| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * An RTC driver for Allwinner A31/A23 |
| * |
| * Copyright (c) 2014, Chen-Yu Tsai <wens@csie.org> |
| * |
| * based on rtc-sunxi.c |
| * |
| * An RTC driver for Allwinner A10/A20 |
| * |
| * Copyright (c) 2013, Carlo Caione <carlo.caione@gmail.com> |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/clk-provider.h> |
| #include <linux/clk/sunxi-ng.h> |
| #include <linux/delay.h> |
| #include <linux/err.h> |
| #include <linux/fs.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/of_address.h> |
| #include <linux/of_device.h> |
| #include <linux/platform_device.h> |
| #include <linux/rtc.h> |
| #include <linux/slab.h> |
| #include <linux/types.h> |
| |
| /* Control register */ |
| #define SUN6I_LOSC_CTRL 0x0000 |
| #define SUN6I_LOSC_CTRL_KEY (0x16aa << 16) |
| #define SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS BIT(15) |
| #define SUN6I_LOSC_CTRL_ALM_DHMS_ACC BIT(9) |
| #define SUN6I_LOSC_CTRL_RTC_HMS_ACC BIT(8) |
| #define SUN6I_LOSC_CTRL_RTC_YMD_ACC BIT(7) |
| #define SUN6I_LOSC_CTRL_EXT_LOSC_EN BIT(4) |
| #define SUN6I_LOSC_CTRL_EXT_OSC BIT(0) |
| #define SUN6I_LOSC_CTRL_ACC_MASK GENMASK(9, 7) |
| |
| #define SUN6I_LOSC_CLK_PRESCAL 0x0008 |
| |
| /* RTC */ |
| #define SUN6I_RTC_YMD 0x0010 |
| #define SUN6I_RTC_HMS 0x0014 |
| |
| /* Alarm 0 (counter) */ |
| #define SUN6I_ALRM_COUNTER 0x0020 |
| /* This holds the remaining alarm seconds on older SoCs (current value) */ |
| #define SUN6I_ALRM_COUNTER_HMS 0x0024 |
| #define SUN6I_ALRM_EN 0x0028 |
| #define SUN6I_ALRM_EN_CNT_EN BIT(0) |
| #define SUN6I_ALRM_IRQ_EN 0x002c |
| #define SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN BIT(0) |
| #define SUN6I_ALRM_IRQ_STA 0x0030 |
| #define SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND BIT(0) |
| |
| /* Alarm 1 (wall clock) */ |
| #define SUN6I_ALRM1_EN 0x0044 |
| #define SUN6I_ALRM1_IRQ_EN 0x0048 |
| #define SUN6I_ALRM1_IRQ_STA 0x004c |
| #define SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND BIT(0) |
| |
| /* Alarm config */ |
| #define SUN6I_ALARM_CONFIG 0x0050 |
| #define SUN6I_ALARM_CONFIG_WAKEUP BIT(0) |
| |
| #define SUN6I_LOSC_OUT_GATING 0x0060 |
| #define SUN6I_LOSC_OUT_GATING_EN_OFFSET 0 |
| |
| /* General-purpose data */ |
| #define SUN6I_GP_DATA 0x0100 |
| #define SUN6I_GP_DATA_SIZE 0x20 |
| |
| /* |
| * Get date values |
| */ |
| #define SUN6I_DATE_GET_DAY_VALUE(x) ((x) & 0x0000001f) |
| #define SUN6I_DATE_GET_MON_VALUE(x) (((x) & 0x00000f00) >> 8) |
| #define SUN6I_DATE_GET_YEAR_VALUE(x) (((x) & 0x003f0000) >> 16) |
| #define SUN6I_LEAP_GET_VALUE(x) (((x) & 0x00400000) >> 22) |
| |
| /* |
| * Get time values |
| */ |
| #define SUN6I_TIME_GET_SEC_VALUE(x) ((x) & 0x0000003f) |
| #define SUN6I_TIME_GET_MIN_VALUE(x) (((x) & 0x00003f00) >> 8) |
| #define SUN6I_TIME_GET_HOUR_VALUE(x) (((x) & 0x001f0000) >> 16) |
| |
| /* |
| * Set date values |
| */ |
| #define SUN6I_DATE_SET_DAY_VALUE(x) ((x) & 0x0000001f) |
| #define SUN6I_DATE_SET_MON_VALUE(x) ((x) << 8 & 0x00000f00) |
| #define SUN6I_DATE_SET_YEAR_VALUE(x) ((x) << 16 & 0x003f0000) |
| #define SUN6I_LEAP_SET_VALUE(x) ((x) << 22 & 0x00400000) |
| |
| /* |
| * Set time values |
| */ |
| #define SUN6I_TIME_SET_SEC_VALUE(x) ((x) & 0x0000003f) |
| #define SUN6I_TIME_SET_MIN_VALUE(x) ((x) << 8 & 0x00003f00) |
| #define SUN6I_TIME_SET_HOUR_VALUE(x) ((x) << 16 & 0x001f0000) |
| |
| /* |
| * The year parameter passed to the driver is usually an offset relative to |
| * the year 1900. This macro is used to convert this offset to another one |
| * relative to the minimum year allowed by the hardware. |
| * |
| * The year range is 1970 - 2033. This range is selected to match Allwinner's |
| * driver, even though it is somewhat limited. |
| */ |
| #define SUN6I_YEAR_MIN 1970 |
| #define SUN6I_YEAR_OFF (SUN6I_YEAR_MIN - 1900) |
| |
| #define SECS_PER_DAY (24 * 3600ULL) |
| |
| /* |
| * There are other differences between models, including: |
| * |
| * - number of GPIO pins that can be configured to hold a certain level |
| * - crypto-key related registers (H5, H6) |
| * - boot process related (super standby, secondary processor entry address) |
| * registers (R40, H6) |
| * - SYS power domain controls (R40) |
| * - DCXO controls (H6) |
| * - RC oscillator calibration (H6) |
| * |
| * These functions are not covered by this driver. |
| */ |
| struct sun6i_rtc_clk_data { |
| unsigned long rc_osc_rate; |
| unsigned int fixed_prescaler : 16; |
| unsigned int has_prescaler : 1; |
| unsigned int has_out_clk : 1; |
| unsigned int has_losc_en : 1; |
| unsigned int has_auto_swt : 1; |
| }; |
| |
| #define RTC_LINEAR_DAY BIT(0) |
| |
| struct sun6i_rtc_dev { |
| struct rtc_device *rtc; |
| const struct sun6i_rtc_clk_data *data; |
| void __iomem *base; |
| int irq; |
| time64_t alarm; |
| unsigned long flags; |
| |
| struct clk_hw hw; |
| struct clk_hw *int_osc; |
| struct clk *losc; |
| struct clk *ext_losc; |
| |
| spinlock_t lock; |
| }; |
| |
| static struct sun6i_rtc_dev *sun6i_rtc; |
| |
| static unsigned long sun6i_rtc_osc_recalc_rate(struct clk_hw *hw, |
| unsigned long parent_rate) |
| { |
| struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw); |
| u32 val = 0; |
| |
| val = readl(rtc->base + SUN6I_LOSC_CTRL); |
| if (val & SUN6I_LOSC_CTRL_EXT_OSC) |
| return parent_rate; |
| |
| if (rtc->data->fixed_prescaler) |
| parent_rate /= rtc->data->fixed_prescaler; |
| |
| if (rtc->data->has_prescaler) { |
| val = readl(rtc->base + SUN6I_LOSC_CLK_PRESCAL); |
| val &= GENMASK(4, 0); |
| } |
| |
| return parent_rate / (val + 1); |
| } |
| |
| static u8 sun6i_rtc_osc_get_parent(struct clk_hw *hw) |
| { |
| struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw); |
| |
| return readl(rtc->base + SUN6I_LOSC_CTRL) & SUN6I_LOSC_CTRL_EXT_OSC; |
| } |
| |
| static int sun6i_rtc_osc_set_parent(struct clk_hw *hw, u8 index) |
| { |
| struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw); |
| unsigned long flags; |
| u32 val; |
| |
| if (index > 1) |
| return -EINVAL; |
| |
| spin_lock_irqsave(&rtc->lock, flags); |
| val = readl(rtc->base + SUN6I_LOSC_CTRL); |
| val &= ~SUN6I_LOSC_CTRL_EXT_OSC; |
| val |= SUN6I_LOSC_CTRL_KEY; |
| val |= index ? SUN6I_LOSC_CTRL_EXT_OSC : 0; |
| if (rtc->data->has_losc_en) { |
| val &= ~SUN6I_LOSC_CTRL_EXT_LOSC_EN; |
| val |= index ? SUN6I_LOSC_CTRL_EXT_LOSC_EN : 0; |
| } |
| writel(val, rtc->base + SUN6I_LOSC_CTRL); |
| spin_unlock_irqrestore(&rtc->lock, flags); |
| |
| return 0; |
| } |
| |
| static const struct clk_ops sun6i_rtc_osc_ops = { |
| .recalc_rate = sun6i_rtc_osc_recalc_rate, |
| |
| .get_parent = sun6i_rtc_osc_get_parent, |
| .set_parent = sun6i_rtc_osc_set_parent, |
| }; |
| |
| static void __init sun6i_rtc_clk_init(struct device_node *node, |
| const struct sun6i_rtc_clk_data *data) |
| { |
| struct clk_hw_onecell_data *clk_data; |
| struct sun6i_rtc_dev *rtc; |
| struct clk_init_data init = { |
| .ops = &sun6i_rtc_osc_ops, |
| .name = "losc", |
| }; |
| const char *iosc_name = "rtc-int-osc"; |
| const char *clkout_name = "osc32k-out"; |
| const char *parents[2]; |
| u32 reg; |
| |
| rtc = kzalloc(sizeof(*rtc), GFP_KERNEL); |
| if (!rtc) |
| return; |
| |
| rtc->data = data; |
| clk_data = kzalloc(struct_size(clk_data, hws, 3), GFP_KERNEL); |
| if (!clk_data) { |
| kfree(rtc); |
| return; |
| } |
| |
| spin_lock_init(&rtc->lock); |
| |
| rtc->base = of_io_request_and_map(node, 0, of_node_full_name(node)); |
| if (IS_ERR(rtc->base)) { |
| pr_crit("Can't map RTC registers"); |
| goto err; |
| } |
| |
| reg = SUN6I_LOSC_CTRL_KEY; |
| if (rtc->data->has_auto_swt) { |
| /* Bypass auto-switch to int osc, on ext losc failure */ |
| reg |= SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS; |
| writel(reg, rtc->base + SUN6I_LOSC_CTRL); |
| } |
| |
| /* Switch to the external, more precise, oscillator, if present */ |
| if (of_property_present(node, "clocks")) { |
| reg |= SUN6I_LOSC_CTRL_EXT_OSC; |
| if (rtc->data->has_losc_en) |
| reg |= SUN6I_LOSC_CTRL_EXT_LOSC_EN; |
| } |
| writel(reg, rtc->base + SUN6I_LOSC_CTRL); |
| |
| /* Yes, I know, this is ugly. */ |
| sun6i_rtc = rtc; |
| |
| of_property_read_string_index(node, "clock-output-names", 2, |
| &iosc_name); |
| |
| rtc->int_osc = clk_hw_register_fixed_rate_with_accuracy(NULL, |
| iosc_name, |
| NULL, 0, |
| rtc->data->rc_osc_rate, |
| 300000000); |
| if (IS_ERR(rtc->int_osc)) { |
| pr_crit("Couldn't register the internal oscillator\n"); |
| goto err; |
| } |
| |
| parents[0] = clk_hw_get_name(rtc->int_osc); |
| /* If there is no external oscillator, this will be NULL and ... */ |
| parents[1] = of_clk_get_parent_name(node, 0); |
| |
| rtc->hw.init = &init; |
| |
| init.parent_names = parents; |
| /* ... number of clock parents will be 1. */ |
| init.num_parents = of_clk_get_parent_count(node) + 1; |
| of_property_read_string_index(node, "clock-output-names", 0, |
| &init.name); |
| |
| rtc->losc = clk_register(NULL, &rtc->hw); |
| if (IS_ERR(rtc->losc)) { |
| pr_crit("Couldn't register the LOSC clock\n"); |
| goto err_register; |
| } |
| |
| of_property_read_string_index(node, "clock-output-names", 1, |
| &clkout_name); |
| rtc->ext_losc = clk_register_gate(NULL, clkout_name, init.name, |
| 0, rtc->base + SUN6I_LOSC_OUT_GATING, |
| SUN6I_LOSC_OUT_GATING_EN_OFFSET, 0, |
| &rtc->lock); |
| if (IS_ERR(rtc->ext_losc)) { |
| pr_crit("Couldn't register the LOSC external gate\n"); |
| goto err_register; |
| } |
| |
| clk_data->num = 3; |
| clk_data->hws[0] = &rtc->hw; |
| clk_data->hws[1] = __clk_get_hw(rtc->ext_losc); |
| clk_data->hws[2] = rtc->int_osc; |
| of_clk_add_hw_provider(node, of_clk_hw_onecell_get, clk_data); |
| return; |
| |
| err_register: |
| clk_hw_unregister_fixed_rate(rtc->int_osc); |
| err: |
| kfree(clk_data); |
| } |
| |
| static const struct sun6i_rtc_clk_data sun6i_a31_rtc_data = { |
| .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */ |
| .has_prescaler = 1, |
| }; |
| |
| static void __init sun6i_a31_rtc_clk_init(struct device_node *node) |
| { |
| sun6i_rtc_clk_init(node, &sun6i_a31_rtc_data); |
| } |
| CLK_OF_DECLARE_DRIVER(sun6i_a31_rtc_clk, "allwinner,sun6i-a31-rtc", |
| sun6i_a31_rtc_clk_init); |
| |
| static const struct sun6i_rtc_clk_data sun8i_a23_rtc_data = { |
| .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */ |
| .has_prescaler = 1, |
| .has_out_clk = 1, |
| }; |
| |
| static void __init sun8i_a23_rtc_clk_init(struct device_node *node) |
| { |
| sun6i_rtc_clk_init(node, &sun8i_a23_rtc_data); |
| } |
| CLK_OF_DECLARE_DRIVER(sun8i_a23_rtc_clk, "allwinner,sun8i-a23-rtc", |
| sun8i_a23_rtc_clk_init); |
| |
| static const struct sun6i_rtc_clk_data sun8i_h3_rtc_data = { |
| .rc_osc_rate = 16000000, |
| .fixed_prescaler = 32, |
| .has_prescaler = 1, |
| .has_out_clk = 1, |
| }; |
| |
| static void __init sun8i_h3_rtc_clk_init(struct device_node *node) |
| { |
| sun6i_rtc_clk_init(node, &sun8i_h3_rtc_data); |
| } |
| CLK_OF_DECLARE_DRIVER(sun8i_h3_rtc_clk, "allwinner,sun8i-h3-rtc", |
| sun8i_h3_rtc_clk_init); |
| /* As far as we are concerned, clocks for H5 are the same as H3 */ |
| CLK_OF_DECLARE_DRIVER(sun50i_h5_rtc_clk, "allwinner,sun50i-h5-rtc", |
| sun8i_h3_rtc_clk_init); |
| |
| static const struct sun6i_rtc_clk_data sun50i_h6_rtc_data = { |
| .rc_osc_rate = 16000000, |
| .fixed_prescaler = 32, |
| .has_prescaler = 1, |
| .has_out_clk = 1, |
| .has_losc_en = 1, |
| .has_auto_swt = 1, |
| }; |
| |
| static void __init sun50i_h6_rtc_clk_init(struct device_node *node) |
| { |
| sun6i_rtc_clk_init(node, &sun50i_h6_rtc_data); |
| } |
| CLK_OF_DECLARE_DRIVER(sun50i_h6_rtc_clk, "allwinner,sun50i-h6-rtc", |
| sun50i_h6_rtc_clk_init); |
| |
| /* |
| * The R40 user manual is self-conflicting on whether the prescaler is |
| * fixed or configurable. The clock diagram shows it as fixed, but there |
| * is also a configurable divider in the RTC block. |
| */ |
| static const struct sun6i_rtc_clk_data sun8i_r40_rtc_data = { |
| .rc_osc_rate = 16000000, |
| .fixed_prescaler = 512, |
| }; |
| static void __init sun8i_r40_rtc_clk_init(struct device_node *node) |
| { |
| sun6i_rtc_clk_init(node, &sun8i_r40_rtc_data); |
| } |
| CLK_OF_DECLARE_DRIVER(sun8i_r40_rtc_clk, "allwinner,sun8i-r40-rtc", |
| sun8i_r40_rtc_clk_init); |
| |
| static const struct sun6i_rtc_clk_data sun8i_v3_rtc_data = { |
| .rc_osc_rate = 32000, |
| .has_out_clk = 1, |
| }; |
| |
| static void __init sun8i_v3_rtc_clk_init(struct device_node *node) |
| { |
| sun6i_rtc_clk_init(node, &sun8i_v3_rtc_data); |
| } |
| CLK_OF_DECLARE_DRIVER(sun8i_v3_rtc_clk, "allwinner,sun8i-v3-rtc", |
| sun8i_v3_rtc_clk_init); |
| |
| static irqreturn_t sun6i_rtc_alarmirq(int irq, void *id) |
| { |
| struct sun6i_rtc_dev *chip = (struct sun6i_rtc_dev *) id; |
| irqreturn_t ret = IRQ_NONE; |
| u32 val; |
| |
| spin_lock(&chip->lock); |
| val = readl(chip->base + SUN6I_ALRM_IRQ_STA); |
| |
| if (val & SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND) { |
| val |= SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND; |
| writel(val, chip->base + SUN6I_ALRM_IRQ_STA); |
| |
| rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF); |
| |
| ret = IRQ_HANDLED; |
| } |
| spin_unlock(&chip->lock); |
| |
| return ret; |
| } |
| |
| static void sun6i_rtc_setaie(int to, struct sun6i_rtc_dev *chip) |
| { |
| u32 alrm_val = 0; |
| u32 alrm_irq_val = 0; |
| u32 alrm_wake_val = 0; |
| unsigned long flags; |
| |
| if (to) { |
| alrm_val = SUN6I_ALRM_EN_CNT_EN; |
| alrm_irq_val = SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN; |
| alrm_wake_val = SUN6I_ALARM_CONFIG_WAKEUP; |
| } else { |
| writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND, |
| chip->base + SUN6I_ALRM_IRQ_STA); |
| } |
| |
| spin_lock_irqsave(&chip->lock, flags); |
| writel(alrm_val, chip->base + SUN6I_ALRM_EN); |
| writel(alrm_irq_val, chip->base + SUN6I_ALRM_IRQ_EN); |
| writel(alrm_wake_val, chip->base + SUN6I_ALARM_CONFIG); |
| spin_unlock_irqrestore(&chip->lock, flags); |
| } |
| |
| static int sun6i_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm) |
| { |
| struct sun6i_rtc_dev *chip = dev_get_drvdata(dev); |
| u32 date, time; |
| |
| /* |
| * read again in case it changes |
| */ |
| do { |
| date = readl(chip->base + SUN6I_RTC_YMD); |
| time = readl(chip->base + SUN6I_RTC_HMS); |
| } while ((date != readl(chip->base + SUN6I_RTC_YMD)) || |
| (time != readl(chip->base + SUN6I_RTC_HMS))); |
| |
| if (chip->flags & RTC_LINEAR_DAY) { |
| /* |
| * Newer chips store a linear day number, the manual |
| * does not mandate any epoch base. The BSP driver uses |
| * the UNIX epoch, let's just copy that, as it's the |
| * easiest anyway. |
| */ |
| rtc_time64_to_tm((date & 0xffff) * SECS_PER_DAY, rtc_tm); |
| } else { |
| rtc_tm->tm_mday = SUN6I_DATE_GET_DAY_VALUE(date); |
| rtc_tm->tm_mon = SUN6I_DATE_GET_MON_VALUE(date) - 1; |
| rtc_tm->tm_year = SUN6I_DATE_GET_YEAR_VALUE(date); |
| |
| /* |
| * switch from (data_year->min)-relative offset to |
| * a (1900)-relative one |
| */ |
| rtc_tm->tm_year += SUN6I_YEAR_OFF; |
| } |
| |
| rtc_tm->tm_sec = SUN6I_TIME_GET_SEC_VALUE(time); |
| rtc_tm->tm_min = SUN6I_TIME_GET_MIN_VALUE(time); |
| rtc_tm->tm_hour = SUN6I_TIME_GET_HOUR_VALUE(time); |
| |
| return 0; |
| } |
| |
| static int sun6i_rtc_getalarm(struct device *dev, struct rtc_wkalrm *wkalrm) |
| { |
| struct sun6i_rtc_dev *chip = dev_get_drvdata(dev); |
| unsigned long flags; |
| u32 alrm_st; |
| u32 alrm_en; |
| |
| spin_lock_irqsave(&chip->lock, flags); |
| alrm_en = readl(chip->base + SUN6I_ALRM_IRQ_EN); |
| alrm_st = readl(chip->base + SUN6I_ALRM_IRQ_STA); |
| spin_unlock_irqrestore(&chip->lock, flags); |
| |
| wkalrm->enabled = !!(alrm_en & SUN6I_ALRM_EN_CNT_EN); |
| wkalrm->pending = !!(alrm_st & SUN6I_ALRM_EN_CNT_EN); |
| rtc_time64_to_tm(chip->alarm, &wkalrm->time); |
| |
| return 0; |
| } |
| |
| static int sun6i_rtc_setalarm(struct device *dev, struct rtc_wkalrm *wkalrm) |
| { |
| struct sun6i_rtc_dev *chip = dev_get_drvdata(dev); |
| struct rtc_time *alrm_tm = &wkalrm->time; |
| struct rtc_time tm_now; |
| time64_t time_set; |
| u32 counter_val, counter_val_hms; |
| int ret; |
| |
| time_set = rtc_tm_to_time64(alrm_tm); |
| |
| if (chip->flags & RTC_LINEAR_DAY) { |
| /* |
| * The alarm registers hold the actual alarm time, encoded |
| * in the same way (linear day + HMS) as the current time. |
| */ |
| counter_val_hms = SUN6I_TIME_SET_SEC_VALUE(alrm_tm->tm_sec) | |
| SUN6I_TIME_SET_MIN_VALUE(alrm_tm->tm_min) | |
| SUN6I_TIME_SET_HOUR_VALUE(alrm_tm->tm_hour); |
| /* The division will cut off the H:M:S part of alrm_tm. */ |
| counter_val = div_u64(rtc_tm_to_time64(alrm_tm), SECS_PER_DAY); |
| } else { |
| /* The alarm register holds the number of seconds left. */ |
| time64_t time_now; |
| |
| ret = sun6i_rtc_gettime(dev, &tm_now); |
| if (ret < 0) { |
| dev_err(dev, "Error in getting time\n"); |
| return -EINVAL; |
| } |
| |
| time_now = rtc_tm_to_time64(&tm_now); |
| if (time_set <= time_now) { |
| dev_err(dev, "Date to set in the past\n"); |
| return -EINVAL; |
| } |
| if ((time_set - time_now) > U32_MAX) { |
| dev_err(dev, "Date too far in the future\n"); |
| return -EINVAL; |
| } |
| |
| counter_val = time_set - time_now; |
| } |
| |
| sun6i_rtc_setaie(0, chip); |
| writel(0, chip->base + SUN6I_ALRM_COUNTER); |
| if (chip->flags & RTC_LINEAR_DAY) |
| writel(0, chip->base + SUN6I_ALRM_COUNTER_HMS); |
| usleep_range(100, 300); |
| |
| writel(counter_val, chip->base + SUN6I_ALRM_COUNTER); |
| if (chip->flags & RTC_LINEAR_DAY) |
| writel(counter_val_hms, chip->base + SUN6I_ALRM_COUNTER_HMS); |
| chip->alarm = time_set; |
| |
| sun6i_rtc_setaie(wkalrm->enabled, chip); |
| |
| return 0; |
| } |
| |
| static int sun6i_rtc_wait(struct sun6i_rtc_dev *chip, int offset, |
| unsigned int mask, unsigned int ms_timeout) |
| { |
| const unsigned long timeout = jiffies + msecs_to_jiffies(ms_timeout); |
| u32 reg; |
| |
| do { |
| reg = readl(chip->base + offset); |
| reg &= mask; |
| |
| if (!reg) |
| return 0; |
| |
| } while (time_before(jiffies, timeout)); |
| |
| return -ETIMEDOUT; |
| } |
| |
| static int sun6i_rtc_settime(struct device *dev, struct rtc_time *rtc_tm) |
| { |
| struct sun6i_rtc_dev *chip = dev_get_drvdata(dev); |
| u32 date = 0; |
| u32 time = 0; |
| |
| time = SUN6I_TIME_SET_SEC_VALUE(rtc_tm->tm_sec) | |
| SUN6I_TIME_SET_MIN_VALUE(rtc_tm->tm_min) | |
| SUN6I_TIME_SET_HOUR_VALUE(rtc_tm->tm_hour); |
| |
| if (chip->flags & RTC_LINEAR_DAY) { |
| /* The division will cut off the H:M:S part of rtc_tm. */ |
| date = div_u64(rtc_tm_to_time64(rtc_tm), SECS_PER_DAY); |
| } else { |
| rtc_tm->tm_year -= SUN6I_YEAR_OFF; |
| rtc_tm->tm_mon += 1; |
| |
| date = SUN6I_DATE_SET_DAY_VALUE(rtc_tm->tm_mday) | |
| SUN6I_DATE_SET_MON_VALUE(rtc_tm->tm_mon) | |
| SUN6I_DATE_SET_YEAR_VALUE(rtc_tm->tm_year); |
| |
| if (is_leap_year(rtc_tm->tm_year + SUN6I_YEAR_MIN)) |
| date |= SUN6I_LEAP_SET_VALUE(1); |
| } |
| |
| /* Check whether registers are writable */ |
| if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL, |
| SUN6I_LOSC_CTRL_ACC_MASK, 50)) { |
| dev_err(dev, "rtc is still busy.\n"); |
| return -EBUSY; |
| } |
| |
| writel(time, chip->base + SUN6I_RTC_HMS); |
| |
| /* |
| * After writing the RTC HH-MM-SS register, the |
| * SUN6I_LOSC_CTRL_RTC_HMS_ACC bit is set and it will not |
| * be cleared until the real writing operation is finished |
| */ |
| |
| if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL, |
| SUN6I_LOSC_CTRL_RTC_HMS_ACC, 50)) { |
| dev_err(dev, "Failed to set rtc time.\n"); |
| return -ETIMEDOUT; |
| } |
| |
| writel(date, chip->base + SUN6I_RTC_YMD); |
| |
| /* |
| * After writing the RTC YY-MM-DD register, the |
| * SUN6I_LOSC_CTRL_RTC_YMD_ACC bit is set and it will not |
| * be cleared until the real writing operation is finished |
| */ |
| |
| if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL, |
| SUN6I_LOSC_CTRL_RTC_YMD_ACC, 50)) { |
| dev_err(dev, "Failed to set rtc time.\n"); |
| return -ETIMEDOUT; |
| } |
| |
| return 0; |
| } |
| |
| static int sun6i_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) |
| { |
| struct sun6i_rtc_dev *chip = dev_get_drvdata(dev); |
| |
| if (!enabled) |
| sun6i_rtc_setaie(enabled, chip); |
| |
| return 0; |
| } |
| |
| static const struct rtc_class_ops sun6i_rtc_ops = { |
| .read_time = sun6i_rtc_gettime, |
| .set_time = sun6i_rtc_settime, |
| .read_alarm = sun6i_rtc_getalarm, |
| .set_alarm = sun6i_rtc_setalarm, |
| .alarm_irq_enable = sun6i_rtc_alarm_irq_enable |
| }; |
| |
| static int sun6i_rtc_nvmem_read(void *priv, unsigned int offset, void *_val, size_t bytes) |
| { |
| struct sun6i_rtc_dev *chip = priv; |
| u32 *val = _val; |
| int i; |
| |
| for (i = 0; i < bytes / 4; ++i) |
| val[i] = readl(chip->base + SUN6I_GP_DATA + offset + 4 * i); |
| |
| return 0; |
| } |
| |
| static int sun6i_rtc_nvmem_write(void *priv, unsigned int offset, void *_val, size_t bytes) |
| { |
| struct sun6i_rtc_dev *chip = priv; |
| u32 *val = _val; |
| int i; |
| |
| for (i = 0; i < bytes / 4; ++i) |
| writel(val[i], chip->base + SUN6I_GP_DATA + offset + 4 * i); |
| |
| return 0; |
| } |
| |
| static struct nvmem_config sun6i_rtc_nvmem_cfg = { |
| .type = NVMEM_TYPE_BATTERY_BACKED, |
| .reg_read = sun6i_rtc_nvmem_read, |
| .reg_write = sun6i_rtc_nvmem_write, |
| .size = SUN6I_GP_DATA_SIZE, |
| .word_size = 4, |
| .stride = 4, |
| }; |
| |
| #ifdef CONFIG_PM_SLEEP |
| /* Enable IRQ wake on suspend, to wake up from RTC. */ |
| static int sun6i_rtc_suspend(struct device *dev) |
| { |
| struct sun6i_rtc_dev *chip = dev_get_drvdata(dev); |
| |
| if (device_may_wakeup(dev)) |
| enable_irq_wake(chip->irq); |
| |
| return 0; |
| } |
| |
| /* Disable IRQ wake on resume. */ |
| static int sun6i_rtc_resume(struct device *dev) |
| { |
| struct sun6i_rtc_dev *chip = dev_get_drvdata(dev); |
| |
| if (device_may_wakeup(dev)) |
| disable_irq_wake(chip->irq); |
| |
| return 0; |
| } |
| #endif |
| |
| static SIMPLE_DEV_PM_OPS(sun6i_rtc_pm_ops, |
| sun6i_rtc_suspend, sun6i_rtc_resume); |
| |
| static void sun6i_rtc_bus_clk_cleanup(void *data) |
| { |
| struct clk *bus_clk = data; |
| |
| clk_disable_unprepare(bus_clk); |
| } |
| |
| static int sun6i_rtc_probe(struct platform_device *pdev) |
| { |
| struct sun6i_rtc_dev *chip = sun6i_rtc; |
| struct device *dev = &pdev->dev; |
| struct clk *bus_clk; |
| int ret; |
| |
| bus_clk = devm_clk_get_optional(dev, "bus"); |
| if (IS_ERR(bus_clk)) |
| return PTR_ERR(bus_clk); |
| |
| if (bus_clk) { |
| ret = clk_prepare_enable(bus_clk); |
| if (ret) |
| return ret; |
| |
| ret = devm_add_action_or_reset(dev, sun6i_rtc_bus_clk_cleanup, |
| bus_clk); |
| if (ret) |
| return ret; |
| } |
| |
| if (!chip) { |
| chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL); |
| if (!chip) |
| return -ENOMEM; |
| |
| spin_lock_init(&chip->lock); |
| |
| chip->base = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(chip->base)) |
| return PTR_ERR(chip->base); |
| |
| if (IS_REACHABLE(CONFIG_SUN6I_RTC_CCU)) { |
| ret = sun6i_rtc_ccu_probe(dev, chip->base); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| platform_set_drvdata(pdev, chip); |
| |
| chip->flags = (unsigned long)of_device_get_match_data(&pdev->dev); |
| |
| chip->irq = platform_get_irq(pdev, 0); |
| if (chip->irq < 0) |
| return chip->irq; |
| |
| ret = devm_request_irq(&pdev->dev, chip->irq, sun6i_rtc_alarmirq, |
| 0, dev_name(&pdev->dev), chip); |
| if (ret) { |
| dev_err(&pdev->dev, "Could not request IRQ\n"); |
| return ret; |
| } |
| |
| /* clear the alarm counter value */ |
| writel(0, chip->base + SUN6I_ALRM_COUNTER); |
| |
| /* disable counter alarm */ |
| writel(0, chip->base + SUN6I_ALRM_EN); |
| |
| /* disable counter alarm interrupt */ |
| writel(0, chip->base + SUN6I_ALRM_IRQ_EN); |
| |
| /* disable week alarm */ |
| writel(0, chip->base + SUN6I_ALRM1_EN); |
| |
| /* disable week alarm interrupt */ |
| writel(0, chip->base + SUN6I_ALRM1_IRQ_EN); |
| |
| /* clear counter alarm pending interrupts */ |
| writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND, |
| chip->base + SUN6I_ALRM_IRQ_STA); |
| |
| /* clear week alarm pending interrupts */ |
| writel(SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND, |
| chip->base + SUN6I_ALRM1_IRQ_STA); |
| |
| /* disable alarm wakeup */ |
| writel(0, chip->base + SUN6I_ALARM_CONFIG); |
| |
| clk_prepare_enable(chip->losc); |
| |
| device_init_wakeup(&pdev->dev, 1); |
| |
| chip->rtc = devm_rtc_allocate_device(&pdev->dev); |
| if (IS_ERR(chip->rtc)) |
| return PTR_ERR(chip->rtc); |
| |
| chip->rtc->ops = &sun6i_rtc_ops; |
| if (chip->flags & RTC_LINEAR_DAY) |
| chip->rtc->range_max = (65536 * SECS_PER_DAY) - 1; |
| else |
| chip->rtc->range_max = 2019686399LL; /* 2033-12-31 23:59:59 */ |
| |
| ret = devm_rtc_register_device(chip->rtc); |
| if (ret) |
| return ret; |
| |
| sun6i_rtc_nvmem_cfg.priv = chip; |
| ret = devm_rtc_nvmem_register(chip->rtc, &sun6i_rtc_nvmem_cfg); |
| if (ret) |
| return ret; |
| |
| dev_info(&pdev->dev, "RTC enabled\n"); |
| |
| return 0; |
| } |
| |
| /* |
| * As far as RTC functionality goes, all models are the same. The |
| * datasheets claim that different models have different number of |
| * registers available for non-volatile storage, but experiments show |
| * that all SoCs have 16 registers available for this purpose. |
| */ |
| static const struct of_device_id sun6i_rtc_dt_ids[] = { |
| { .compatible = "allwinner,sun6i-a31-rtc" }, |
| { .compatible = "allwinner,sun8i-a23-rtc" }, |
| { .compatible = "allwinner,sun8i-h3-rtc" }, |
| { .compatible = "allwinner,sun8i-r40-rtc" }, |
| { .compatible = "allwinner,sun8i-v3-rtc" }, |
| { .compatible = "allwinner,sun50i-h5-rtc" }, |
| { .compatible = "allwinner,sun50i-h6-rtc" }, |
| { .compatible = "allwinner,sun50i-h616-rtc", |
| .data = (void *)RTC_LINEAR_DAY }, |
| { .compatible = "allwinner,sun50i-r329-rtc", |
| .data = (void *)RTC_LINEAR_DAY }, |
| { /* sentinel */ }, |
| }; |
| MODULE_DEVICE_TABLE(of, sun6i_rtc_dt_ids); |
| |
| static struct platform_driver sun6i_rtc_driver = { |
| .probe = sun6i_rtc_probe, |
| .driver = { |
| .name = "sun6i-rtc", |
| .of_match_table = sun6i_rtc_dt_ids, |
| .pm = &sun6i_rtc_pm_ops, |
| }, |
| }; |
| builtin_platform_driver(sun6i_rtc_driver); |