; |
| struct kmemleak_scan_area *area = NULL; |
| unsigned long untagged_ptr; |
| unsigned long untagged_objp; |
| |
| object = find_and_get_object(ptr, 1); |
| if (!object) { |
| kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", |
| ptr); |
| return; |
| } |
| |
| untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); |
| untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); |
| |
| if (scan_area_cache) |
| area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); |
| |
| raw_spin_lock_irqsave(&object->lock, flags); |
| if (!area) { |
| pr_warn_once("Cannot allocate a scan area, scanning the full object\n"); |
| /* mark the object for full scan to avoid false positives */ |
| object->flags |= OBJECT_FULL_SCAN; |
| goto out_unlock; |
| } |
| if (size == SIZE_MAX) { |
| size = untagged_objp + object->size - untagged_ptr; |
| } else if (untagged_ptr + size > untagged_objp + object->size) { |
| kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); |
| dump_object_info(object); |
| kmem_cache_free(scan_area_cache, area); |
| goto out_unlock; |
| } |
| |
| INIT_HLIST_NODE(&area->node); |
| area->start = ptr; |
| area->size = size; |
| |
| hlist_add_head(&area->node, &object->area_list); |
| out_unlock: |
| raw_spin_unlock_irqrestore(&object->lock, flags); |
| put_object(object); |
| } |
| |
| /* |
| * Any surplus references (object already gray) to 'ptr' are passed to |
| * 'excess_ref'. This is used in the vmalloc() case where a pointer to |
| * vm_struct may be used as an alternative reference to the vmalloc'ed object |
| * (see free_thread_stack()). |
| */ |
| static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) |
| { |
| unsigned long flags; |
| struct kmemleak_object *object; |
| |
| object = find_and_get_object(ptr, 0); |
| if (!object) { |
| kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", |
| ptr); |
| return; |
| } |
| |
| raw_spin_lock_irqsave(&object->lock, flags); |
| object->excess_ref = excess_ref; |
| raw_spin_unlock_irqrestore(&object->lock, flags); |
| put_object(object); |
| } |
| |
| /* |
| * Set the OBJECT_NO_SCAN flag for the object corresponding to the give |
| * pointer. Such object will not be scanned by kmemleak but references to it |
| * are searched. |
| */ |
| static void object_no_scan(unsigned long ptr) |
| { |
| unsigned long flags; |
| struct kmemleak_object *object; |
| |
| object = find_and_get_object(ptr, 0); |
| if (!object) { |
| kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); |
| return; |
| } |
| |
| raw_spin_lock_irqsave(&object->lock, flags); |
| object->flags |= OBJECT_NO_SCAN; |
| raw_spin_unlock_irqrestore(&object->lock, flags); |
| put_object(object); |
| } |
| |
| /** |
| * kmemleak_alloc - register a newly allocated object |
| * @ptr: pointer to beginning of the object |
| * @size: size of the object |
| * @min_count: minimum number of references to this object. If during memory |
| * scanning a number of references less than @min_count is found, |
| * the object is reported as a memory leak. If @min_count is 0, |
| * the object is never reported as a leak. If @min_count is -1, |
| * the object is ignored (not scanned and not reported as a leak) |
| * @gfp: kmalloc() flags used for kmemleak internal memory allocations |
| * |
| * This function is called from the kernel allocators when a new object |
| * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). |
| */ |
| void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, |
| gfp_t gfp) |
| { |
| pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count); |
| |
| if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
| create_object((unsigned long)ptr, size, min_count, gfp); |
| } |
| EXPORT_SYMBOL_GPL(kmemleak_alloc); |
| |
| /** |
| * kmemleak_alloc_percpu - register a newly allocated __percpu object |
| * @ptr: __percpu pointer to beginning of the object |
| * @size: size of the object |
| * @gfp: flags used for kmemleak internal memory allocations |
| * |
| * This function is called from the kernel percpu allocator when a new object |
| * (memory block) is allocated (alloc_percpu). |
| */ |
| void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, |
| gfp_t gfp) |
| { |
| pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size); |
| |
| /* |
| * Percpu allocations are only scanned and not reported as leaks |
| * (min_count is set to 0). |
| */ |
| if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
| create_object_percpu((unsigned long)ptr, size, 0, gfp); |
| } |
| EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); |
| |
| /** |
| * kmemleak_vmalloc - register a newly vmalloc'ed object |
| * @area: pointer to vm_struct |
| * @size: size of the object |
| * @gfp: __vmalloc() flags used for kmemleak internal memory allocations |
| * |
| * This function is called from the vmalloc() kernel allocator when a new |
| * object (memory block) is allocated. |
| */ |
| void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) |
| { |
| pr_debug("%s(0x%px, %zu)\n", __func__, area, size); |
| |
| /* |
| * A min_count = 2 is needed because vm_struct contains a reference to |
| * the virtual address of the vmalloc'ed block. |
| */ |
| if (kmemleak_enabled) { |
| create_object((unsigned long)area->addr, size, 2, gfp); |
| object_set_excess_ref((unsigned long)area, |
| (unsigned long)area->addr); |
| } |
| } |
| EXPORT_SYMBOL_GPL(kmemleak_vmalloc); |
| |
| /** |
| * kmemleak_free - unregister a previously registered object |
| * @ptr: pointer to beginning of the object |
| * |
| * This function is called from the kernel allocators when an object (memory |
| * block) is freed (kmem_cache_free, kfree, vfree etc.). |
| */ |
| void __ref kmemleak_free(const void *ptr) |
| { |
| pr_debug("%s(0x%px)\n", __func__, ptr); |
| |
| if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) |
| delete_object_full((unsigned long)ptr, 0); |
| } |
| EXPORT_SYMBOL_GPL(kmemleak_free); |
| |
| /** |
| * kmemleak_free_part - partially unregister a previously registered object |
| * @ptr: pointer to the beginning or inside the object. This also |
| * represents the start of the range to be freed |
| * @size: size to be unregistered |
| * |
| * This function is called when only a part of a memory block is freed |
| * (usually from the bootmem allocator). |
| */ |
| void __ref kmemleak_free_part(const void *ptr, size_t size) |
| { |
| pr_debug("%s(0x%px)\n", __func__, ptr); |
| |
| if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
| delete_object_part((unsigned long)ptr, size, 0); |
| } |
| EXPORT_SYMBOL_GPL(kmemleak_free_part); |
| |
| /** |
| * kmemleak_free_percpu - unregister a previously registered __percpu object |
| * @ptr: __percpu pointer to beginning of the object |
| * |
| * This function is called from the kernel percpu allocator when an object |
| * (memory block) is freed (free_percpu). |
| */ |
| void __ref kmemleak_free_percpu(const void __percpu *ptr) |
| { |
| pr_debug("%s(0x%px)\n", __func__, ptr); |
| |
| if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) |
| delete_object_full((unsigned long)ptr, OBJECT_PERCPU); |
| } |
| EXPORT_SYMBOL_GPL(kmemleak_free_percpu); |
| |
| /** |
| * kmemleak_update_trace - update object allocation stack trace |
| * @ptr: pointer to beginning of the object |
| * |
| * Override the object allocation stack trace for cases where the actual |
| * allocation place is not always useful. |
| */ |
| void __ref kmemleak_update_trace(const void *ptr) |
| { |
| struct kmemleak_object *object; |
| depot_stack_handle_t trace_handle; |
| unsigned long flags; |
| |
| pr_debug("%s(0x%px)\n", __func__, ptr); |
| |
| if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) |
| return; |
| |
| object = find_and_get_object((unsigned long)ptr, 1); |
| if (!object) { |
| #ifdef DEBUG |
| kmemleak_warn("Updating stack trace for unknown object at %p\n", |
| ptr); |
| #endif |
| return; |
| } |
| |
| trace_handle = set_track_prepare(); |
| raw_spin_lock_irqsave(&object->lock, flags); |
| object->trace_handle = trace_handle; |
| raw_spin_unlock_irqrestore(&object->lock, flags); |
| |
| put_object(object); |
| } |
| EXPORT_SYMBOL(kmemleak_update_trace); |
| |
| /** |
| * kmemleak_not_leak - mark an allocated object as false positive |
| * @ptr: pointer to beginning of the object |
| * |
| * Calling this function on an object will cause the memory block to no longer |
| * be reported as leak and always be scanned. |
| */ |
| void __ref kmemleak_not_leak(const void *ptr) |
| { |
| pr_debug("%s(0x%px)\n", __func__, ptr); |
| |
| if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
| make_gray_object((unsigned long)ptr); |
| } |
| EXPORT_SYMBOL(kmemleak_not_leak); |
| |
| /** |
| * kmemleak_ignore - ignore an allocated object |
| * @ptr: pointer to beginning of the object |
| * |
| * Calling this function on an object will cause the memory block to be |
| * ignored (not scanned and not reported as a leak). This is usually done when |
| * it is known that the corresponding block is not a leak and does not contain |
| * any references to other allocated memory blocks. |
| */ |
| void __ref kmemleak_ignore(const void *ptr) |
| { |
| pr_debug("%s(0x%px)\n", __func__, ptr); |
| |
| if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
| make_black_object((unsigned long)ptr, 0); |
| } |
| EXPORT_SYMBOL(kmemleak_ignore); |
| |
| /** |
| * kmemleak_scan_area - limit the range to be scanned in an allocated object |
| * @ptr: pointer to beginning or inside the object. This also |
| * represents the start of the scan area |
| * @size: size of the scan area |
| * @gfp: kmalloc() flags used for kmemleak internal memory allocations |
| * |
| * This function is used when it is known that only certain parts of an object |
| * contain references to other objects. Kmemleak will only scan these areas |
| * reducing the number false negatives. |
| */ |
| void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) |
| { |
| pr_debug("%s(0x%px)\n", __func__, ptr); |
| |
| if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) |
| add_scan_area((unsigned long)ptr, size, gfp); |
| } |
| EXPORT_SYMBOL(kmemleak_scan_area); |
| |
| /** |
| * kmemleak_no_scan - do not scan an allocated object |
| * @ptr: pointer to beginning of the object |
| * |
| * This function notifies kmemleak not to scan the given memory block. Useful |
| * in situations where it is known that the given object does not contain any |
| * references to other objects. Kmemleak will not scan such objects reducing |
| * the number of false negatives. |
| */ |
| void __ref kmemleak_no_scan(const void *ptr) |
| { |
| pr_debug("%s(0x%px)\n", __func__, ptr); |
| |
| if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
| object_no_scan((unsigned long)ptr); |
| } |
| EXPORT_SYMBOL(kmemleak_no_scan); |
| |
| /** |
| * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical |
| * address argument |
| * @phys: physical address of the object |
| * @size: size of the object |
| * @gfp: kmalloc() flags used for kmemleak internal memory allocations |
| */ |
| void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp) |
| { |
| pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size); |
| |
| if (kmemleak_enabled) |
| /* |
| * Create object with OBJECT_PHYS flag and |
| * assume min_count 0. |
| */ |
| create_object_phys((unsigned long)phys, size, 0, gfp); |
| } |
| EXPORT_SYMBOL(kmemleak_alloc_phys); |
| |
| /** |
| * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a |
| * physical address argument |
| * @phys: physical address if the beginning or inside an object. This |
| * also represents the start of the range to be freed |
| * @size: size to be unregistered |
| */ |
| void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) |
| { |
| pr_debug("%s(0x%px)\n", __func__, &phys); |
| |
| if (kmemleak_enabled) |
| delete_object_part((unsigned long)phys, size, OBJECT_PHYS); |
| } |
| EXPORT_SYMBOL(kmemleak_free_part_phys); |
| |
| /** |
| * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical |
| * address argument |
| * @phys: physical address of the object |
| */ |
| void __ref kmemleak_ignore_phys(phys_addr_t phys) |
| { |
| pr_debug("%s(0x%px)\n", __func__, &phys); |
| |
| if (kmemleak_enabled) |
| make_black_object((unsigned long)phys, OBJECT_PHYS); |
| } |
| EXPORT_SYMBOL(kmemleak_ignore_phys); |
| |
| /* |
| * Update an object's checksum and return true if it was modified. |
| */ |
| static bool update_checksum(struct kmemleak_object *object) |
| { |
| u32 old_csum = object->checksum; |
| |
| if (WARN_ON_ONCE(object->flags & (OBJECT_PHYS | OBJECT_PERCPU))) |
| return false; |
| |
| kasan_disable_current(); |
| kcsan_disable_current(); |
| object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size); |
| kasan_enable_current(); |
| kcsan_enable_current(); |
| |
| return object->checksum != old_csum; |
| } |
| |
| /* |
| * Update an object's references. object->lock must be held by the caller. |
| */ |
| static void update_refs(struct kmemleak_object *object) |
| { |
| if (!color_white(object)) { |
| /* non-orphan, ignored or new */ |
| return; |
| } |
| |
| /* |
| * Increase the object's reference count (number of pointers to the |
| * memory block). If this count reaches the required minimum, the |
| * object's color will become gray and it will be added to the |
| * gray_list. |
| */ |
| object->count++; |
| if (color_gray(object)) { |
| /* put_object() called when removing from gray_list */ |
| WARN_ON(!get_object(object)); |
| list_add_tail(&object->gray_list, &gray_list); |
| } |
| } |
| |
| /* |
| * Memory scanning is a long process and it needs to be interruptible. This |
| * function checks whether such interrupt condition occurred. |
| */ |
| static int scan_should_stop(void) |
| { |
| if (!kmemleak_enabled) |
| return 1; |
| |
| /* |
| * This function may be called from either process or kthread context, |
| * hence the need to check for both stop conditions. |
| */ |
| if (current->mm) |
| return signal_pending(current); |
| else |
| return kthread_should_stop(); |
| |
| return 0; |
| } |
| |
| /* |
| * Scan a memory block (exclusive range) for valid pointers and add those |
| * found to the gray list. |
| */ |
| static void scan_block(void *_start, void *_end, |
| struct kmemleak_object *scanned) |
| { |
| unsigned long *ptr; |
| unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); |
| unsigned long *end = _end - (BYTES_PER_POINTER - 1); |
| unsigned long flags; |
| unsigned long untagged_ptr; |
| |
| raw_spin_lock_irqsave(&kmemleak_lock, flags); |
| for (ptr = start; ptr < end; ptr++) { |
| struct kmemleak_object *object; |
| unsigned long pointer; |
| unsigned long excess_ref; |
| |
| if (scan_should_stop()) |
| break; |
| |
| kasan_disable_current(); |
| pointer = *(unsigned long *)kasan_reset_tag((void *)ptr); |
| kasan_enable_current(); |
| |
| untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer); |
| if (untagged_ptr < min_addr || untagged_ptr >= max_addr) |
| continue; |
| |
| /* |
| * No need for get_object() here since we hold kmemleak_lock. |
| * object->use_count cannot be dropped to 0 while the object |
| * is still present in object_tree_root and object_list |
| * (with updates protected by kmemleak_lock). |
| */ |
| object = lookup_object(pointer, 1); |
| if (!object) |
| continue; |
| if (object == scanned) |
| /* self referenced, ignore */ |
| continue; |
| |
| /* |
| * Avoid the lockdep recursive warning on object->lock being |
| * previously acquired in scan_object(). These locks are |
| * enclosed by scan_mutex. |
| */ |
| raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); |
| /* only pass surplus references (object already gray) */ |
| if (color_gray(object)) { |
| excess_ref = object->excess_ref; |
| /* no need for update_refs() if object already gray */ |
| } else { |
| excess_ref = 0; |
| update_refs(object); |
| } |
| raw_spin_unlock(&object->lock); |
| |
| if (excess_ref) { |
| object = lookup_object(excess_ref, 0); |
| if (!object) |
| continue; |
| if (object == scanned) |
| /* circular reference, ignore */ |
| continue; |
| raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); |
| update_refs(object); |
| raw_spin_unlock(&object->lock); |
| } |
| } |
| raw_spin_unlock_irqrestore(&kmemleak_lock, flags); |
| } |
| |
| /* |
| * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. |
| */ |
| #ifdef CONFIG_SMP |
| static void scan_large_block(void *start, void *end) |
| { |
| void *next; |
| |
| while (start < end) { |
| next = min(start + MAX_SCAN_SIZE, end); |
| scan_block(start, next, NULL); |
| start = next; |
| cond_resched(); |
| } |
| } |
| #endif |
| |
| /* |
| * Scan a memory block corresponding to a kmemleak_object. A condition is |
| * that object->use_count >= 1. |
| */ |
| static void scan_object(struct kmemleak_object *object) |
| { |
| struct kmemleak_scan_area *area; |
| unsigned long flags; |
| |
| /* |
| * Once the object->lock is acquired, the corresponding memory block |
| * cannot be freed (the same lock is acquired in delete_object). |
| */ |
| raw_spin_lock_irqsave(&object->lock, flags); |
| if (object->flags & OBJECT_NO_SCAN) |
| goto out; |
| if (!(object->flags & OBJECT_ALLOCATED)) |
| /* already freed object */ |
| goto out; |
| |
| if (object->flags & OBJECT_PERCPU) { |
| unsigned int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| void *start = per_cpu_ptr((void __percpu *)object->pointer, cpu); |
| void *end = start + object->size; |
| |
| scan_block(start, end, object); |
| |
| raw_spin_unlock_irqrestore(&object->lock, flags); |
| cond_resched(); |
| raw_spin_lock_irqsave(&object->lock, flags); |
| if (!(object->flags & OBJECT_ALLOCATED)) |
| break; |
| } |
| } else if (hlist_empty(&object->area_list) || |
| object->flags & OBJECT_FULL_SCAN) { |
| void *start = object->flags & OBJECT_PHYS ? |
| __va((phys_addr_t)object->pointer) : |
| (void *)object->pointer; |
| void *end = start + object->size; |
| void *next; |
| |
| do { |
| next = min(start + MAX_SCAN_SIZE, end); |
| scan_block(start, next, object); |
| |
| start = next; |
| if (start >= end) |
| break; |
| |
| raw_spin_unlock_irqrestore(&object->lock, flags); |
| cond_resched(); |
| raw_spin_lock_irqsave(&object->lock, flags); |
| } while (object->flags & OBJECT_ALLOCATED); |
| } else { |
| hlist_for_each_entry(area, &object->area_list, node) |
| scan_block((void *)area->start, |
| (void *)(area->start + area->size), |
| object); |
| } |
| out: |
| raw_spin_unlock_irqrestore(&object->lock, flags); |
| } |
| |
| /* |
| * Scan the objects already referenced (gray objects). More objects will be |
| * referenced and, if there are no memory leaks, all the objects are scanned. |
| */ |
| static void scan_gray_list(void) |
| { |
| struct kmemleak_object *object, *tmp; |
| |
| /* |
| * The list traversal is safe for both tail additions and removals |
| * from inside the loop. The kmemleak objects cannot be freed from |
| * outside the loop because their use_count was incremented. |
| */ |
| object = list_entry(gray_list.next, typeof(*object), gray_list); |
| while (&object->gray_list != &gray_list) { |
| cond_resched(); |
| |
| /* may add new objects to the list */ |
| if (!scan_should_stop()) |
| scan_object(object); |
| |
| tmp = list_entry(object->gray_list.next, typeof(*object), |
| gray_list); |
| |
| /* remove the object from the list and release it */ |
| list_del(&object->gray_list); |
| put_object(object); |
| |
| object = tmp; |
| } |
| WARN_ON(!list_empty(&gray_list)); |
| } |
| |
| /* |
| * Conditionally call resched() in an object iteration loop while making sure |
| * that the given object won't go away without RCU read lock by performing a |
| * get_object() if necessaary. |
| */ |
| static void kmemleak_cond_resched(struct kmemleak_object *object) |
| { |
| if (!get_object(object)) |
| return; /* Try next object */ |
| |
| raw_spin_lock_irq(&kmemleak_lock); |
| if (object->del_state & DELSTATE_REMOVED) |
| goto unlock_put; /* Object removed */ |
| object->del_state |= DELSTATE_NO_DELETE; |
| raw_spin_unlock_irq(&kmemleak_lock); |
| |
| rcu_read_unlock(); |
| cond_resched(); |
| rcu_read_lock(); |
| |
| raw_spin_lock_irq(&kmemleak_lock); |
| if (object->del_state & DELSTATE_REMOVED) |
| list_del_rcu(&object->object_list); |
| object->del_state &= ~DELSTATE_NO_DELETE; |
| unlock_put: |
| raw_spin_unlock_irq(&kmemleak_lock); |
| put_object(object); |
| } |
| |
| /* |
| * Scan data sections and all the referenced memory blocks allocated via the |
| * kernel's standard allocators. This function must be called with the |
| * scan_mutex held. |
| */ |
| static void kmemleak_scan(void) |
| { |
| struct kmemleak_object *object; |
| struct zone *zone; |
| int __maybe_unused i; |
| int new_leaks = 0; |
| |
| jiffies_last_scan = jiffies; |
| |
| /* prepare the kmemleak_object's */ |
| rcu_read_lock(); |
| list_for_each_entry_rcu(object, &object_list, object_list) { |
| raw_spin_lock_irq(&object->lock); |
| #ifdef DEBUG |
| /* |
| * With a few exceptions there should be a maximum of |
| * 1 reference to any object at this point. |
| */ |
| if (atomic_read(&object->use_count) > 1) { |
| pr_debug("object->use_count = %d\n", |
| atomic_read(&object->use_count)); |
| dump_object_info(object); |
| } |
| #endif |
| |
| /* ignore objects outside lowmem (paint them black) */ |
| if ((object->flags & OBJECT_PHYS) && |
| !(object->flags & OBJECT_NO_SCAN)) { |
| unsigned long phys = object->pointer; |
| |
| if (PHYS_PFN(phys) < min_low_pfn || |
| PHYS_PFN(phys + object->size) >= max_low_pfn) |
| __paint_it(object, KMEMLEAK_BLACK); |
| } |
| |
| /* reset the reference count (whiten the object) */ |
| object->count = 0; |
| if (color_gray(object) && get_object(object)) |
| list_add_tail(&object->gray_list, &gray_list); |
| |
| raw_spin_unlock_irq(&object->lock); |
| |
| if (need_resched()) |
| kmemleak_cond_resched(object); |
| } |
| rcu_read_unlock(); |
| |
| #ifdef CONFIG_SMP |
| /* per-cpu sections scanning */ |
| for_each_possible_cpu(i) |
| scan_large_block(__per_cpu_start + per_cpu_offset(i), |
| __per_cpu_end + per_cpu_offset(i)); |
| #endif |
| |
| /* |
| * Struct page scanning for each node. |
| */ |
| get_online_mems(); |
| for_each_populated_zone(zone) { |
| unsigned long start_pfn = zone->zone_start_pfn; |
| unsigned long end_pfn = zone_end_pfn(zone); |
| unsigned long pfn; |
| |
| for (pfn = start_pfn; pfn < end_pfn; pfn++) { |
| struct page *page = pfn_to_online_page(pfn); |
| |
| if (!(pfn & 63)) |
| cond_resched(); |
| |
| if (!page) |
| continue; |
| |
| /* only scan pages belonging to this zone */ |
| if (page_zone(page) != zone) |
| continue; |
| /* only scan if page is in use */ |
| if (page_count(page) == 0) |
| continue; |
| scan_block(page, page + 1, NULL); |
| } |
| } |
| put_online_mems(); |
| |
| /* |
| * Scanning the task stacks (may introduce false negatives). |
| */ |
| if (kmemleak_stack_scan) { |
| struct task_struct *p, *g; |
| |
| rcu_read_lock(); |
| for_each_process_thread(g, p) { |
| void *stack = try_get_task_stack(p); |
| if (stack) { |
| scan_block(stack, stack + THREAD_SIZE, NULL); |
| put_task_stack(p); |
| } |
| } |
| rcu_read_unlock(); |
| } |
| |
| /* |
| * Scan the objects already referenced from the sections scanned |
| * above. |
| */ |
| scan_gray_list(); |
| |
| /* |
| * Check for new or unreferenced objects modified since the previous |
| * scan and color them gray until the next scan. |
| */ |
| rcu_read_lock(); |
| list_for_each_entry_rcu(object, &object_list, object_list) { |
| if (need_resched()) |
| kmemleak_cond_resched(object); |
| |
| /* |
| * This is racy but we can save the overhead of lock/unlock |
| * calls. The missed objects, if any, should be caught in |
| * the next scan. |
| */ |
| if (!color_white(object)) |
| continue; |
| raw_spin_lock_irq(&object->lock); |
| if (color_white(object) && (object->flags & OBJECT_ALLOCATED) |
| && update_checksum(object) && get_object(object)) { |
| /* color it gray temporarily */ |
| object->count = object->min_count; |
| list_add_tail(&object->gray_list, &gray_list); |
| } |
| raw_spin_unlock_irq(&object->lock); |
| } |
| rcu_read_unlock(); |
| |
| /* |
| * Re-scan the gray list for modified unreferenced objects. |
| */ |
| scan_gray_list(); |
| |
| /* |
| * If scanning was stopped do not report any new unreferenced objects. |
| */ |
| if (scan_should_stop()) |
| return; |
| |
| /* |
| * Scanning result reporting. |
| */ |
| rcu_read_lock(); |
| list_for_each_entry_rcu(object, &object_list, object_list) { |
| if (need_resched()) |
| kmemleak_cond_resched(object); |
| |
| /* |
| * This is racy but we can save the overhead of lock/unlock |
| * calls. The missed objects, if any, should be caught in |
| * the next scan. |
| */ |
| if (!color_white(object)) |
| continue; |
| raw_spin_lock_irq(&object->lock); |
| if (unreferenced_object(object) && |
| !(object->flags & OBJECT_REPORTED)) { |
| object->flags |= OBJECT_REPORTED; |
| |
| if (kmemleak_verbose) |
| print_unreferenced(NULL, object); |
| |
| new_leaks++; |
| } |
| raw_spin_unlock_irq(&object->lock); |
| } |
| rcu_read_unlock(); |
| |
| if (new_leaks) { |
| kmemleak_found_leaks = true; |
| |
| pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", |
| new_leaks); |
| } |
| |
| } |
| |
| /* |
| * Thread function performing automatic memory scanning. Unreferenced objects |
| * at the end of a memory scan are reported but only the first time. |
| */ |
| static int kmemleak_scan_thread(void *arg) |
| { |
| static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN); |
| |
| pr_info("Automatic memory scanning thread started\n"); |
| set_user_nice(current, 10); |
| |
| /* |
| * Wait before the first scan to allow the system to fully initialize. |
| */ |
| if (first_run) { |
| signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); |
| first_run = 0; |
| while (timeout && !kthread_should_stop()) |
| timeout = schedule_timeout_interruptible(timeout); |
| } |
| |
| while (!kthread_should_stop()) { |
| signed long timeout = READ_ONCE(jiffies_scan_wait); |
| |
| mutex_lock(&scan_mutex); |
| kmemleak_scan(); |
| mutex_unlock(&scan_mutex); |
| |
| /* wait before the next scan */ |
| while (timeout && !kthread_should_stop()) |
| timeout = schedule_timeout_interruptible(timeout); |
| } |
| |
| pr_info("Automatic memory scanning thread ended\n"); |
| |
| return 0; |
| } |
| |
| /* |
| * Start the automatic memory scanning thread. This function must be called |
| * with the scan_mutex held. |
| */ |
| static void start_scan_thread(void) |
| { |
| if (scan_thread) |
| return; |
| scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); |
| if (IS_ERR(scan_thread)) { |
| pr_warn("Failed to create the scan thread\n"); |
| scan_thread = NULL; |
| } |
| } |
| |
| /* |
| * Stop the automatic memory scanning thread. |
| */ |
| static void stop_scan_thread(void) |
| { |
| if (scan_thread) { |
| kthread_stop(scan_thread); |
| scan_thread = NULL; |
| } |
| } |
| |
| /* |
| * Iterate over the object_list and return the first valid object at or after |
| * the required position with its use_count incremented. The function triggers |
| * a memory scanning when the pos argument points to the first position. |
| */ |
| static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) |
| { |
| struct kmemleak_object *object; |
| loff_t n = *pos; |
| int err; |
| |
| err = mutex_lock_interruptible(&scan_mutex); |
| if (err < 0) |
| return ERR_PTR(err); |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(object, &object_list, object_list) { |
| if (n-- > 0) |
| continue; |
| if (get_object(object)) |
| goto out; |
| } |
| object = NULL; |
| out: |
| return object; |
| } |
| |
| /* |
| * Return the next object in the object_list. The function decrements the |
| * use_count of the previous object and increases that of the next one. |
| */ |
| static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
| { |
| struct kmemleak_object *prev_obj = v; |
| struct kmemleak_object *next_obj = NULL; |
| struct kmemleak_object *obj = prev_obj; |
| |
| ++(*pos); |
| |
| list_for_each_entry_continue_rcu(obj, &object_list, object_list) { |
| if (get_object(obj)) { |
| next_obj = obj; |
| break; |
| } |
| } |
| |
| put_object(prev_obj); |
| return next_obj; |
| } |
| |
| /* |
| * Decrement the use_count of the last object required, if any. |
| */ |
| static void kmemleak_seq_stop(struct seq_file *seq, void *v) |
| { |
| if (!IS_ERR(v)) { |
| /* |
| * kmemleak_seq_start may return ERR_PTR if the scan_mutex |
| * waiting was interrupted, so only release it if !IS_ERR. |
| */ |
| rcu_read_unlock(); |
| mutex_unlock(&scan_mutex); |
| if (v) |
| put_object(v); |
| } |
| } |
| |
| /* |
| * Print the information for an unreferenced object to the seq file. |
| */ |
| static int kmemleak_seq_show(struct seq_file *seq, void *v) |
| { |
| struct kmemleak_object *object = v; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&object->lock, flags); |
| if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) |
| print_unreferenced(seq, object); |
| raw_spin_unlock_irqrestore(&object->lock, flags); |
| return 0; |
| } |
| |
| static const struct seq_operations kmemleak_seq_ops = { |
| .start = kmemleak_seq_start, |
| .next = kmemleak_seq_next, |
| .stop = kmemleak_seq_stop, |
| .show = kmemleak_seq_show, |
| }; |
| |
| static int kmemleak_open(struct inode *inode, struct file *file) |
| { |
| return seq_open(file, &kmemleak_seq_ops); |
| } |
| |
| static int dump_str_object_info(const char *str) |
| { |
| unsigned long flags; |
| struct kmemleak_object *object; |
| unsigned long addr; |
| |
| if (kstrtoul(str, 0, &addr)) |
| return -EINVAL; |
| object = find_and_get_object(addr, 0); |
| if (!object) { |
| pr_info("Unknown object at 0x%08lx\n", addr); |
| return -EINVAL; |
| } |
| |
| raw_spin_lock_irqsave(&object->lock, flags); |
| dump_object_info(object); |
| raw_spin_unlock_irqrestore(&object->lock, flags); |
| |
| put_object(object); |
| return 0; |
| } |
| |
| /* |
| * We use grey instead of black to ensure we can do future scans on the same |
| * objects. If we did not do future scans these black objects could |
| * potentially contain references to newly allocated objects in the future and |
| * we'd end up with false positives. |
| */ |
| static void kmemleak_clear(void) |
| { |
| struct kmemleak_object *object; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(object, &object_list, object_list) { |
| raw_spin_lock_irq(&object->lock); |
| if ((object->flags & OBJECT_REPORTED) && |
| unreferenced_object(object)) |
| __paint_it(object, KMEMLEAK_GREY); |
| raw_spin_unlock_irq(&object->lock); |
| } |
| rcu_read_unlock(); |
| |
| kmemleak_found_leaks = false; |
| } |
| |
| static void __kmemleak_do_cleanup(void); |
| |
| /* |
| * File write operation to configure kmemleak at run-time. The following |
| * commands can be written to the /sys/kernel/debug/kmemleak file: |
| * off - disable kmemleak (irreversible) |
| * stack=on - enable the task stacks scanning |
| * stack=off - disable the tasks stacks scanning |
| * scan=on - start the automatic memory scanning thread |
| * scan=off - stop the automatic memory scanning thread |
| * scan=... - set the automatic memory scanning period in seconds (0 to |
| * disable it) |
| * scan - trigger a memory scan |
| * clear - mark all current reported unreferenced kmemleak objects as |
| * grey to ignore printing them, or free all kmemleak objects |
| * if kmemleak has been disabled. |
| * dump=... - dump information about the object found at the given address |
| */ |
| static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, |
| size_t size, loff_t *ppos) |
| { |
| char buf[64]; |
| int buf_size; |
| int ret; |
| |
| buf_size = min(size, (sizeof(buf) - 1)); |
| if (strncpy_from_user(buf, user_buf, buf_size) < 0) |
| return -EFAULT; |
| buf[buf_size] = 0; |
| |
| ret = mutex_lock_interruptible(&scan_mutex); |
| if (ret < 0) |
| return ret; |
| |
| if (strncmp(buf, "clear", 5) == 0) { |
| if (kmemleak_enabled) |
| kmemleak_clear(); |
| else |
| __kmemleak_do_cleanup(); |
| goto out; |
| } |
| |
| if (!kmemleak_enabled) { |
| ret = -EPERM; |
| goto out; |
| } |
| |
| if (strncmp(buf, "off", 3) == 0) |
| kmemleak_disable(); |
| else if (strncmp(buf, "stack=on", 8) == 0) |
| kmemleak_stack_scan = 1; |
| else if (strncmp(buf, "stack=off", 9) == 0) |
| kmemleak_stack_scan = 0; |
| else if (strncmp(buf, "scan=on", 7) == 0) |
| start_scan_thread(); |
| else if (strncmp(buf, "scan=off", 8) == 0) |
| stop_scan_thread(); |
| else if (strncmp(buf, "scan=", 5) == 0) { |
| unsigned secs; |
| unsigned long msecs; |
| |
| ret = kstrtouint(buf + 5, 0, &secs); |
| if (ret < 0) |
| goto out; |
| |
| msecs = secs * MSEC_PER_SEC; |
| if (msecs > UINT_MAX) |
| msecs = UINT_MAX; |
| |
| stop_scan_thread(); |
| if (msecs) { |
| WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs)); |
| start_scan_thread(); |
| } |
| } else if (strncmp(buf, "scan", 4) == 0) |
| kmemleak_scan(); |
| else if (strncmp(buf, "dump=", 5) == 0) |
| ret = dump_str_object_info(buf + 5); |
| else |
| ret = -EINVAL; |
| |
| out: |
| mutex_unlock(&scan_mutex); |
| if (ret < 0) |
| return ret; |
| |
| /* ignore the rest of the buffer, only one command at a time */ |
| *ppos += size; |
| return size; |
| } |
| |
| static const struct file_operations kmemleak_fops = { |
| .owner = THIS_MODULE, |
| .open = kmemleak_open, |
| .read = seq_read, |
| .write = kmemleak_write, |
| .llseek = seq_lseek, |
| .release = seq_release, |
| }; |
| |
| static void __kmemleak_do_cleanup(void) |
| { |
| struct kmemleak_object *object, *tmp; |
| |
| /* |
| * Kmemleak has already been disabled, no need for RCU list traversal |
| * or kmemleak_lock held. |
| */ |
| list_for_each_entry_safe(object, tmp, &object_list, object_list) { |
| __remove_object(object); |
| __delete_object(object); |
| } |
| } |
| |
| /* |
| * Stop the memory scanning thread and free the kmemleak internal objects if |
| * no previous scan thread (otherwise, kmemleak may still have some useful |
| * information on memory leaks). |
| */ |
| static void kmemleak_do_cleanup(struct work_struct *work) |
| { |
| stop_scan_thread(); |
| |
| mutex_lock(&scan_mutex); |
| /* |
| * Once it is made sure that kmemleak_scan has stopped, it is safe to no |
| * longer track object freeing. Ordering of the scan thread stopping and |
| * the memory accesses below is guaranteed by the kthread_stop() |
| * function. |
| */ |
| kmemleak_free_enabled = 0; |
| mutex_unlock(&scan_mutex); |
| |
| if (!kmemleak_found_leaks) |
| __kmemleak_do_cleanup(); |
| else |
| pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); |
| } |
| |
| static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); |
| |
| /* |
| * Disable kmemleak. No memory allocation/freeing will be traced once this |
| * function is called. Disabling kmemleak is an irreversible operation. |
| */ |
| static void kmemleak_disable(void) |
| { |
| /* atomically check whether it was already invoked */ |
| if (cmpxchg(&kmemleak_error, 0, 1)) |
| return; |
| |
| /* stop any memory operation tracing */ |
| kmemleak_enabled = 0; |
| |
| /* check whether it is too early for a kernel thread */ |
| if (kmemleak_late_initialized) |
| schedule_work(&cleanup_work); |
| else |
| kmemleak_free_enabled = 0; |
| |
| pr_info("Kernel memory leak detector disabled\n"); |
| } |
| |
| /* |
| * Allow boot-time kmemleak disabling (enabled by default). |
| */ |
| static int __init kmemleak_boot_config(char *str) |
| { |
| if (!str) |
| return -EINVAL; |
| if (strcmp(str, "off") == 0) |
| kmemleak_disable(); |
| else if (strcmp(str, "on") == 0) { |
| kmemleak_skip_disable = 1; |
| stack_depot_request_early_init(); |
| } |
| else |
| return -EINVAL; |
| return 0; |
| } |
| early_param("kmemleak", kmemleak_boot_config); |
| |
| /* |
| * Kmemleak initialization. |
| */ |
| void __init kmemleak_init(void) |
| { |
| #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF |
| if (!kmemleak_skip_disable) { |
| kmemleak_disable(); |
| return; |
| } |
| #endif |
| |
| if (kmemleak_error) |
| return; |
| |
| jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); |
| jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); |
| |
| object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); |
| scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); |
| |
| /* register the data/bss sections */ |
| create_object((unsigned long)_sdata, _edata - _sdata, |
| KMEMLEAK_GREY, GFP_ATOMIC); |
| create_object((unsigned long)__bss_start, __bss_stop - __bss_start, |
| KMEMLEAK_GREY, GFP_ATOMIC); |
| /* only register .data..ro_after_init if not within .data */ |
| if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata) |
| create_object((unsigned long)__start_ro_after_init, |
| __end_ro_after_init - __start_ro_after_init, |
| KMEMLEAK_GREY, GFP_ATOMIC); |
| } |
| |
| /* |
| * Late initialization function. |
| */ |
| static int __init kmemleak_late_init(void) |
| { |
| kmemleak_late_initialized = 1; |
| |
| debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops); |
| |
| if (kmemleak_error) { |
| /* |
| * Some error occurred and kmemleak was disabled. There is a |
| * small chance that kmemleak_disable() was called immediately |
| * after setting kmemleak_late_initialized and we may end up with |
| * two clean-up threads but serialized by scan_mutex. |
| */ |
| schedule_work(&cleanup_work); |
| return -ENOMEM; |
| } |
| |
| if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) { |
| mutex_lock(&scan_mutex); |
| start_scan_thread(); |
| mutex_unlock(&scan_mutex); |
| } |
| |
| pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n", |
| mem_pool_free_count); |
| |
| return 0; |
| } |
| late_initcall(kmemleak_late_init); |