| // SPDX-License-Identifier: Apache-2.0 OR MIT |
| |
| //! This module provides the macros that actually implement the proc-macros `pin_data` and |
| //! `pinned_drop`. It also contains `__init_internal` the implementation of the `{try_}{pin_}init!` |
| //! macros. |
| //! |
| //! These macros should never be called directly, since they expect their input to be |
| //! in a certain format which is internal. If used incorrectly, these macros can lead to UB even in |
| //! safe code! Use the public facing macros instead. |
| //! |
| //! This architecture has been chosen because the kernel does not yet have access to `syn` which |
| //! would make matters a lot easier for implementing these as proc-macros. |
| //! |
| //! # Macro expansion example |
| //! |
| //! This section is intended for readers trying to understand the macros in this module and the |
| //! `pin_init!` macros from `init.rs`. |
| //! |
| //! We will look at the following example: |
| //! |
| //! ```rust,ignore |
| //! # use kernel::init::*; |
| //! # use core::pin::Pin; |
| //! #[pin_data] |
| //! #[repr(C)] |
| //! struct Bar<T> { |
| //! #[pin] |
| //! t: T, |
| //! pub x: usize, |
| //! } |
| //! |
| //! impl<T> Bar<T> { |
| //! fn new(t: T) -> impl PinInit<Self> { |
| //! pin_init!(Self { t, x: 0 }) |
| //! } |
| //! } |
| //! |
| //! #[pin_data(PinnedDrop)] |
| //! struct Foo { |
| //! a: usize, |
| //! #[pin] |
| //! b: Bar<u32>, |
| //! } |
| //! |
| //! #[pinned_drop] |
| //! impl PinnedDrop for Foo { |
| //! fn drop(self: Pin<&mut Self>) { |
| //! pr_info!("{self:p} is getting dropped."); |
| //! } |
| //! } |
| //! |
| //! let a = 42; |
| //! let initializer = pin_init!(Foo { |
| //! a, |
| //! b <- Bar::new(36), |
| //! }); |
| //! ``` |
| //! |
| //! This example includes the most common and important features of the pin-init API. |
| //! |
| //! Below you can find individual section about the different macro invocations. Here are some |
| //! general things we need to take into account when designing macros: |
| //! - use global paths, similarly to file paths, these start with the separator: `::core::panic!()` |
| //! this ensures that the correct item is used, since users could define their own `mod core {}` |
| //! and then their own `panic!` inside to execute arbitrary code inside of our macro. |
| //! - macro `unsafe` hygiene: we need to ensure that we do not expand arbitrary, user-supplied |
| //! expressions inside of an `unsafe` block in the macro, because this would allow users to do |
| //! `unsafe` operations without an associated `unsafe` block. |
| //! |
| //! ## `#[pin_data]` on `Bar` |
| //! |
| //! This macro is used to specify which fields are structurally pinned and which fields are not. It |
| //! is placed on the struct definition and allows `#[pin]` to be placed on the fields. |
| //! |
| //! Here is the definition of `Bar` from our example: |
| //! |
| //! ```rust,ignore |
| //! # use kernel::init::*; |
| //! #[pin_data] |
| //! #[repr(C)] |
| //! struct Bar<T> { |
| //! #[pin] |
| //! t: T, |
| //! pub x: usize, |
| //! } |
| //! ``` |
| //! |
| //! This expands to the following code: |
| //! |
| //! ```rust,ignore |
| //! // Firstly the normal definition of the struct, attributes are preserved: |
| //! #[repr(C)] |
| //! struct Bar<T> { |
| //! t: T, |
| //! pub x: usize, |
| //! } |
| //! // Then an anonymous constant is defined, this is because we do not want any code to access the |
| //! // types that we define inside: |
| //! const _: () = { |
| //! // We define the pin-data carrying struct, it is a ZST and needs to have the same generics, |
| //! // since we need to implement access functions for each field and thus need to know its |
| //! // type. |
| //! struct __ThePinData<T> { |
| //! __phantom: ::core::marker::PhantomData<fn(Bar<T>) -> Bar<T>>, |
| //! } |
| //! // We implement `Copy` for the pin-data struct, since all functions it defines will take |
| //! // `self` by value. |
| //! impl<T> ::core::clone::Clone for __ThePinData<T> { |
| //! fn clone(&self) -> Self { |
| //! *self |
| //! } |
| //! } |
| //! impl<T> ::core::marker::Copy for __ThePinData<T> {} |
| //! // For every field of `Bar`, the pin-data struct will define a function with the same name |
| //! // and accessor (`pub` or `pub(crate)` etc.). This function will take a pointer to the |
| //! // field (`slot`) and a `PinInit` or `Init` depending on the projection kind of the field |
| //! // (if pinning is structural for the field, then `PinInit` otherwise `Init`). |
| //! #[allow(dead_code)] |
| //! impl<T> __ThePinData<T> { |
| //! unsafe fn t<E>( |
| //! self, |
| //! slot: *mut T, |
| //! // Since `t` is `#[pin]`, this is `PinInit`. |
| //! init: impl ::kernel::init::PinInit<T, E>, |
| //! ) -> ::core::result::Result<(), E> { |
| //! unsafe { ::kernel::init::PinInit::__pinned_init(init, slot) } |
| //! } |
| //! pub unsafe fn x<E>( |
| //! self, |
| //! slot: *mut usize, |
| //! // Since `x` is not `#[pin]`, this is `Init`. |
| //! init: impl ::kernel::init::Init<usize, E>, |
| //! ) -> ::core::result::Result<(), E> { |
| //! unsafe { ::kernel::init::Init::__init(init, slot) } |
| //! } |
| //! } |
| //! // Implement the internal `HasPinData` trait that associates `Bar` with the pin-data struct |
| //! // that we constructed above. |
| //! unsafe impl<T> ::kernel::init::__internal::HasPinData for Bar<T> { |
| //! type PinData = __ThePinData<T>; |
| //! unsafe fn __pin_data() -> Self::PinData { |
| //! __ThePinData { |
| //! __phantom: ::core::marker::PhantomData, |
| //! } |
| //! } |
| //! } |
| //! // Implement the internal `PinData` trait that marks the pin-data struct as a pin-data |
| //! // struct. This is important to ensure that no user can implement a rouge `__pin_data` |
| //! // function without using `unsafe`. |
| //! unsafe impl<T> ::kernel::init::__internal::PinData for __ThePinData<T> { |
| //! type Datee = Bar<T>; |
| //! } |
| //! // Now we only want to implement `Unpin` for `Bar` when every structurally pinned field is |
| //! // `Unpin`. In other words, whether `Bar` is `Unpin` only depends on structurally pinned |
| //! // fields (those marked with `#[pin]`). These fields will be listed in this struct, in our |
| //! // case no such fields exist, hence this is almost empty. The two phantomdata fields exist |
| //! // for two reasons: |
| //! // - `__phantom`: every generic must be used, since we cannot really know which generics |
| //! // are used, we declere all and then use everything here once. |
| //! // - `__phantom_pin`: uses the `'__pin` lifetime and ensures that this struct is invariant |
| //! // over it. The lifetime is needed to work around the limitation that trait bounds must |
| //! // not be trivial, e.g. the user has a `#[pin] PhantomPinned` field -- this is |
| //! // unconditionally `!Unpin` and results in an error. The lifetime tricks the compiler |
| //! // into accepting these bounds regardless. |
| //! #[allow(dead_code)] |
| //! struct __Unpin<'__pin, T> { |
| //! __phantom_pin: ::core::marker::PhantomData<fn(&'__pin ()) -> &'__pin ()>, |
| //! __phantom: ::core::marker::PhantomData<fn(Bar<T>) -> Bar<T>>, |
| //! // Our only `#[pin]` field is `t`. |
| //! t: T, |
| //! } |
| //! #[doc(hidden)] |
| //! impl<'__pin, T> ::core::marker::Unpin for Bar<T> |
| //! where |
| //! __Unpin<'__pin, T>: ::core::marker::Unpin, |
| //! {} |
| //! // Now we need to ensure that `Bar` does not implement `Drop`, since that would give users |
| //! // access to `&mut self` inside of `drop` even if the struct was pinned. This could lead to |
| //! // UB with only safe code, so we disallow this by giving a trait implementation error using |
| //! // a direct impl and a blanket implementation. |
| //! trait MustNotImplDrop {} |
| //! // Normally `Drop` bounds do not have the correct semantics, but for this purpose they do |
| //! // (normally people want to know if a type has any kind of drop glue at all, here we want |
| //! // to know if it has any kind of custom drop glue, which is exactly what this bound does). |
| //! #[allow(drop_bounds)] |
| //! impl<T: ::core::ops::Drop> MustNotImplDrop for T {} |
| //! impl<T> MustNotImplDrop for Bar<T> {} |
| //! // Here comes a convenience check, if one implemented `PinnedDrop`, but forgot to add it to |
| //! // `#[pin_data]`, then this will error with the same mechanic as above, this is not needed |
| //! // for safety, but a good sanity check, since no normal code calls `PinnedDrop::drop`. |
| //! #[allow(non_camel_case_types)] |
| //! trait UselessPinnedDropImpl_you_need_to_specify_PinnedDrop {} |
| //! impl< |
| //! T: ::kernel::init::PinnedDrop, |
| //! > UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for T {} |
| //! impl<T> UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for Bar<T> {} |
| //! }; |
| //! ``` |
| //! |
| //! ## `pin_init!` in `impl Bar` |
| //! |
| //! This macro creates an pin-initializer for the given struct. It requires that the struct is |
| //! annotated by `#[pin_data]`. |
| //! |
| //! Here is the impl on `Bar` defining the new function: |
| //! |
| //! ```rust,ignore |
| //! impl<T> Bar<T> { |
| //! fn new(t: T) -> impl PinInit<Self> { |
| //! pin_init!(Self { t, x: 0 }) |
| //! } |
| //! } |
| //! ``` |
| //! |
| //! This expands to the following code: |
| //! |
| //! ```rust,ignore |
| //! impl<T> Bar<T> { |
| //! fn new(t: T) -> impl PinInit<Self> { |
| //! { |
| //! // We do not want to allow arbitrary returns, so we declare this type as the `Ok` |
| //! // return type and shadow it later when we insert the arbitrary user code. That way |
| //! // there will be no possibility of returning without `unsafe`. |
| //! struct __InitOk; |
| //! // Get the data about fields from the supplied type. |
| //! // - the function is unsafe, hence the unsafe block |
| //! // - we `use` the `HasPinData` trait in the block, it is only available in that |
| //! // scope. |
| //! let data = unsafe { |
| //! use ::kernel::init::__internal::HasPinData; |
| //! Self::__pin_data() |
| //! }; |
| //! // Ensure that `data` really is of type `PinData` and help with type inference: |
| //! let init = ::kernel::init::__internal::PinData::make_closure::< |
| //! _, |
| //! __InitOk, |
| //! ::core::convert::Infallible, |
| //! >(data, move |slot| { |
| //! { |
| //! // Shadow the structure so it cannot be used to return early. If a user |
| //! // tries to write `return Ok(__InitOk)`, then they get a type error, |
| //! // since that will refer to this struct instead of the one defined |
| //! // above. |
| //! struct __InitOk; |
| //! // This is the expansion of `t,`, which is syntactic sugar for `t: t,`. |
| //! { |
| //! unsafe { ::core::ptr::write(::core::addr_of_mut!((*slot).t), t) }; |
| //! } |
| //! // Since initialization could fail later (not in this case, since the |
| //! // error type is `Infallible`) we will need to drop this field if there |
| //! // is an error later. This `DropGuard` will drop the field when it gets |
| //! // dropped and has not yet been forgotten. |
| //! let t = unsafe { |
| //! ::pinned_init::__internal::DropGuard::new(::core::addr_of_mut!((*slot).t)) |
| //! }; |
| //! // Expansion of `x: 0,`: |
| //! // Since this can be an arbitrary expression we cannot place it inside |
| //! // of the `unsafe` block, so we bind it here. |
| //! { |
| //! let x = 0; |
| //! unsafe { ::core::ptr::write(::core::addr_of_mut!((*slot).x), x) }; |
| //! } |
| //! // We again create a `DropGuard`. |
| //! let x = unsafe { |
| //! ::kernel::init::__internal::DropGuard::new(::core::addr_of_mut!((*slot).x)) |
| //! }; |
| //! // Since initialization has successfully completed, we can now forget |
| //! // the guards. This is not `mem::forget`, since we only have |
| //! // `&DropGuard`. |
| //! ::core::mem::forget(x); |
| //! ::core::mem::forget(t); |
| //! // Here we use the type checker to ensure that every field has been |
| //! // initialized exactly once, since this is `if false` it will never get |
| //! // executed, but still type-checked. |
| //! // Additionally we abuse `slot` to automatically infer the correct type |
| //! // for the struct. This is also another check that every field is |
| //! // accessible from this scope. |
| //! #[allow(unreachable_code, clippy::diverging_sub_expression)] |
| //! let _ = || { |
| //! unsafe { |
| //! ::core::ptr::write( |
| //! slot, |
| //! Self { |
| //! // We only care about typecheck finding every field |
| //! // here, the expression does not matter, just conjure |
| //! // one using `panic!()`: |
| //! t: ::core::panic!(), |
| //! x: ::core::panic!(), |
| //! }, |
| //! ); |
| //! }; |
| //! }; |
| //! } |
| //! // We leave the scope above and gain access to the previously shadowed |
| //! // `__InitOk` that we need to return. |
| //! Ok(__InitOk) |
| //! }); |
| //! // Change the return type from `__InitOk` to `()`. |
| //! let init = move | |
| //! slot, |
| //! | -> ::core::result::Result<(), ::core::convert::Infallible> { |
| //! init(slot).map(|__InitOk| ()) |
| //! }; |
| //! // Construct the initializer. |
| //! let init = unsafe { |
| //! ::kernel::init::pin_init_from_closure::< |
| //! _, |
| //! ::core::convert::Infallible, |
| //! >(init) |
| //! }; |
| //! init |
| //! } |
| //! } |
| //! } |
| //! ``` |
| //! |
| //! ## `#[pin_data]` on `Foo` |
| //! |
| //! Since we already took a look at `#[pin_data]` on `Bar`, this section will only explain the |
| //! differences/new things in the expansion of the `Foo` definition: |
| //! |
| //! ```rust,ignore |
| //! #[pin_data(PinnedDrop)] |
| //! struct Foo { |
| //! a: usize, |
| //! #[pin] |
| //! b: Bar<u32>, |
| //! } |
| //! ``` |
| //! |
| //! This expands to the following code: |
| //! |
| //! ```rust,ignore |
| //! struct Foo { |
| //! a: usize, |
| //! b: Bar<u32>, |
| //! } |
| //! const _: () = { |
| //! struct __ThePinData { |
| //! __phantom: ::core::marker::PhantomData<fn(Foo) -> Foo>, |
| //! } |
| //! impl ::core::clone::Clone for __ThePinData { |
| //! fn clone(&self) -> Self { |
| //! *self |
| //! } |
| //! } |
| //! impl ::core::marker::Copy for __ThePinData {} |
| //! #[allow(dead_code)] |
| //! impl __ThePinData { |
| //! unsafe fn b<E>( |
| //! self, |
| //! slot: *mut Bar<u32>, |
| //! init: impl ::kernel::init::PinInit<Bar<u32>, E>, |
| //! ) -> ::core::result::Result<(), E> { |
| //! unsafe { ::kernel::init::PinInit::__pinned_init(init, slot) } |
| //! } |
| //! unsafe fn a<E>( |
| //! self, |
| //! slot: *mut usize, |
| //! init: impl ::kernel::init::Init<usize, E>, |
| //! ) -> ::core::result::Result<(), E> { |
| //! unsafe { ::kernel::init::Init::__init(init, slot) } |
| //! } |
| //! } |
| //! unsafe impl ::kernel::init::__internal::HasPinData for Foo { |
| //! type PinData = __ThePinData; |
| //! unsafe fn __pin_data() -> Self::PinData { |
| //! __ThePinData { |
| //! __phantom: ::core::marker::PhantomData, |
| //! } |
| //! } |
| //! } |
| //! unsafe impl ::kernel::init::__internal::PinData for __ThePinData { |
| //! type Datee = Foo; |
| //! } |
| //! #[allow(dead_code)] |
| //! struct __Unpin<'__pin> { |
| //! __phantom_pin: ::core::marker::PhantomData<fn(&'__pin ()) -> &'__pin ()>, |
| //! __phantom: ::core::marker::PhantomData<fn(Foo) -> Foo>, |
| //! b: Bar<u32>, |
| //! } |
| //! #[doc(hidden)] |
| //! impl<'__pin> ::core::marker::Unpin for Foo |
| //! where |
| //! __Unpin<'__pin>: ::core::marker::Unpin, |
| //! {} |
| //! // Since we specified `PinnedDrop` as the argument to `#[pin_data]`, we expect `Foo` to |
| //! // implement `PinnedDrop`. Thus we do not need to prevent `Drop` implementations like |
| //! // before, instead we implement `Drop` here and delegate to `PinnedDrop`. |
| //! impl ::core::ops::Drop for Foo { |
| //! fn drop(&mut self) { |
| //! // Since we are getting dropped, no one else has a reference to `self` and thus we |
| //! // can assume that we never move. |
| //! let pinned = unsafe { ::core::pin::Pin::new_unchecked(self) }; |
| //! // Create the unsafe token that proves that we are inside of a destructor, this |
| //! // type is only allowed to be created in a destructor. |
| //! let token = unsafe { ::kernel::init::__internal::OnlyCallFromDrop::new() }; |
| //! ::kernel::init::PinnedDrop::drop(pinned, token); |
| //! } |
| //! } |
| //! }; |
| //! ``` |
| //! |
| //! ## `#[pinned_drop]` on `impl PinnedDrop for Foo` |
| //! |
| //! This macro is used to implement the `PinnedDrop` trait, since that trait is `unsafe` and has an |
| //! extra parameter that should not be used at all. The macro hides that parameter. |
| //! |
| //! Here is the `PinnedDrop` impl for `Foo`: |
| //! |
| //! ```rust,ignore |
| //! #[pinned_drop] |
| //! impl PinnedDrop for Foo { |
| //! fn drop(self: Pin<&mut Self>) { |
| //! pr_info!("{self:p} is getting dropped."); |
| //! } |
| //! } |
| //! ``` |
| //! |
| //! This expands to the following code: |
| //! |
| //! ```rust,ignore |
| //! // `unsafe`, full path and the token parameter are added, everything else stays the same. |
| //! unsafe impl ::kernel::init::PinnedDrop for Foo { |
| //! fn drop(self: Pin<&mut Self>, _: ::kernel::init::__internal::OnlyCallFromDrop) { |
| //! pr_info!("{self:p} is getting dropped."); |
| //! } |
| //! } |
| //! ``` |
| //! |
| //! ## `pin_init!` on `Foo` |
| //! |
| //! Since we already took a look at `pin_init!` on `Bar`, this section will only show the expansion |
| //! of `pin_init!` on `Foo`: |
| //! |
| //! ```rust,ignore |
| //! let a = 42; |
| //! let initializer = pin_init!(Foo { |
| //! a, |
| //! b <- Bar::new(36), |
| //! }); |
| //! ``` |
| //! |
| //! This expands to the following code: |
| //! |
| //! ```rust,ignore |
| //! let a = 42; |
| //! let initializer = { |
| //! struct __InitOk; |
| //! let data = unsafe { |
| //! use ::kernel::init::__internal::HasPinData; |
| //! Foo::__pin_data() |
| //! }; |
| //! let init = ::kernel::init::__internal::PinData::make_closure::< |
| //! _, |
| //! __InitOk, |
| //! ::core::convert::Infallible, |
| //! >(data, move |slot| { |
| //! { |
| //! struct __InitOk; |
| //! { |
| //! unsafe { ::core::ptr::write(::core::addr_of_mut!((*slot).a), a) }; |
| //! } |
| //! let a = unsafe { |
| //! ::kernel::init::__internal::DropGuard::new(::core::addr_of_mut!((*slot).a)) |
| //! }; |
| //! let init = Bar::new(36); |
| //! unsafe { data.b(::core::addr_of_mut!((*slot).b), b)? }; |
| //! let b = unsafe { |
| //! ::kernel::init::__internal::DropGuard::new(::core::addr_of_mut!((*slot).b)) |
| //! }; |
| //! ::core::mem::forget(b); |
| //! ::core::mem::forget(a); |
| //! #[allow(unreachable_code, clippy::diverging_sub_expression)] |
| //! let _ = || { |
| //! unsafe { |
| //! ::core::ptr::write( |
| //! slot, |
| //! Foo { |
| //! a: ::core::panic!(), |
| //! b: ::core::panic!(), |
| //! }, |
| //! ); |
| //! }; |
| //! }; |
| //! } |
| //! Ok(__InitOk) |
| //! }); |
| //! let init = move | |
| //! slot, |
| //! | -> ::core::result::Result<(), ::core::convert::Infallible> { |
| //! init(slot).map(|__InitOk| ()) |
| //! }; |
| //! let init = unsafe { |
| //! ::kernel::init::pin_init_from_closure::<_, ::core::convert::Infallible>(init) |
| //! }; |
| //! init |
| //! }; |
| //! ``` |
| |
| /// Creates a `unsafe impl<...> PinnedDrop for $type` block. |
| /// |
| /// See [`PinnedDrop`] for more information. |
| #[doc(hidden)] |
| #[macro_export] |
| macro_rules! __pinned_drop { |
| ( |
| @impl_sig($($impl_sig:tt)*), |
| @impl_body( |
| $(#[$($attr:tt)*])* |
| fn drop($($sig:tt)*) { |
| $($inner:tt)* |
| } |
| ), |
| ) => { |
| unsafe $($impl_sig)* { |
| // Inherit all attributes and the type/ident tokens for the signature. |
| $(#[$($attr)*])* |
| fn drop($($sig)*, _: $crate::init::__internal::OnlyCallFromDrop) { |
| $($inner)* |
| } |
| } |
| } |
| } |
| |
| /// This macro first parses the struct definition such that it separates pinned and not pinned |
| /// fields. Afterwards it declares the struct and implement the `PinData` trait safely. |
| #[doc(hidden)] |
| #[macro_export] |
| macro_rules! __pin_data { |
| // Proc-macro entry point, this is supplied by the proc-macro pre-parsing. |
| (parse_input: |
| @args($($pinned_drop:ident)?), |
| @sig( |
| $(#[$($struct_attr:tt)*])* |
| $vis:vis struct $name:ident |
| $(where $($whr:tt)*)? |
| ), |
| @impl_generics($($impl_generics:tt)*), |
| @ty_generics($($ty_generics:tt)*), |
| @body({ $($fields:tt)* }), |
| ) => { |
| // We now use token munching to iterate through all of the fields. While doing this we |
| // identify fields marked with `#[pin]`, these fields are the 'pinned fields'. The user |
| // wants these to be structurally pinned. The rest of the fields are the |
| // 'not pinned fields'. Additionally we collect all fields, since we need them in the right |
| // order to declare the struct. |
| // |
| // In this call we also put some explaining comments for the parameters. |
| $crate::__pin_data!(find_pinned_fields: |
| // Attributes on the struct itself, these will just be propagated to be put onto the |
| // struct definition. |
| @struct_attrs($(#[$($struct_attr)*])*), |
| // The visibility of the struct. |
| @vis($vis), |
| // The name of the struct. |
| @name($name), |
| // The 'impl generics', the generics that will need to be specified on the struct inside |
| // of an `impl<$ty_generics>` block. |
| @impl_generics($($impl_generics)*), |
| // The 'ty generics', the generics that will need to be specified on the impl blocks. |
| @ty_generics($($ty_generics)*), |
| // The where clause of any impl block and the declaration. |
| @where($($($whr)*)?), |
| // The remaining fields tokens that need to be processed. |
| // We add a `,` at the end to ensure correct parsing. |
| @fields_munch($($fields)* ,), |
| // The pinned fields. |
| @pinned(), |
| // The not pinned fields. |
| @not_pinned(), |
| // All fields. |
| @fields(), |
| // The accumulator containing all attributes already parsed. |
| @accum(), |
| // Contains `yes` or `` to indicate if `#[pin]` was found on the current field. |
| @is_pinned(), |
| // The proc-macro argument, this should be `PinnedDrop` or ``. |
| @pinned_drop($($pinned_drop)?), |
| ); |
| }; |
| (find_pinned_fields: |
| @struct_attrs($($struct_attrs:tt)*), |
| @vis($vis:vis), |
| @name($name:ident), |
| @impl_generics($($impl_generics:tt)*), |
| @ty_generics($($ty_generics:tt)*), |
| @where($($whr:tt)*), |
| // We found a PhantomPinned field, this should generally be pinned! |
| @fields_munch($field:ident : $($($(::)?core::)?marker::)?PhantomPinned, $($rest:tt)*), |
| @pinned($($pinned:tt)*), |
| @not_pinned($($not_pinned:tt)*), |
| @fields($($fields:tt)*), |
| @accum($($accum:tt)*), |
| // This field is not pinned. |
| @is_pinned(), |
| @pinned_drop($($pinned_drop:ident)?), |
| ) => { |
| ::core::compile_error!(concat!( |
| "The field `", |
| stringify!($field), |
| "` of type `PhantomPinned` only has an effect, if it has the `#[pin]` attribute.", |
| )); |
| $crate::__pin_data!(find_pinned_fields: |
| @struct_attrs($($struct_attrs)*), |
| @vis($vis), |
| @name($name), |
| @impl_generics($($impl_generics)*), |
| @ty_generics($($ty_generics)*), |
| @where($($whr)*), |
| @fields_munch($($rest)*), |
| @pinned($($pinned)* $($accum)* $field: ::core::marker::PhantomPinned,), |
| @not_pinned($($not_pinned)*), |
| @fields($($fields)* $($accum)* $field: ::core::marker::PhantomPinned,), |
| @accum(), |
| @is_pinned(), |
| @pinned_drop($($pinned_drop)?), |
| ); |
| }; |
| (find_pinned_fields: |
| @struct_attrs($($struct_attrs:tt)*), |
| @vis($vis:vis), |
| @name($name:ident), |
| @impl_generics($($impl_generics:tt)*), |
| @ty_generics($($ty_generics:tt)*), |
| @where($($whr:tt)*), |
| // We reached the field declaration. |
| @fields_munch($field:ident : $type:ty, $($rest:tt)*), |
| @pinned($($pinned:tt)*), |
| @not_pinned($($not_pinned:tt)*), |
| @fields($($fields:tt)*), |
| @accum($($accum:tt)*), |
| // This field is pinned. |
| @is_pinned(yes), |
| @pinned_drop($($pinned_drop:ident)?), |
| ) => { |
| $crate::__pin_data!(find_pinned_fields: |
| @struct_attrs($($struct_attrs)*), |
| @vis($vis), |
| @name($name), |
| @impl_generics($($impl_generics)*), |
| @ty_generics($($ty_generics)*), |
| @where($($whr)*), |
| @fields_munch($($rest)*), |
| @pinned($($pinned)* $($accum)* $field: $type,), |
| @not_pinned($($not_pinned)*), |
| @fields($($fields)* $($accum)* $field: $type,), |
| @accum(), |
| @is_pinned(), |
| @pinned_drop($($pinned_drop)?), |
| ); |
| }; |
| (find_pinned_fields: |
| @struct_attrs($($struct_attrs:tt)*), |
| @vis($vis:vis), |
| @name($name:ident), |
| @impl_generics($($impl_generics:tt)*), |
| @ty_generics($($ty_generics:tt)*), |
| @where($($whr:tt)*), |
| // We reached the field declaration. |
| @fields_munch($field:ident : $type:ty, $($rest:tt)*), |
| @pinned($($pinned:tt)*), |
| @not_pinned($($not_pinned:tt)*), |
| @fields($($fields:tt)*), |
| @accum($($accum:tt)*), |
| // This field is not pinned. |
| @is_pinned(), |
| @pinned_drop($($pinned_drop:ident)?), |
| ) => { |
| $crate::__pin_data!(find_pinned_fields: |
| @struct_attrs($($struct_attrs)*), |
| @vis($vis), |
| @name($name), |
| @impl_generics($($impl_generics)*), |
| @ty_generics($($ty_generics)*), |
| @where($($whr)*), |
| @fields_munch($($rest)*), |
| @pinned($($pinned)*), |
| @not_pinned($($not_pinned)* $($accum)* $field: $type,), |
| @fields($($fields)* $($accum)* $field: $type,), |
| @accum(), |
| @is_pinned(), |
| @pinned_drop($($pinned_drop)?), |
| ); |
| }; |
| (find_pinned_fields: |
| @struct_attrs($($struct_attrs:tt)*), |
| @vis($vis:vis), |
| @name($name:ident), |
| @impl_generics($($impl_generics:tt)*), |
| @ty_generics($($ty_generics:tt)*), |
| @where($($whr:tt)*), |
| // We found the `#[pin]` attr. |
| @fields_munch(#[pin] $($rest:tt)*), |
| @pinned($($pinned:tt)*), |
| @not_pinned($($not_pinned:tt)*), |
| @fields($($fields:tt)*), |
| @accum($($accum:tt)*), |
| @is_pinned($($is_pinned:ident)?), |
| @pinned_drop($($pinned_drop:ident)?), |
| ) => { |
| $crate::__pin_data!(find_pinned_fields: |
| @struct_attrs($($struct_attrs)*), |
| @vis($vis), |
| @name($name), |
| @impl_generics($($impl_generics)*), |
| @ty_generics($($ty_generics)*), |
| @where($($whr)*), |
| @fields_munch($($rest)*), |
| // We do not include `#[pin]` in the list of attributes, since it is not actually an |
| // attribute that is defined somewhere. |
| @pinned($($pinned)*), |
| @not_pinned($($not_pinned)*), |
| @fields($($fields)*), |
| @accum($($accum)*), |
| // Set this to `yes`. |
| @is_pinned(yes), |
| @pinned_drop($($pinned_drop)?), |
| ); |
| }; |
| (find_pinned_fields: |
| @struct_attrs($($struct_attrs:tt)*), |
| @vis($vis:vis), |
| @name($name:ident), |
| @impl_generics($($impl_generics:tt)*), |
| @ty_generics($($ty_generics:tt)*), |
| @where($($whr:tt)*), |
| // We reached the field declaration with visibility, for simplicity we only munch the |
| // visibility and put it into `$accum`. |
| @fields_munch($fvis:vis $field:ident $($rest:tt)*), |
| @pinned($($pinned:tt)*), |
| @not_pinned($($not_pinned:tt)*), |
| @fields($($fields:tt)*), |
| @accum($($accum:tt)*), |
| @is_pinned($($is_pinned:ident)?), |
| @pinned_drop($($pinned_drop:ident)?), |
| ) => { |
| $crate::__pin_data!(find_pinned_fields: |
| @struct_attrs($($struct_attrs)*), |
| @vis($vis), |
| @name($name), |
| @impl_generics($($impl_generics)*), |
| @ty_generics($($ty_generics)*), |
| @where($($whr)*), |
| @fields_munch($field $($rest)*), |
| @pinned($($pinned)*), |
| @not_pinned($($not_pinned)*), |
| @fields($($fields)*), |
| @accum($($accum)* $fvis), |
| @is_pinned($($is_pinned)?), |
| @pinned_drop($($pinned_drop)?), |
| ); |
| }; |
| (find_pinned_fields: |
| @struct_attrs($($struct_attrs:tt)*), |
| @vis($vis:vis), |
| @name($name:ident), |
| @impl_generics($($impl_generics:tt)*), |
| @ty_generics($($ty_generics:tt)*), |
| @where($($whr:tt)*), |
| // Some other attribute, just put it into `$accum`. |
| @fields_munch(#[$($attr:tt)*] $($rest:tt)*), |
| @pinned($($pinned:tt)*), |
| @not_pinned($($not_pinned:tt)*), |
| @fields($($fields:tt)*), |
| @accum($($accum:tt)*), |
| @is_pinned($($is_pinned:ident)?), |
| @pinned_drop($($pinned_drop:ident)?), |
| ) => { |
| $crate::__pin_data!(find_pinned_fields: |
| @struct_attrs($($struct_attrs)*), |
| @vis($vis), |
| @name($name), |
| @impl_generics($($impl_generics)*), |
| @ty_generics($($ty_generics)*), |
| @where($($whr)*), |
| @fields_munch($($rest)*), |
| @pinned($($pinned)*), |
| @not_pinned($($not_pinned)*), |
| @fields($($fields)*), |
| @accum($($accum)* #[$($attr)*]), |
| @is_pinned($($is_pinned)?), |
| @pinned_drop($($pinned_drop)?), |
| ); |
| }; |
| (find_pinned_fields: |
| @struct_attrs($($struct_attrs:tt)*), |
| @vis($vis:vis), |
| @name($name:ident), |
| @impl_generics($($impl_generics:tt)*), |
| @ty_generics($($ty_generics:tt)*), |
| @where($($whr:tt)*), |
| // We reached the end of the fields, plus an optional additional comma, since we added one |
| // before and the user is also allowed to put a trailing comma. |
| @fields_munch($(,)?), |
| @pinned($($pinned:tt)*), |
| @not_pinned($($not_pinned:tt)*), |
| @fields($($fields:tt)*), |
| @accum(), |
| @is_pinned(), |
| @pinned_drop($($pinned_drop:ident)?), |
| ) => { |
| // Declare the struct with all fields in the correct order. |
| $($struct_attrs)* |
| $vis struct $name <$($impl_generics)*> |
| where $($whr)* |
| { |
| $($fields)* |
| } |
| |
| // We put the rest into this const item, because it then will not be accessible to anything |
| // outside. |
| const _: () = { |
| // We declare this struct which will host all of the projection function for our type. |
| // it will be invariant over all generic parameters which are inherited from the |
| // struct. |
| $vis struct __ThePinData<$($impl_generics)*> |
| where $($whr)* |
| { |
| __phantom: ::core::marker::PhantomData< |
| fn($name<$($ty_generics)*>) -> $name<$($ty_generics)*> |
| >, |
| } |
| |
| impl<$($impl_generics)*> ::core::clone::Clone for __ThePinData<$($ty_generics)*> |
| where $($whr)* |
| { |
| fn clone(&self) -> Self { *self } |
| } |
| |
| impl<$($impl_generics)*> ::core::marker::Copy for __ThePinData<$($ty_generics)*> |
| where $($whr)* |
| {} |
| |
| // Make all projection functions. |
| $crate::__pin_data!(make_pin_data: |
| @pin_data(__ThePinData), |
| @impl_generics($($impl_generics)*), |
| @ty_generics($($ty_generics)*), |
| @where($($whr)*), |
| @pinned($($pinned)*), |
| @not_pinned($($not_pinned)*), |
| ); |
| |
| // SAFETY: We have added the correct projection functions above to `__ThePinData` and |
| // we also use the least restrictive generics possible. |
| unsafe impl<$($impl_generics)*> |
| $crate::init::__internal::HasPinData for $name<$($ty_generics)*> |
| where $($whr)* |
| { |
| type PinData = __ThePinData<$($ty_generics)*>; |
| |
| unsafe fn __pin_data() -> Self::PinData { |
| __ThePinData { __phantom: ::core::marker::PhantomData } |
| } |
| } |
| |
| unsafe impl<$($impl_generics)*> |
| $crate::init::__internal::PinData for __ThePinData<$($ty_generics)*> |
| where $($whr)* |
| { |
| type Datee = $name<$($ty_generics)*>; |
| } |
| |
| // This struct will be used for the unpin analysis. Since only structurally pinned |
| // fields are relevant whether the struct should implement `Unpin`. |
| #[allow(dead_code)] |
| struct __Unpin <'__pin, $($impl_generics)*> |
| where $($whr)* |
| { |
| __phantom_pin: ::core::marker::PhantomData<fn(&'__pin ()) -> &'__pin ()>, |
| __phantom: ::core::marker::PhantomData< |
| fn($name<$($ty_generics)*>) -> $name<$($ty_generics)*> |
| >, |
| // Only the pinned fields. |
| $($pinned)* |
| } |
| |
| #[doc(hidden)] |
| impl<'__pin, $($impl_generics)*> ::core::marker::Unpin for $name<$($ty_generics)*> |
| where |
| __Unpin<'__pin, $($ty_generics)*>: ::core::marker::Unpin, |
| $($whr)* |
| {} |
| |
| // We need to disallow normal `Drop` implementation, the exact behavior depends on |
| // whether `PinnedDrop` was specified as the parameter. |
| $crate::__pin_data!(drop_prevention: |
| @name($name), |
| @impl_generics($($impl_generics)*), |
| @ty_generics($($ty_generics)*), |
| @where($($whr)*), |
| @pinned_drop($($pinned_drop)?), |
| ); |
| }; |
| }; |
| // When no `PinnedDrop` was specified, then we have to prevent implementing drop. |
| (drop_prevention: |
| @name($name:ident), |
| @impl_generics($($impl_generics:tt)*), |
| @ty_generics($($ty_generics:tt)*), |
| @where($($whr:tt)*), |
| @pinned_drop(), |
| ) => { |
| // We prevent this by creating a trait that will be implemented for all types implementing |
| // `Drop`. Additionally we will implement this trait for the struct leading to a conflict, |
| // if it also implements `Drop` |
| trait MustNotImplDrop {} |
| #[allow(drop_bounds)] |
| impl<T: ::core::ops::Drop> MustNotImplDrop for T {} |
| impl<$($impl_generics)*> MustNotImplDrop for $name<$($ty_generics)*> |
| where $($whr)* {} |
| // We also take care to prevent users from writing a useless `PinnedDrop` implementation. |
| // They might implement `PinnedDrop` correctly for the struct, but forget to give |
| // `PinnedDrop` as the parameter to `#[pin_data]`. |
| #[allow(non_camel_case_types)] |
| trait UselessPinnedDropImpl_you_need_to_specify_PinnedDrop {} |
| impl<T: $crate::init::PinnedDrop> |
| UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for T {} |
| impl<$($impl_generics)*> |
| UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for $name<$($ty_generics)*> |
| where $($whr)* {} |
| }; |
| // When `PinnedDrop` was specified we just implement `Drop` and delegate. |
| (drop_prevention: |
| @name($name:ident), |
| @impl_generics($($impl_generics:tt)*), |
| @ty_generics($($ty_generics:tt)*), |
| @where($($whr:tt)*), |
| @pinned_drop(PinnedDrop), |
| ) => { |
| impl<$($impl_generics)*> ::core::ops::Drop for $name<$($ty_generics)*> |
| where $($whr)* |
| { |
| fn drop(&mut self) { |
| // SAFETY: Since this is a destructor, `self` will not move after this function |
| // terminates, since it is inaccessible. |
| let pinned = unsafe { ::core::pin::Pin::new_unchecked(self) }; |
| // SAFETY: Since this is a drop function, we can create this token to call the |
| // pinned destructor of this type. |
| let token = unsafe { $crate::init::__internal::OnlyCallFromDrop::new() }; |
| $crate::init::PinnedDrop::drop(pinned, token); |
| } |
| } |
| }; |
| // If some other parameter was specified, we emit a readable error. |
| (drop_prevention: |
| @name($name:ident), |
| @impl_generics($($impl_generics:tt)*), |
| @ty_generics($($ty_generics:tt)*), |
| @where($($whr:tt)*), |
| @pinned_drop($($rest:tt)*), |
| ) => { |
| compile_error!( |
| "Wrong parameters to `#[pin_data]`, expected nothing or `PinnedDrop`, got '{}'.", |
| stringify!($($rest)*), |
| ); |
| }; |
| (make_pin_data: |
| @pin_data($pin_data:ident), |
| @impl_generics($($impl_generics:tt)*), |
| @ty_generics($($ty_generics:tt)*), |
| @where($($whr:tt)*), |
| @pinned($($(#[$($p_attr:tt)*])* $pvis:vis $p_field:ident : $p_type:ty),* $(,)?), |
| @not_pinned($($(#[$($attr:tt)*])* $fvis:vis $field:ident : $type:ty),* $(,)?), |
| ) => { |
| // For every field, we create a projection function according to its projection type. If a |
| // field is structurally pinned, then it must be initialized via `PinInit`, if it is not |
| // structurally pinned, then it can be initialized via `Init`. |
| // |
| // The functions are `unsafe` to prevent accidentally calling them. |
| #[allow(dead_code)] |
| impl<$($impl_generics)*> $pin_data<$($ty_generics)*> |
| where $($whr)* |
| { |
| $( |
| $(#[$($p_attr)*])* |
| $pvis unsafe fn $p_field<E>( |
| self, |
| slot: *mut $p_type, |
| init: impl $crate::init::PinInit<$p_type, E>, |
| ) -> ::core::result::Result<(), E> { |
| unsafe { $crate::init::PinInit::__pinned_init(init, slot) } |
| } |
| )* |
| $( |
| $(#[$($attr)*])* |
| $fvis unsafe fn $field<E>( |
| self, |
| slot: *mut $type, |
| init: impl $crate::init::Init<$type, E>, |
| ) -> ::core::result::Result<(), E> { |
| unsafe { $crate::init::Init::__init(init, slot) } |
| } |
| )* |
| } |
| }; |
| } |
| |
| /// The internal init macro. Do not call manually! |
| /// |
| /// This is called by the `{try_}{pin_}init!` macros with various inputs. |
| /// |
| /// This macro has multiple internal call configurations, these are always the very first ident: |
| /// - nothing: this is the base case and called by the `{try_}{pin_}init!` macros. |
| /// - `with_update_parsed`: when the `..Zeroable::zeroed()` syntax has been handled. |
| /// - `init_slot`: recursively creates the code that initializes all fields in `slot`. |
| /// - `make_initializer`: recursively create the struct initializer that guarantees that every |
| /// field has been initialized exactly once. |
| #[doc(hidden)] |
| #[macro_export] |
| macro_rules! __init_internal { |
| ( |
| @this($($this:ident)?), |
| @typ($t:path), |
| @fields($($fields:tt)*), |
| @error($err:ty), |
| // Either `PinData` or `InitData`, `$use_data` should only be present in the `PinData` |
| // case. |
| @data($data:ident, $($use_data:ident)?), |
| // `HasPinData` or `HasInitData`. |
| @has_data($has_data:ident, $get_data:ident), |
| // `pin_init_from_closure` or `init_from_closure`. |
| @construct_closure($construct_closure:ident), |
| @munch_fields(), |
| ) => { |
| $crate::__init_internal!(with_update_parsed: |
| @this($($this)?), |
| @typ($t), |
| @fields($($fields)*), |
| @error($err), |
| @data($data, $($use_data)?), |
| @has_data($has_data, $get_data), |
| @construct_closure($construct_closure), |
| @zeroed(), // Nothing means default behavior. |
| ) |
| }; |
| ( |
| @this($($this:ident)?), |
| @typ($t:path), |
| @fields($($fields:tt)*), |
| @error($err:ty), |
| // Either `PinData` or `InitData`, `$use_data` should only be present in the `PinData` |
| // case. |
| @data($data:ident, $($use_data:ident)?), |
| // `HasPinData` or `HasInitData`. |
| @has_data($has_data:ident, $get_data:ident), |
| // `pin_init_from_closure` or `init_from_closure`. |
| @construct_closure($construct_closure:ident), |
| @munch_fields(..Zeroable::zeroed()), |
| ) => { |
| $crate::__init_internal!(with_update_parsed: |
| @this($($this)?), |
| @typ($t), |
| @fields($($fields)*), |
| @error($err), |
| @data($data, $($use_data)?), |
| @has_data($has_data, $get_data), |
| @construct_closure($construct_closure), |
| @zeroed(()), // `()` means zero all fields not mentioned. |
| ) |
| }; |
| ( |
| @this($($this:ident)?), |
| @typ($t:path), |
| @fields($($fields:tt)*), |
| @error($err:ty), |
| // Either `PinData` or `InitData`, `$use_data` should only be present in the `PinData` |
| // case. |
| @data($data:ident, $($use_data:ident)?), |
| // `HasPinData` or `HasInitData`. |
| @has_data($has_data:ident, $get_data:ident), |
| // `pin_init_from_closure` or `init_from_closure`. |
| @construct_closure($construct_closure:ident), |
| @munch_fields($ignore:tt $($rest:tt)*), |
| ) => { |
| $crate::__init_internal!( |
| @this($($this)?), |
| @typ($t), |
| @fields($($fields)*), |
| @error($err), |
| @data($data, $($use_data)?), |
| @has_data($has_data, $get_data), |
| @construct_closure($construct_closure), |
| @munch_fields($($rest)*), |
| ) |
| }; |
| (with_update_parsed: |
| @this($($this:ident)?), |
| @typ($t:path), |
| @fields($($fields:tt)*), |
| @error($err:ty), |
| // Either `PinData` or `InitData`, `$use_data` should only be present in the `PinData` |
| // case. |
| @data($data:ident, $($use_data:ident)?), |
| // `HasPinData` or `HasInitData`. |
| @has_data($has_data:ident, $get_data:ident), |
| // `pin_init_from_closure` or `init_from_closure`. |
| @construct_closure($construct_closure:ident), |
| @zeroed($($init_zeroed:expr)?), |
| ) => {{ |
| // We do not want to allow arbitrary returns, so we declare this type as the `Ok` return |
| // type and shadow it later when we insert the arbitrary user code. That way there will be |
| // no possibility of returning without `unsafe`. |
| struct __InitOk; |
| // Get the data about fields from the supplied type. |
| let data = unsafe { |
| use $crate::init::__internal::$has_data; |
| // Here we abuse `paste!` to retokenize `$t`. Declarative macros have some internal |
| // information that is associated to already parsed fragments, so a path fragment |
| // cannot be used in this position. Doing the retokenization results in valid rust |
| // code. |
| ::kernel::macros::paste!($t::$get_data()) |
| }; |
| // Ensure that `data` really is of type `$data` and help with type inference: |
| let init = $crate::init::__internal::$data::make_closure::<_, __InitOk, $err>( |
| data, |
| move |slot| { |
| { |
| // Shadow the structure so it cannot be used to return early. |
| struct __InitOk; |
| // If `$init_zeroed` is present we should zero the slot now and not emit an |
| // error when fields are missing (since they will be zeroed). We also have to |
| // check that the type actually implements `Zeroable`. |
| $({ |
| fn assert_zeroable<T: $crate::init::Zeroable>(_: *mut T) {} |
| // Ensure that the struct is indeed `Zeroable`. |
| assert_zeroable(slot); |
| // SAFETY: The type implements `Zeroable` by the check above. |
| unsafe { ::core::ptr::write_bytes(slot, 0, 1) }; |
| $init_zeroed // This will be `()` if set. |
| })? |
| // Create the `this` so it can be referenced by the user inside of the |
| // expressions creating the individual fields. |
| $(let $this = unsafe { ::core::ptr::NonNull::new_unchecked(slot) };)? |
| // Initialize every field. |
| $crate::__init_internal!(init_slot($($use_data)?): |
| @data(data), |
| @slot(slot), |
| @guards(), |
| @munch_fields($($fields)*,), |
| ); |
| // We use unreachable code to ensure that all fields have been mentioned exactly |
| // once, this struct initializer will still be type-checked and complain with a |
| // very natural error message if a field is forgotten/mentioned more than once. |
| #[allow(unreachable_code, clippy::diverging_sub_expression)] |
| let _ = || { |
| $crate::__init_internal!(make_initializer: |
| @slot(slot), |
| @type_name($t), |
| @munch_fields($($fields)*,), |
| @acc(), |
| ); |
| }; |
| } |
| Ok(__InitOk) |
| } |
| ); |
| let init = move |slot| -> ::core::result::Result<(), $err> { |
| init(slot).map(|__InitOk| ()) |
| }; |
| let init = unsafe { $crate::init::$construct_closure::<_, $err>(init) }; |
| init |
| }}; |
| (init_slot($($use_data:ident)?): |
| @data($data:ident), |
| @slot($slot:ident), |
| @guards($($guards:ident,)*), |
| @munch_fields($(..Zeroable::zeroed())? $(,)?), |
| ) => { |
| // Endpoint of munching, no fields are left. If execution reaches this point, all fields |
| // have been initialized. Therefore we can now dismiss the guards by forgetting them. |
| $(::core::mem::forget($guards);)* |
| }; |
| (init_slot($use_data:ident): // `use_data` is present, so we use the `data` to init fields. |
| @data($data:ident), |
| @slot($slot:ident), |
| @guards($($guards:ident,)*), |
| // In-place initialization syntax. |
| @munch_fields($field:ident <- $val:expr, $($rest:tt)*), |
| ) => { |
| let init = $val; |
| // Call the initializer. |
| // |
| // SAFETY: `slot` is valid, because we are inside of an initializer closure, we |
| // return when an error/panic occurs. |
| // We also use the `data` to require the correct trait (`Init` or `PinInit`) for `$field`. |
| unsafe { $data.$field(::core::ptr::addr_of_mut!((*$slot).$field), init)? }; |
| // Create the drop guard: |
| // |
| // We rely on macro hygiene to make it impossible for users to access this local variable. |
| // We use `paste!` to create new hygiene for `$field`. |
| ::kernel::macros::paste! { |
| // SAFETY: We forget the guard later when initialization has succeeded. |
| let [<$field>] = unsafe { |
| $crate::init::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field)) |
| }; |
| |
| $crate::__init_internal!(init_slot($use_data): |
| @data($data), |
| @slot($slot), |
| @guards([<$field>], $($guards,)*), |
| @munch_fields($($rest)*), |
| ); |
| } |
| }; |
| (init_slot(): // No `use_data`, so we use `Init::__init` directly. |
| @data($data:ident), |
| @slot($slot:ident), |
| @guards($($guards:ident,)*), |
| // In-place initialization syntax. |
| @munch_fields($field:ident <- $val:expr, $($rest:tt)*), |
| ) => { |
| let init = $val; |
| // Call the initializer. |
| // |
| // SAFETY: `slot` is valid, because we are inside of an initializer closure, we |
| // return when an error/panic occurs. |
| unsafe { $crate::init::Init::__init(init, ::core::ptr::addr_of_mut!((*$slot).$field))? }; |
| // Create the drop guard: |
| // |
| // We rely on macro hygiene to make it impossible for users to access this local variable. |
| // We use `paste!` to create new hygiene for `$field`. |
| ::kernel::macros::paste! { |
| // SAFETY: We forget the guard later when initialization has succeeded. |
| let [<$field>] = unsafe { |
| $crate::init::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field)) |
| }; |
| |
| $crate::__init_internal!(init_slot(): |
| @data($data), |
| @slot($slot), |
| @guards([<$field>], $($guards,)*), |
| @munch_fields($($rest)*), |
| ); |
| } |
| }; |
| (init_slot($($use_data:ident)?): |
| @data($data:ident), |
| @slot($slot:ident), |
| @guards($($guards:ident,)*), |
| // Init by-value. |
| @munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*), |
| ) => { |
| { |
| $(let $field = $val;)? |
| // Initialize the field. |
| // |
| // SAFETY: The memory at `slot` is uninitialized. |
| unsafe { ::core::ptr::write(::core::ptr::addr_of_mut!((*$slot).$field), $field) }; |
| } |
| // Create the drop guard: |
| // |
| // We rely on macro hygiene to make it impossible for users to access this local variable. |
| // We use `paste!` to create new hygiene for `$field`. |
| ::kernel::macros::paste! { |
| // SAFETY: We forget the guard later when initialization has succeeded. |
| let [<$field>] = unsafe { |
| $crate::init::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field)) |
| }; |
| |
| $crate::__init_internal!(init_slot($($use_data)?): |
| @data($data), |
| @slot($slot), |
| @guards([<$field>], $($guards,)*), |
| @munch_fields($($rest)*), |
| ); |
| } |
| }; |
| (make_initializer: |
| @slot($slot:ident), |
| @type_name($t:path), |
| @munch_fields(..Zeroable::zeroed() $(,)?), |
| @acc($($acc:tt)*), |
| ) => { |
| // Endpoint, nothing more to munch, create the initializer. Since the users specified |
| // `..Zeroable::zeroed()`, the slot will already have been zeroed and all field that have |
| // not been overwritten are thus zero and initialized. We still check that all fields are |
| // actually accessible by using the struct update syntax ourselves. |
| // We are inside of a closure that is never executed and thus we can abuse `slot` to |
| // get the correct type inference here: |
| #[allow(unused_assignments)] |
| unsafe { |
| let mut zeroed = ::core::mem::zeroed(); |
| // We have to use type inference here to make zeroed have the correct type. This does |
| // not get executed, so it has no effect. |
| ::core::ptr::write($slot, zeroed); |
| zeroed = ::core::mem::zeroed(); |
| // Here we abuse `paste!` to retokenize `$t`. Declarative macros have some internal |
| // information that is associated to already parsed fragments, so a path fragment |
| // cannot be used in this position. Doing the retokenization results in valid rust |
| // code. |
| ::kernel::macros::paste!( |
| ::core::ptr::write($slot, $t { |
| $($acc)* |
| ..zeroed |
| }); |
| ); |
| } |
| }; |
| (make_initializer: |
| @slot($slot:ident), |
| @type_name($t:path), |
| @munch_fields($(,)?), |
| @acc($($acc:tt)*), |
| ) => { |
| // Endpoint, nothing more to munch, create the initializer. |
| // Since we are in the closure that is never called, this will never get executed. |
| // We abuse `slot` to get the correct type inference here: |
| unsafe { |
| // Here we abuse `paste!` to retokenize `$t`. Declarative macros have some internal |
| // information that is associated to already parsed fragments, so a path fragment |
| // cannot be used in this position. Doing the retokenization results in valid rust |
| // code. |
| ::kernel::macros::paste!( |
| ::core::ptr::write($slot, $t { |
| $($acc)* |
| }); |
| ); |
| } |
| }; |
| (make_initializer: |
| @slot($slot:ident), |
| @type_name($t:path), |
| @munch_fields($field:ident <- $val:expr, $($rest:tt)*), |
| @acc($($acc:tt)*), |
| ) => { |
| $crate::__init_internal!(make_initializer: |
| @slot($slot), |
| @type_name($t), |
| @munch_fields($($rest)*), |
| @acc($($acc)* $field: ::core::panic!(),), |
| ); |
| }; |
| (make_initializer: |
| @slot($slot:ident), |
| @type_name($t:path), |
| @munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*), |
| @acc($($acc:tt)*), |
| ) => { |
| $crate::__init_internal!(make_initializer: |
| @slot($slot), |
| @type_name($t), |
| @munch_fields($($rest)*), |
| @acc($($acc)* $field: ::core::panic!(),), |
| ); |
| }; |
| } |
| |
| #[doc(hidden)] |
| #[macro_export] |
| macro_rules! __derive_zeroable { |
| (parse_input: |
| @sig( |
| $(#[$($struct_attr:tt)*])* |
| $vis:vis struct $name:ident |
| $(where $($whr:tt)*)? |
| ), |
| @impl_generics($($impl_generics:tt)*), |
| @ty_generics($($ty_generics:tt)*), |
| @body({ |
| $( |
| $(#[$($field_attr:tt)*])* |
| $field:ident : $field_ty:ty |
| ),* $(,)? |
| }), |
| ) => { |
| // SAFETY: Every field type implements `Zeroable` and padding bytes may be zero. |
| #[automatically_derived] |
| unsafe impl<$($impl_generics)*> $crate::init::Zeroable for $name<$($ty_generics)*> |
| where |
| $($($whr)*)? |
| {} |
| const _: () = { |
| fn assert_zeroable<T: ?::core::marker::Sized + $crate::init::Zeroable>() {} |
| fn ensure_zeroable<$($impl_generics)*>() |
| where $($($whr)*)? |
| { |
| $(assert_zeroable::<$field_ty>();)* |
| } |
| }; |
| }; |
| } |