| /* SPDX-License-Identifier: GPL-2.0-or-later */ |
| /* |
| * INET An implementation of the TCP/IP protocol suite for the LINUX |
| * operating system. INET is implemented using the BSD Socket |
| * interface as the means of communication with the user level. |
| * |
| * Definitions for the AF_INET socket handler. |
| * |
| * Version: @(#)sock.h 1.0.4 05/13/93 |
| * |
| * Authors: Ross Biro |
| * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
| * Corey Minyard <wf-rch!minyard@relay.EU.net> |
| * Florian La Roche <flla@stud.uni-sb.de> |
| * |
| * Fixes: |
| * Alan Cox : Volatiles in skbuff pointers. See |
| * skbuff comments. May be overdone, |
| * better to prove they can be removed |
| * than the reverse. |
| * Alan Cox : Added a zapped field for tcp to note |
| * a socket is reset and must stay shut up |
| * Alan Cox : New fields for options |
| * Pauline Middelink : identd support |
| * Alan Cox : Eliminate low level recv/recvfrom |
| * David S. Miller : New socket lookup architecture. |
| * Steve Whitehouse: Default routines for sock_ops |
| * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made |
| * protinfo be just a void pointer, as the |
| * protocol specific parts were moved to |
| * respective headers and ipv4/v6, etc now |
| * use private slabcaches for its socks |
| * Pedro Hortas : New flags field for socket options |
| */ |
| #ifndef _SOCK_H |
| #define _SOCK_H |
| |
| #include <linux/hardirq.h> |
| #include <linux/kernel.h> |
| #include <linux/list.h> |
| #include <linux/list_nulls.h> |
| #include <linux/timer.h> |
| #include <linux/cache.h> |
| #include <linux/bitops.h> |
| #include <linux/lockdep.h> |
| #include <linux/netdevice.h> |
| #include <linux/skbuff.h> /* struct sk_buff */ |
| #include <linux/mm.h> |
| #include <linux/security.h> |
| #include <linux/slab.h> |
| #include <linux/uaccess.h> |
| #include <linux/page_counter.h> |
| #include <linux/memcontrol.h> |
| #include <linux/static_key.h> |
| #include <linux/sched.h> |
| #include <linux/wait.h> |
| #include <linux/cgroup-defs.h> |
| #include <linux/rbtree.h> |
| #include <linux/rculist_nulls.h> |
| #include <linux/poll.h> |
| #include <linux/sockptr.h> |
| #include <linux/indirect_call_wrapper.h> |
| #include <linux/atomic.h> |
| #include <linux/refcount.h> |
| #include <linux/llist.h> |
| #include <net/dst.h> |
| #include <net/checksum.h> |
| #include <net/tcp_states.h> |
| #include <linux/net_tstamp.h> |
| #include <net/l3mdev.h> |
| #include <uapi/linux/socket.h> |
| |
| /* |
| * This structure really needs to be cleaned up. |
| * Most of it is for TCP, and not used by any of |
| * the other protocols. |
| */ |
| |
| /* Define this to get the SOCK_DBG debugging facility. */ |
| #define SOCK_DEBUGGING |
| #ifdef SOCK_DEBUGGING |
| #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ |
| printk(KERN_DEBUG msg); } while (0) |
| #else |
| /* Validate arguments and do nothing */ |
| static inline __printf(2, 3) |
| void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) |
| { |
| } |
| #endif |
| |
| /* This is the per-socket lock. The spinlock provides a synchronization |
| * between user contexts and software interrupt processing, whereas the |
| * mini-semaphore synchronizes multiple users amongst themselves. |
| */ |
| typedef struct { |
| spinlock_t slock; |
| int owned; |
| wait_queue_head_t wq; |
| /* |
| * We express the mutex-alike socket_lock semantics |
| * to the lock validator by explicitly managing |
| * the slock as a lock variant (in addition to |
| * the slock itself): |
| */ |
| #ifdef CONFIG_DEBUG_LOCK_ALLOC |
| struct lockdep_map dep_map; |
| #endif |
| } socket_lock_t; |
| |
| struct sock; |
| struct proto; |
| struct net; |
| |
| typedef __u32 __bitwise __portpair; |
| typedef __u64 __bitwise __addrpair; |
| |
| /** |
| * struct sock_common - minimal network layer representation of sockets |
| * @skc_daddr: Foreign IPv4 addr |
| * @skc_rcv_saddr: Bound local IPv4 addr |
| * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr |
| * @skc_hash: hash value used with various protocol lookup tables |
| * @skc_u16hashes: two u16 hash values used by UDP lookup tables |
| * @skc_dport: placeholder for inet_dport/tw_dport |
| * @skc_num: placeholder for inet_num/tw_num |
| * @skc_portpair: __u32 union of @skc_dport & @skc_num |
| * @skc_family: network address family |
| * @skc_state: Connection state |
| * @skc_reuse: %SO_REUSEADDR setting |
| * @skc_reuseport: %SO_REUSEPORT setting |
| * @skc_ipv6only: socket is IPV6 only |
| * @skc_net_refcnt: socket is using net ref counting |
| * @skc_bound_dev_if: bound device index if != 0 |
| * @skc_bind_node: bind hash linkage for various protocol lookup tables |
| * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol |
| * @skc_prot: protocol handlers inside a network family |
| * @skc_net: reference to the network namespace of this socket |
| * @skc_v6_daddr: IPV6 destination address |
| * @skc_v6_rcv_saddr: IPV6 source address |
| * @skc_cookie: socket's cookie value |
| * @skc_node: main hash linkage for various protocol lookup tables |
| * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol |
| * @skc_tx_queue_mapping: tx queue number for this connection |
| * @skc_rx_queue_mapping: rx queue number for this connection |
| * @skc_flags: place holder for sk_flags |
| * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, |
| * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings |
| * @skc_listener: connection request listener socket (aka rsk_listener) |
| * [union with @skc_flags] |
| * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row |
| * [union with @skc_flags] |
| * @skc_incoming_cpu: record/match cpu processing incoming packets |
| * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled) |
| * [union with @skc_incoming_cpu] |
| * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number |
| * [union with @skc_incoming_cpu] |
| * @skc_refcnt: reference count |
| * |
| * This is the minimal network layer representation of sockets, the header |
| * for struct sock and struct inet_timewait_sock. |
| */ |
| struct sock_common { |
| union { |
| __addrpair skc_addrpair; |
| struct { |
| __be32 skc_daddr; |
| __be32 skc_rcv_saddr; |
| }; |
| }; |
| union { |
| unsigned int skc_hash; |
| __u16 skc_u16hashes[2]; |
| }; |
| /* skc_dport && skc_num must be grouped as well */ |
| union { |
| __portpair skc_portpair; |
| struct { |
| __be16 skc_dport; |
| __u16 skc_num; |
| }; |
| }; |
| |
| unsigned short skc_family; |
| volatile unsigned char skc_state; |
| unsigned char skc_reuse:4; |
| unsigned char skc_reuseport:1; |
| unsigned char skc_ipv6only:1; |
| unsigned char skc_net_refcnt:1; |
| int skc_bound_dev_if; |
| union { |
| struct hlist_node skc_bind_node; |
| struct hlist_node skc_portaddr_node; |
| }; |
| struct proto *skc_prot; |
| possible_net_t skc_net; |
| |
| #if IS_ENABLED(CONFIG_IPV6) |
| struct in6_addr skc_v6_daddr; |
| struct in6_addr skc_v6_rcv_saddr; |
| #endif |
| |
| atomic64_t skc_cookie; |
| |
| /* following fields are padding to force |
| * offset(struct sock, sk_refcnt) == 128 on 64bit arches |
| * assuming IPV6 is enabled. We use this padding differently |
| * for different kind of 'sockets' |
| */ |
| union { |
| unsigned long skc_flags; |
| struct sock *skc_listener; /* request_sock */ |
| struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ |
| }; |
| /* |
| * fields between dontcopy_begin/dontcopy_end |
| * are not copied in sock_copy() |
| */ |
| /* private: */ |
| int skc_dontcopy_begin[0]; |
| /* public: */ |
| union { |
| struct hlist_node skc_node; |
| struct hlist_nulls_node skc_nulls_node; |
| }; |
| unsigned short skc_tx_queue_mapping; |
| #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING |
| unsigned short skc_rx_queue_mapping; |
| #endif |
| union { |
| int skc_incoming_cpu; |
| u32 skc_rcv_wnd; |
| u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ |
| }; |
| |
| refcount_t skc_refcnt; |
| /* private: */ |
| int skc_dontcopy_end[0]; |
| union { |
| u32 skc_rxhash; |
| u32 skc_window_clamp; |
| u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ |
| }; |
| /* public: */ |
| }; |
| |
| struct bpf_local_storage; |
| struct sk_filter; |
| |
| /** |
| * struct sock - network layer representation of sockets |
| * @__sk_common: shared layout with inet_timewait_sock |
| * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN |
| * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings |
| * @sk_lock: synchronizer |
| * @sk_kern_sock: True if sock is using kernel lock classes |
| * @sk_rcvbuf: size of receive buffer in bytes |
| * @sk_wq: sock wait queue and async head |
| * @sk_rx_dst: receive input route used by early demux |
| * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst |
| * @sk_rx_dst_cookie: cookie for @sk_rx_dst |
| * @sk_dst_cache: destination cache |
| * @sk_dst_pending_confirm: need to confirm neighbour |
| * @sk_policy: flow policy |
| * @sk_receive_queue: incoming packets |
| * @sk_wmem_alloc: transmit queue bytes committed |
| * @sk_tsq_flags: TCP Small Queues flags |
| * @sk_write_queue: Packet sending queue |
| * @sk_omem_alloc: "o" is "option" or "other" |
| * @sk_wmem_queued: persistent queue size |
| * @sk_forward_alloc: space allocated forward |
| * @sk_reserved_mem: space reserved and non-reclaimable for the socket |
| * @sk_napi_id: id of the last napi context to receive data for sk |
| * @sk_ll_usec: usecs to busypoll when there is no data |
| * @sk_allocation: allocation mode |
| * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) |
| * @sk_pacing_status: Pacing status (requested, handled by sch_fq) |
| * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) |
| * @sk_sndbuf: size of send buffer in bytes |
| * @__sk_flags_offset: empty field used to determine location of bitfield |
| * @sk_padding: unused element for alignment |
| * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets |
| * @sk_no_check_rx: allow zero checksum in RX packets |
| * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) |
| * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden. |
| * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) |
| * @sk_gso_max_size: Maximum GSO segment size to build |
| * @sk_gso_max_segs: Maximum number of GSO segments |
| * @sk_pacing_shift: scaling factor for TCP Small Queues |
| * @sk_lingertime: %SO_LINGER l_linger setting |
| * @sk_backlog: always used with the per-socket spinlock held |
| * @sk_callback_lock: used with the callbacks in the end of this struct |
| * @sk_error_queue: rarely used |
| * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, |
| * IPV6_ADDRFORM for instance) |
| * @sk_err: last error |
| * @sk_err_soft: errors that don't cause failure but are the cause of a |
| * persistent failure not just 'timed out' |
| * @sk_drops: raw/udp drops counter |
| * @sk_ack_backlog: current listen backlog |
| * @sk_max_ack_backlog: listen backlog set in listen() |
| * @sk_uid: user id of owner |
| * @sk_prefer_busy_poll: prefer busypolling over softirq processing |
| * @sk_busy_poll_budget: napi processing budget when busypolling |
| * @sk_priority: %SO_PRIORITY setting |
| * @sk_type: socket type (%SOCK_STREAM, etc) |
| * @sk_protocol: which protocol this socket belongs in this network family |
| * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred |
| * @sk_peer_pid: &struct pid for this socket's peer |
| * @sk_peer_cred: %SO_PEERCRED setting |
| * @sk_rcvlowat: %SO_RCVLOWAT setting |
| * @sk_rcvtimeo: %SO_RCVTIMEO setting |
| * @sk_sndtimeo: %SO_SNDTIMEO setting |
| * @sk_txhash: computed flow hash for use on transmit |
| * @sk_txrehash: enable TX hash rethink |
| * @sk_filter: socket filtering instructions |
| * @sk_timer: sock cleanup timer |
| * @sk_stamp: time stamp of last packet received |
| * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only |
| * @sk_tsflags: SO_TIMESTAMPING flags |
| * @sk_use_task_frag: allow sk_page_frag() to use current->task_frag. |
| * Sockets that can be used under memory reclaim should |
| * set this to false. |
| * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock |
| * for timestamping |
| * @sk_tskey: counter to disambiguate concurrent tstamp requests |
| * @sk_zckey: counter to order MSG_ZEROCOPY notifications |
| * @sk_socket: Identd and reporting IO signals |
| * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock. |
| * @sk_frag: cached page frag |
| * @sk_peek_off: current peek_offset value |
| * @sk_send_head: front of stuff to transmit |
| * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head] |
| * @sk_security: used by security modules |
| * @sk_mark: generic packet mark |
| * @sk_cgrp_data: cgroup data for this cgroup |
| * @sk_memcg: this socket's memory cgroup association |
| * @sk_write_pending: a write to stream socket waits to start |
| * @sk_wait_pending: number of threads blocked on this socket |
| * @sk_state_change: callback to indicate change in the state of the sock |
| * @sk_data_ready: callback to indicate there is data to be processed |
| * @sk_write_space: callback to indicate there is bf sending space available |
| * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) |
| * @sk_backlog_rcv: callback to process the backlog |
| * @sk_validate_xmit_skb: ptr to an optional validate function |
| * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 |
| * @sk_reuseport_cb: reuseport group container |
| * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage |
| * @sk_rcu: used during RCU grace period |
| * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) |
| * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME |
| * @sk_txtime_report_errors: set report errors mode for SO_TXTIME |
| * @sk_txtime_unused: unused txtime flags |
| * @ns_tracker: tracker for netns reference |
| * @sk_bind2_node: bind node in the bhash2 table |
| */ |
| struct sock { |
| /* |
| * Now struct inet_timewait_sock also uses sock_common, so please just |
| * don't add nothing before this first member (__sk_common) --acme |
| */ |
| struct sock_common __sk_common; |
| #define sk_node __sk_common.skc_node |
| #define sk_nulls_node __sk_common.skc_nulls_node |
| #define sk_refcnt __sk_common.skc_refcnt |
| #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping |
| #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING |
| #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping |
| #endif |
| |
| #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin |
| #define sk_dontcopy_end __sk_common.skc_dontcopy_end |
| #define sk_hash __sk_common.skc_hash |
| #define sk_portpair __sk_common.skc_portpair |
| #define sk_num __sk_common.skc_num |
| #define sk_dport __sk_common.skc_dport |
| #define sk_addrpair __sk_common.skc_addrpair |
| #define sk_daddr __sk_common.skc_daddr |
| #define sk_rcv_saddr __sk_common.skc_rcv_saddr |
| #define sk_family __sk_common.skc_family |
| #define sk_state __sk_common.skc_state |
| #define sk_reuse __sk_common.skc_reuse |
| #define sk_reuseport __sk_common.skc_reuseport |
| #define sk_ipv6only __sk_common.skc_ipv6only |
| #define sk_net_refcnt __sk_common.skc_net_refcnt |
| #define sk_bound_dev_if __sk_common.skc_bound_dev_if |
| #define sk_bind_node __sk_common.skc_bind_node |
| #define sk_prot __sk_common.skc_prot |
| #define sk_net __sk_common.skc_net |
| #define sk_v6_daddr __sk_common.skc_v6_daddr |
| #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr |
| #define sk_cookie __sk_common.skc_cookie |
| #define sk_incoming_cpu __sk_common.skc_incoming_cpu |
| #define sk_flags __sk_common.skc_flags |
| #define sk_rxhash __sk_common.skc_rxhash |
| |
| /* early demux fields */ |
| struct dst_entry __rcu *sk_rx_dst; |
| int sk_rx_dst_ifindex; |
| u32 sk_rx_dst_cookie; |
| |
| socket_lock_t sk_lock; |
| atomic_t sk_drops; |
| int sk_rcvlowat; |
| struct sk_buff_head sk_error_queue; |
| struct sk_buff_head sk_receive_queue; |
| /* |
| * The backlog queue is special, it is always used with |
| * the per-socket spinlock held and requires low latency |
| * access. Therefore we special case it's implementation. |
| * Note : rmem_alloc is in this structure to fill a hole |
| * on 64bit arches, not because its logically part of |
| * backlog. |
| */ |
| struct { |
| atomic_t rmem_alloc; |
| int len; |
| struct sk_buff *head; |
| struct sk_buff *tail; |
| } sk_backlog; |
| |
| #define sk_rmem_alloc sk_backlog.rmem_alloc |
| |
| int sk_forward_alloc; |
| u32 sk_reserved_mem; |
| #ifdef CONFIG_NET_RX_BUSY_POLL |
| unsigned int sk_ll_usec; |
| /* ===== mostly read cache line ===== */ |
| unsigned int sk_napi_id; |
| #endif |
| int sk_rcvbuf; |
| int sk_wait_pending; |
| |
| struct sk_filter __rcu *sk_filter; |
| union { |
| struct socket_wq __rcu *sk_wq; |
| /* private: */ |
| struct socket_wq *sk_wq_raw; |
| /* public: */ |
| }; |
| #ifdef CONFIG_XFRM |
| struct xfrm_policy __rcu *sk_policy[2]; |
| #endif |
| |
| struct dst_entry __rcu *sk_dst_cache; |
| atomic_t sk_omem_alloc; |
| int sk_sndbuf; |
| |
| /* ===== cache line for TX ===== */ |
| int sk_wmem_queued; |
| refcount_t sk_wmem_alloc; |
| unsigned long sk_tsq_flags; |
| union { |
| struct sk_buff *sk_send_head; |
| struct rb_root tcp_rtx_queue; |
| }; |
| struct sk_buff_head sk_write_queue; |
| __s32 sk_peek_off; |
| int sk_write_pending; |
| __u32 sk_dst_pending_confirm; |
| u32 sk_pacing_status; /* see enum sk_pacing */ |
| long sk_sndtimeo; |
| struct timer_list sk_timer; |
| __u32 sk_priority; |
| __u32 sk_mark; |
| unsigned long sk_pacing_rate; /* bytes per second */ |
| unsigned long sk_max_pacing_rate; |
| struct page_frag sk_frag; |
| netdev_features_t sk_route_caps; |
| int sk_gso_type; |
| unsigned int sk_gso_max_size; |
| gfp_t sk_allocation; |
| __u32 sk_txhash; |
| |
| /* |
| * Because of non atomicity rules, all |
| * changes are protected by socket lock. |
| */ |
| u8 sk_gso_disabled : 1, |
| sk_kern_sock : 1, |
| sk_no_check_tx : 1, |
| sk_no_check_rx : 1, |
| sk_userlocks : 4; |
| u8 sk_pacing_shift; |
| u16 sk_type; |
| u16 sk_protocol; |
| u16 sk_gso_max_segs; |
| unsigned long sk_lingertime; |
| struct proto *sk_prot_creator; |
| rwlock_t sk_callback_lock; |
| int sk_err, |
| sk_err_soft; |
| u32 sk_ack_backlog; |
| u32 sk_max_ack_backlog; |
| kuid_t sk_uid; |
| u8 sk_txrehash; |
| #ifdef CONFIG_NET_RX_BUSY_POLL |
| u8 sk_prefer_busy_poll; |
| u16 sk_busy_poll_budget; |
| #endif |
| spinlock_t sk_peer_lock; |
| int sk_bind_phc; |
| struct pid *sk_peer_pid; |
| const struct cred *sk_peer_cred; |
| |
| long sk_rcvtimeo; |
| ktime_t sk_stamp; |
| #if BITS_PER_LONG==32 |
| seqlock_t sk_stamp_seq; |
| #endif |
| atomic_t sk_tskey; |
| atomic_t sk_zckey; |
| u32 sk_tsflags; |
| u8 sk_shutdown; |
| |
| u8 sk_clockid; |
| u8 sk_txtime_deadline_mode : 1, |
| sk_txtime_report_errors : 1, |
| sk_txtime_unused : 6; |
| bool sk_use_task_frag; |
| |
| struct socket *sk_socket; |
| void *sk_user_data; |
| #ifdef CONFIG_SECURITY |
| void *sk_security; |
| #endif |
| struct sock_cgroup_data sk_cgrp_data; |
| struct mem_cgroup *sk_memcg; |
| void (*sk_state_change)(struct sock *sk); |
| void (*sk_data_ready)(struct sock *sk); |
| void (*sk_write_space)(struct sock *sk); |
| void (*sk_error_report)(struct sock *sk); |
| int (*sk_backlog_rcv)(struct sock *sk, |
| struct sk_buff *skb); |
| #ifdef CONFIG_SOCK_VALIDATE_XMIT |
| struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, |
| struct net_device *dev, |
| struct sk_buff *skb); |
| #endif |
| void (*sk_destruct)(struct sock *sk); |
| struct sock_reuseport __rcu *sk_reuseport_cb; |
| #ifdef CONFIG_BPF_SYSCALL |
| struct bpf_local_storage __rcu *sk_bpf_storage; |
| #endif |
| struct rcu_head sk_rcu; |
| netns_tracker ns_tracker; |
| struct hlist_node sk_bind2_node; |
| }; |
| |
| enum sk_pacing { |
| SK_PACING_NONE = 0, |
| SK_PACING_NEEDED = 1, |
| SK_PACING_FQ = 2, |
| }; |
| |
| /* flag bits in sk_user_data |
| * |
| * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might |
| * not be suitable for copying when cloning the socket. For instance, |
| * it can point to a reference counted object. sk_user_data bottom |
| * bit is set if pointer must not be copied. |
| * |
| * - SK_USER_DATA_BPF: Mark whether sk_user_data field is |
| * managed/owned by a BPF reuseport array. This bit should be set |
| * when sk_user_data's sk is added to the bpf's reuseport_array. |
| * |
| * - SK_USER_DATA_PSOCK: Mark whether pointer stored in |
| * sk_user_data points to psock type. This bit should be set |
| * when sk_user_data is assigned to a psock object. |
| */ |
| #define SK_USER_DATA_NOCOPY 1UL |
| #define SK_USER_DATA_BPF 2UL |
| #define SK_USER_DATA_PSOCK 4UL |
| #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\ |
| SK_USER_DATA_PSOCK) |
| |
| /** |
| * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied |
| * @sk: socket |
| */ |
| static inline bool sk_user_data_is_nocopy(const struct sock *sk) |
| { |
| return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY); |
| } |
| |
| #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) |
| |
| /** |
| * __locked_read_sk_user_data_with_flags - return the pointer |
| * only if argument flags all has been set in sk_user_data. Otherwise |
| * return NULL |
| * |
| * @sk: socket |
| * @flags: flag bits |
| * |
| * The caller must be holding sk->sk_callback_lock. |
| */ |
| static inline void * |
| __locked_read_sk_user_data_with_flags(const struct sock *sk, |
| uintptr_t flags) |
| { |
| uintptr_t sk_user_data = |
| (uintptr_t)rcu_dereference_check(__sk_user_data(sk), |
| lockdep_is_held(&sk->sk_callback_lock)); |
| |
| WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK); |
| |
| if ((sk_user_data & flags) == flags) |
| return (void *)(sk_user_data & SK_USER_DATA_PTRMASK); |
| return NULL; |
| } |
| |
| /** |
| * __rcu_dereference_sk_user_data_with_flags - return the pointer |
| * only if argument flags all has been set in sk_user_data. Otherwise |
| * return NULL |
| * |
| * @sk: socket |
| * @flags: flag bits |
| */ |
| static inline void * |
| __rcu_dereference_sk_user_data_with_flags(const struct sock *sk, |
| uintptr_t flags) |
| { |
| uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk)); |
| |
| WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK); |
| |
| if ((sk_user_data & flags) == flags) |
| return (void *)(sk_user_data & SK_USER_DATA_PTRMASK); |
| return NULL; |
| } |
| |
| #define rcu_dereference_sk_user_data(sk) \ |
| __rcu_dereference_sk_user_data_with_flags(sk, 0) |
| #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \ |
| ({ \ |
| uintptr_t __tmp1 = (uintptr_t)(ptr), \ |
| __tmp2 = (uintptr_t)(flags); \ |
| WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \ |
| WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \ |
| rcu_assign_pointer(__sk_user_data((sk)), \ |
| __tmp1 | __tmp2); \ |
| }) |
| #define rcu_assign_sk_user_data(sk, ptr) \ |
| __rcu_assign_sk_user_data_with_flags(sk, ptr, 0) |
| |
| static inline |
| struct net *sock_net(const struct sock *sk) |
| { |
| return read_pnet(&sk->sk_net); |
| } |
| |
| static inline |
| void sock_net_set(struct sock *sk, struct net *net) |
| { |
| write_pnet(&sk->sk_net, net); |
| } |
| |
| /* |
| * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK |
| * or not whether his port will be reused by someone else. SK_FORCE_REUSE |
| * on a socket means that the socket will reuse everybody else's port |
| * without looking at the other's sk_reuse value. |
| */ |
| |
| #define SK_NO_REUSE 0 |
| #define SK_CAN_REUSE 1 |
| #define SK_FORCE_REUSE 2 |
| |
| int sk_set_peek_off(struct sock *sk, int val); |
| |
| static inline int sk_peek_offset(const struct sock *sk, int flags) |
| { |
| if (unlikely(flags & MSG_PEEK)) { |
| return READ_ONCE(sk->sk_peek_off); |
| } |
| |
| return 0; |
| } |
| |
| static inline void sk_peek_offset_bwd(struct sock *sk, int val) |
| { |
| s32 off = READ_ONCE(sk->sk_peek_off); |
| |
| if (unlikely(off >= 0)) { |
| off = max_t(s32, off - val, 0); |
| WRITE_ONCE(sk->sk_peek_off, off); |
| } |
| } |
| |
| static inline void sk_peek_offset_fwd(struct sock *sk, int val) |
| { |
| sk_peek_offset_bwd(sk, -val); |
| } |
| |
| /* |
| * Hashed lists helper routines |
| */ |
| static inline struct sock *sk_entry(const struct hlist_node *node) |
| { |
| return hlist_entry(node, struct sock, sk_node); |
| } |
| |
| static inline struct sock *__sk_head(const struct hlist_head *head) |
| { |
| return hlist_entry(head->first, struct sock, sk_node); |
| } |
| |
| static inline struct sock *sk_head(const struct hlist_head *head) |
| { |
| return hlist_empty(head) ? NULL : __sk_head(head); |
| } |
| |
| static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) |
| { |
| return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); |
| } |
| |
| static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) |
| { |
| return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); |
| } |
| |
| static inline struct sock *sk_next(const struct sock *sk) |
| { |
| return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); |
| } |
| |
| static inline struct sock *sk_nulls_next(const struct sock *sk) |
| { |
| return (!is_a_nulls(sk->sk_nulls_node.next)) ? |
| hlist_nulls_entry(sk->sk_nulls_node.next, |
| struct sock, sk_nulls_node) : |
| NULL; |
| } |
| |
| static inline bool sk_unhashed(const struct sock *sk) |
| { |
| return hlist_unhashed(&sk->sk_node); |
| } |
| |
| static inline bool sk_hashed(const struct sock *sk) |
| { |
| return !sk_unhashed(sk); |
| } |
| |
| static inline void sk_node_init(struct hlist_node *node) |
| { |
| node->pprev = NULL; |
| } |
| |
| static inline void __sk_del_node(struct sock *sk) |
| { |
| __hlist_del(&sk->sk_node); |
| } |
| |
| /* NB: equivalent to hlist_del_init_rcu */ |
| static inline bool __sk_del_node_init(struct sock *sk) |
| { |
| if (sk_hashed(sk)) { |
| __sk_del_node(sk); |
| sk_node_init(&sk->sk_node); |
| return true; |
| } |
| return false; |
| } |
| |
| /* Grab socket reference count. This operation is valid only |
| when sk is ALREADY grabbed f.e. it is found in hash table |
| or a list and the lookup is made under lock preventing hash table |
| modifications. |
| */ |
| |
| static __always_inline void sock_hold(struct sock *sk) |
| { |
| refcount_inc(&sk->sk_refcnt); |
| } |
| |
| /* Ungrab socket in the context, which assumes that socket refcnt |
| cannot hit zero, f.e. it is true in context of any socketcall. |
| */ |
| static __always_inline void __sock_put(struct sock *sk) |
| { |
| refcount_dec(&sk->sk_refcnt); |
| } |
| |
| static inline bool sk_del_node_init(struct sock *sk) |
| { |
| bool rc = __sk_del_node_init(sk); |
| |
| if (rc) { |
| /* paranoid for a while -acme */ |
| WARN_ON(refcount_read(&sk->sk_refcnt) == 1); |
| __sock_put(sk); |
| } |
| return rc; |
| } |
| #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) |
| |
| static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) |
| { |
| if (sk_hashed(sk)) { |
| hlist_nulls_del_init_rcu(&sk->sk_nulls_node); |
| return true; |
| } |
| return false; |
| } |
| |
| static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) |
| { |
| bool rc = __sk_nulls_del_node_init_rcu(sk); |
| |
| if (rc) { |
| /* paranoid for a while -acme */ |
| WARN_ON(refcount_read(&sk->sk_refcnt) == 1); |
| __sock_put(sk); |
| } |
| return rc; |
| } |
| |
| static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) |
| { |
| hlist_add_head(&sk->sk_node, list); |
| } |
| |
| static inline void sk_add_node(struct sock *sk, struct hlist_head *list) |
| { |
| sock_hold(sk); |
| __sk_add_node(sk, list); |
| } |
| |
| static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) |
| { |
| sock_hold(sk); |
| if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && |
| sk->sk_family == AF_INET6) |
| hlist_add_tail_rcu(&sk->sk_node, list); |
| else |
| hlist_add_head_rcu(&sk->sk_node, list); |
| } |
| |
| static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list) |
| { |
| sock_hold(sk); |
| hlist_add_tail_rcu(&sk->sk_node, list); |
| } |
| |
| static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) |
| { |
| hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); |
| } |
| |
| static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list) |
| { |
| hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); |
| } |
| |
| static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) |
| { |
| sock_hold(sk); |
| __sk_nulls_add_node_rcu(sk, list); |
| } |
| |
| static inline void __sk_del_bind_node(struct sock *sk) |
| { |
| __hlist_del(&sk->sk_bind_node); |
| } |
| |
| static inline void sk_add_bind_node(struct sock *sk, |
| struct hlist_head *list) |
| { |
| hlist_add_head(&sk->sk_bind_node, list); |
| } |
| |
| static inline void __sk_del_bind2_node(struct sock *sk) |
| { |
| __hlist_del(&sk->sk_bind2_node); |
| } |
| |
| static inline void sk_add_bind2_node(struct sock *sk, struct hlist_head *list) |
| { |
| hlist_add_head(&sk->sk_bind2_node, list); |
| } |
| |
| #define sk_for_each(__sk, list) \ |
| hlist_for_each_entry(__sk, list, sk_node) |
| #define sk_for_each_rcu(__sk, list) \ |
| hlist_for_each_entry_rcu(__sk, list, sk_node) |
| #define sk_nulls_for_each(__sk, node, list) \ |
| hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) |
| #define sk_nulls_for_each_rcu(__sk, node, list) \ |
| hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) |
| #define sk_for_each_from(__sk) \ |
| hlist_for_each_entry_from(__sk, sk_node) |
| #define sk_nulls_for_each_from(__sk, node) \ |
| if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ |
| hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) |
| #define sk_for_each_safe(__sk, tmp, list) \ |
| hlist_for_each_entry_safe(__sk, tmp, list, sk_node) |
| #define sk_for_each_bound(__sk, list) \ |
| hlist_for_each_entry(__sk, list, sk_bind_node) |
| #define sk_for_each_bound_bhash2(__sk, list) \ |
| hlist_for_each_entry(__sk, list, sk_bind2_node) |
| |
| /** |
| * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset |
| * @tpos: the type * to use as a loop cursor. |
| * @pos: the &struct hlist_node to use as a loop cursor. |
| * @head: the head for your list. |
| * @offset: offset of hlist_node within the struct. |
| * |
| */ |
| #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ |
| for (pos = rcu_dereference(hlist_first_rcu(head)); \ |
| pos != NULL && \ |
| ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ |
| pos = rcu_dereference(hlist_next_rcu(pos))) |
| |
| static inline struct user_namespace *sk_user_ns(const struct sock *sk) |
| { |
| /* Careful only use this in a context where these parameters |
| * can not change and must all be valid, such as recvmsg from |
| * userspace. |
| */ |
| return sk->sk_socket->file->f_cred->user_ns; |
| } |
| |
| /* Sock flags */ |
| enum sock_flags { |
| SOCK_DEAD, |
| SOCK_DONE, |
| SOCK_URGINLINE, |
| SOCK_KEEPOPEN, |
| SOCK_LINGER, |
| SOCK_DESTROY, |
| SOCK_BROADCAST, |
| SOCK_TIMESTAMP, |
| SOCK_ZAPPED, |
| SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ |
| SOCK_DBG, /* %SO_DEBUG setting */ |
| SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ |
| SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ |
| SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ |
| SOCK_MEMALLOC, /* VM depends on this socket for swapping */ |
| SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ |
| SOCK_FASYNC, /* fasync() active */ |
| SOCK_RXQ_OVFL, |
| SOCK_ZEROCOPY, /* buffers from userspace */ |
| SOCK_WIFI_STATUS, /* push wifi status to userspace */ |
| SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. |
| * Will use last 4 bytes of packet sent from |
| * user-space instead. |
| */ |
| SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ |
| SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ |
| SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ |
| SOCK_TXTIME, |
| SOCK_XDP, /* XDP is attached */ |
| SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */ |
| SOCK_RCVMARK, /* Receive SO_MARK ancillary data with packet */ |
| }; |
| |
| #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) |
| |
| static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk) |
| { |
| nsk->sk_flags = osk->sk_flags; |
| } |
| |
| static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) |
| { |
| __set_bit(flag, &sk->sk_flags); |
| } |
| |
| static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) |
| { |
| __clear_bit(flag, &sk->sk_flags); |
| } |
| |
| static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit, |
| int valbool) |
| { |
| if (valbool) |
| sock_set_flag(sk, bit); |
| else |
| sock_reset_flag(sk, bit); |
| } |
| |
| static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) |
| { |
| return test_bit(flag, &sk->sk_flags); |
| } |
| |
| #ifdef CONFIG_NET |
| DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); |
| static inline int sk_memalloc_socks(void) |
| { |
| return static_branch_unlikely(&memalloc_socks_key); |
| } |
| |
| void __receive_sock(struct file *file); |
| #else |
| |
| static inline int sk_memalloc_socks(void) |
| { |
| return 0; |
| } |
| |
| static inline void __receive_sock(struct file *file) |
| { } |
| #endif |
| |
| static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) |
| { |
| return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); |
| } |
| |
| static inline void sk_acceptq_removed(struct sock *sk) |
| { |
| WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1); |
| } |
| |
| static inline void sk_acceptq_added(struct sock *sk) |
| { |
| WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1); |
| } |
| |
| /* Note: If you think the test should be: |
| * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog); |
| * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.") |
| */ |
| static inline bool sk_acceptq_is_full(const struct sock *sk) |
| { |
| return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog); |
| } |
| |
| /* |
| * Compute minimal free write space needed to queue new packets. |
| */ |
| static inline int sk_stream_min_wspace(const struct sock *sk) |
| { |
| return READ_ONCE(sk->sk_wmem_queued) >> 1; |
| } |
| |
| static inline int sk_stream_wspace(const struct sock *sk) |
| { |
| return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued); |
| } |
| |
| static inline void sk_wmem_queued_add(struct sock *sk, int val) |
| { |
| WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val); |
| } |
| |
| void sk_stream_write_space(struct sock *sk); |
| |
| /* OOB backlog add */ |
| static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) |
| { |
| /* dont let skb dst not refcounted, we are going to leave rcu lock */ |
| skb_dst_force(skb); |
| |
| if (!sk->sk_backlog.tail) |
| WRITE_ONCE(sk->sk_backlog.head, skb); |
| else |
| sk->sk_backlog.tail->next = skb; |
| |
| WRITE_ONCE(sk->sk_backlog.tail, skb); |
| skb->next = NULL; |
| } |
| |
| /* |
| * Take into account size of receive queue and backlog queue |
| * Do not take into account this skb truesize, |
| * to allow even a single big packet to come. |
| */ |
| static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) |
| { |
| unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); |
| |
| return qsize > limit; |
| } |
| |
| /* The per-socket spinlock must be held here. */ |
| static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, |
| unsigned int limit) |
| { |
| if (sk_rcvqueues_full(sk, limit)) |
| return -ENOBUFS; |
| |
| /* |
| * If the skb was allocated from pfmemalloc reserves, only |
| * allow SOCK_MEMALLOC sockets to use it as this socket is |
| * helping free memory |
| */ |
| if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) |
| return -ENOMEM; |
| |
| __sk_add_backlog(sk, skb); |
| sk->sk_backlog.len += skb->truesize; |
| return 0; |
| } |
| |
| int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); |
| |
| INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)); |
| INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb)); |
| |
| static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) |
| { |
| if (sk_memalloc_socks() && skb_pfmemalloc(skb)) |
| return __sk_backlog_rcv(sk, skb); |
| |
| return INDIRECT_CALL_INET(sk->sk_backlog_rcv, |
| tcp_v6_do_rcv, |
| tcp_v4_do_rcv, |
| sk, skb); |
| } |
| |
| static inline void sk_incoming_cpu_update(struct sock *sk) |
| { |
| int cpu = raw_smp_processor_id(); |
| |
| if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu)) |
| WRITE_ONCE(sk->sk_incoming_cpu, cpu); |
| } |
| |
| static inline void sock_rps_record_flow_hash(__u32 hash) |
| { |
| #ifdef CONFIG_RPS |
| struct rps_sock_flow_table *sock_flow_table; |
| |
| rcu_read_lock(); |
| sock_flow_table = rcu_dereference(rps_sock_flow_table); |
| rps_record_sock_flow(sock_flow_table, hash); |
| rcu_read_unlock(); |
| #endif |
| } |
| |
| static inline void sock_rps_record_flow(const struct sock *sk) |
| { |
| #ifdef CONFIG_RPS |
| if (static_branch_unlikely(&rfs_needed)) { |
| /* Reading sk->sk_rxhash might incur an expensive cache line |
| * miss. |
| * |
| * TCP_ESTABLISHED does cover almost all states where RFS |
| * might be useful, and is cheaper [1] than testing : |
| * IPv4: inet_sk(sk)->inet_daddr |
| * IPv6: ipv6_addr_any(&sk->sk_v6_daddr) |
| * OR an additional socket flag |
| * [1] : sk_state and sk_prot are in the same cache line. |
| */ |
| if (sk->sk_state == TCP_ESTABLISHED) |
| sock_rps_record_flow_hash(sk->sk_rxhash); |
| } |
| #endif |
| } |
| |
| static inline void sock_rps_save_rxhash(struct sock *sk, |
| const struct sk_buff *skb) |
| { |
| #ifdef CONFIG_RPS |
| if (unlikely(sk->sk_rxhash != skb->hash)) |
| sk->sk_rxhash = skb->hash; |
| #endif |
| } |
| |
| static inline void sock_rps_reset_rxhash(struct sock *sk) |
| { |
| #ifdef CONFIG_RPS |
| sk->sk_rxhash = 0; |
| #endif |
| } |
| |
| #define sk_wait_event(__sk, __timeo, __condition, __wait) \ |
| ({ int __rc; \ |
| __sk->sk_wait_pending++; \ |
| release_sock(__sk); \ |
| __rc = __condition; \ |
| if (!__rc) { \ |
| *(__timeo) = wait_woken(__wait, \ |
| TASK_INTERRUPTIBLE, \ |
| *(__timeo)); \ |
| } \ |
| sched_annotate_sleep(); \ |
| lock_sock(__sk); \ |
| __sk->sk_wait_pending--; \ |
| __rc = __condition; \ |
| __rc; \ |
| }) |
| |
| int sk_stream_wait_connect(struct sock *sk, long *timeo_p); |
| int sk_stream_wait_memory(struct sock *sk, long *timeo_p); |
| void sk_stream_wait_close(struct sock *sk, long timeo_p); |
| int sk_stream_error(struct sock *sk, int flags, int err); |
| void sk_stream_kill_queues(struct sock *sk); |
| void sk_set_memalloc(struct sock *sk); |
| void sk_clear_memalloc(struct sock *sk); |
| |
| void __sk_flush_backlog(struct sock *sk); |
| |
| static inline bool sk_flush_backlog(struct sock *sk) |
| { |
| if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { |
| __sk_flush_backlog(sk); |
| return true; |
| } |
| return false; |
| } |
| |
| int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); |
| |
| struct request_sock_ops; |
| struct timewait_sock_ops; |
| struct inet_hashinfo; |
| struct raw_hashinfo; |
| struct smc_hashinfo; |
| struct module; |
| struct sk_psock; |
| |
| /* |
| * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes |
| * un-modified. Special care is taken when initializing object to zero. |
| */ |
| static inline void sk_prot_clear_nulls(struct sock *sk, int size) |
| { |
| if (offsetof(struct sock, sk_node.next) != 0) |
| memset(sk, 0, offsetof(struct sock, sk_node.next)); |
| memset(&sk->sk_node.pprev, 0, |
| size - offsetof(struct sock, sk_node.pprev)); |
| } |
| |
| /* Networking protocol blocks we attach to sockets. |
| * socket layer -> transport layer interface |
| */ |
| struct proto { |
| void (*close)(struct sock *sk, |
| long timeout); |
| int (*pre_connect)(struct sock *sk, |
| struct sockaddr *uaddr, |
| int addr_len); |
| int (*connect)(struct sock *sk, |
| struct sockaddr *uaddr, |
| int addr_len); |
| int (*disconnect)(struct sock *sk, int flags); |
| |
| struct sock * (*accept)(struct sock *sk, int flags, int *err, |
| bool kern); |
| |
| int (*ioctl)(struct sock *sk, int cmd, |
| unsigned long arg); |
| int (*init)(struct sock *sk); |
| void (*destroy)(struct sock *sk); |
| void (*shutdown)(struct sock *sk, int how); |
| int (*setsockopt)(struct sock *sk, int level, |
| int optname, sockptr_t optval, |
| unsigned int optlen); |
| int (*getsockopt)(struct sock *sk, int level, |
| int optname, char __user *optval, |
| int __user *option); |
| void (*keepalive)(struct sock *sk, int valbool); |
| #ifdef CONFIG_COMPAT |
| int (*compat_ioctl)(struct sock *sk, |
| unsigned int cmd, unsigned long arg); |
| #endif |
| int (*sendmsg)(struct sock *sk, struct msghdr *msg, |
| size_t len); |
| int (*recvmsg)(struct sock *sk, struct msghdr *msg, |
| size_t len, int flags, int *addr_len); |
| int (*sendpage)(struct sock *sk, struct page *page, |
| int offset, size_t size, int flags); |
| int (*bind)(struct sock *sk, |
| struct sockaddr *addr, int addr_len); |
| int (*bind_add)(struct sock *sk, |
| struct sockaddr *addr, int addr_len); |
| |
| int (*backlog_rcv) (struct sock *sk, |
| struct sk_buff *skb); |
| bool (*bpf_bypass_getsockopt)(int level, |
| int optname); |
| |
| void (*release_cb)(struct sock *sk); |
| |
| /* Keeping track of sk's, looking them up, and port selection methods. */ |
| int (*hash)(struct sock *sk); |
| void (*unhash)(struct sock *sk); |
| void (*rehash)(struct sock *sk); |
| int (*get_port)(struct sock *sk, unsigned short snum); |
| void (*put_port)(struct sock *sk); |
| #ifdef CONFIG_BPF_SYSCALL |
| int (*psock_update_sk_prot)(struct sock *sk, |
| struct sk_psock *psock, |
| bool restore); |
| #endif |
| |
| /* Keeping track of sockets in use */ |
| #ifdef CONFIG_PROC_FS |
| unsigned int inuse_idx; |
| #endif |
| |
| #if IS_ENABLED(CONFIG_MPTCP) |
| int (*forward_alloc_get)(const struct sock *sk); |
| #endif |
| |
| bool (*stream_memory_free)(const struct sock *sk, int wake); |
| bool (*sock_is_readable)(struct sock *sk); |
| /* Memory pressure */ |
| void (*enter_memory_pressure)(struct sock *sk); |
| void (*leave_memory_pressure)(struct sock *sk); |
| atomic_long_t *memory_allocated; /* Current allocated memory. */ |
| int __percpu *per_cpu_fw_alloc; |
| struct percpu_counter *sockets_allocated; /* Current number of sockets. */ |
| |
| /* |
| * Pressure flag: try to collapse. |
| * Technical note: it is used by multiple contexts non atomically. |
| * All the __sk_mem_schedule() is of this nature: accounting |
| * is strict, actions are advisory and have some latency. |
| */ |
| unsigned long *memory_pressure; |
| long *sysctl_mem; |
| |
| int *sysctl_wmem; |
| int *sysctl_rmem; |
| u32 sysctl_wmem_offset; |
| u32 sysctl_rmem_offset; |
| |
| int max_header; |
| bool no_autobind; |
| |
| struct kmem_cache *slab; |
| unsigned int obj_size; |
| slab_flags_t slab_flags; |
| unsigned int useroffset; /* Usercopy region offset */ |
| unsigned int usersize; /* Usercopy region size */ |
| |
| unsigned int __percpu *orphan_count; |
| |
| struct request_sock_ops *rsk_prot; |
| struct timewait_sock_ops *twsk_prot; |
| |
| union { |
| struct inet_hashinfo *hashinfo; |
| struct udp_table *udp_table; |
| struct raw_hashinfo *raw_hash; |
| struct smc_hashinfo *smc_hash; |
| } h; |
| |
| struct module *owner; |
| |
| char name[32]; |
| |
| struct list_head node; |
| int (*diag_destroy)(struct sock *sk, int err); |
| } __randomize_layout; |
| |
| int proto_register(struct proto *prot, int alloc_slab); |
| void proto_unregister(struct proto *prot); |
| int sock_load_diag_module(int family, int protocol); |
| |
| INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake)); |
| |
| static inline int sk_forward_alloc_get(const struct sock *sk) |
| { |
| #if IS_ENABLED(CONFIG_MPTCP) |
| if (sk->sk_prot->forward_alloc_get) |
| return sk->sk_prot->forward_alloc_get(sk); |
| #endif |
| return sk->sk_forward_alloc; |
| } |
| |
| static inline bool __sk_stream_memory_free(const struct sock *sk, int wake) |
| { |
| if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf)) |
| return false; |
| |
| return sk->sk_prot->stream_memory_free ? |
| INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free, |
| tcp_stream_memory_free, sk, wake) : true; |
| } |
| |
| static inline bool sk_stream_memory_free(const struct sock *sk) |
| { |
| return __sk_stream_memory_free(sk, 0); |
| } |
| |
| static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake) |
| { |
| return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && |
| __sk_stream_memory_free(sk, wake); |
| } |
| |
| static inline bool sk_stream_is_writeable(const struct sock *sk) |
| { |
| return __sk_stream_is_writeable(sk, 0); |
| } |
| |
| static inline int sk_under_cgroup_hierarchy(struct sock *sk, |
| struct cgroup *ancestor) |
| { |
| #ifdef CONFIG_SOCK_CGROUP_DATA |
| return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), |
| ancestor); |
| #else |
| return -ENOTSUPP; |
| #endif |
| } |
| |
| static inline bool sk_has_memory_pressure(const struct sock *sk) |
| { |
| return sk->sk_prot->memory_pressure != NULL; |
| } |
| |
| static inline bool sk_under_memory_pressure(const struct sock *sk) |
| { |
| if (!sk->sk_prot->memory_pressure) |
| return false; |
| |
| if (mem_cgroup_sockets_enabled && sk->sk_memcg && |
| mem_cgroup_under_socket_pressure(sk->sk_memcg)) |
| return true; |
| |
| return !!*sk->sk_prot->memory_pressure; |
| } |
| |
| static inline long |
| proto_memory_allocated(const struct proto *prot) |
| { |
| return max(0L, atomic_long_read(prot->memory_allocated)); |
| } |
| |
| static inline long |
| sk_memory_allocated(const struct sock *sk) |
| { |
| return proto_memory_allocated(sk->sk_prot); |
| } |
| |
| /* 1 MB per cpu, in page units */ |
| #define SK_MEMORY_PCPU_RESERVE (1 << (20 - PAGE_SHIFT)) |
| |
| static inline void |
| sk_memory_allocated_add(struct sock *sk, int amt) |
| { |
| int local_reserve; |
| |
| preempt_disable(); |
| local_reserve = __this_cpu_add_return(*sk->sk_prot->per_cpu_fw_alloc, amt); |
| if (local_reserve >= SK_MEMORY_PCPU_RESERVE) { |
| __this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve); |
| atomic_long_add(local_reserve, sk->sk_prot->memory_allocated); |
| } |
| preempt_enable(); |
| } |
| |
| static inline void |
| sk_memory_allocated_sub(struct sock *sk, int amt) |
| { |
| int local_reserve; |
| |
| preempt_disable(); |
| local_reserve = __this_cpu_sub_return(*sk->sk_prot->per_cpu_fw_alloc, amt); |
| if (local_reserve <= -SK_MEMORY_PCPU_RESERVE) { |
| __this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve); |
| atomic_long_add(local_reserve, sk->sk_prot->memory_allocated); |
| } |
| preempt_enable(); |
| } |
| |
| #define SK_ALLOC_PERCPU_COUNTER_BATCH 16 |
| |
| static inline void sk_sockets_allocated_dec(struct sock *sk) |
| { |
| percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1, |
| SK_ALLOC_PERCPU_COUNTER_BATCH); |
| } |
| |
| static inline void sk_sockets_allocated_inc(struct sock *sk) |
| { |
| percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1, |
| SK_ALLOC_PERCPU_COUNTER_BATCH); |
| } |
| |
| static inline u64 |
| sk_sockets_allocated_read_positive(struct sock *sk) |
| { |
| return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); |
| } |
| |
| static inline int |
| proto_sockets_allocated_sum_positive(struct proto *prot) |
| { |
| return percpu_counter_sum_positive(prot->sockets_allocated); |
| } |
| |
| static inline bool |
| proto_memory_pressure(struct proto *prot) |
| { |
| if (!prot->memory_pressure) |
| return false; |
| return !!*prot->memory_pressure; |
| } |
| |
| |
| #ifdef CONFIG_PROC_FS |
| #define PROTO_INUSE_NR 64 /* should be enough for the first time */ |
| struct prot_inuse { |
| int all; |
| int val[PROTO_INUSE_NR]; |
| }; |
| |
| static inline void sock_prot_inuse_add(const struct net *net, |
| const struct proto *prot, int val) |
| { |
| this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); |
| } |
| |
| static inline void sock_inuse_add(const struct net *net, int val) |
| { |
| this_cpu_add(net->core.prot_inuse->all, val); |
| } |
| |
| int sock_prot_inuse_get(struct net *net, struct proto *proto); |
| int sock_inuse_get(struct net *net); |
| #else |
| static inline void sock_prot_inuse_add(const struct net *net, |
| const struct proto *prot, int val) |
| { |
| } |
| |
| static inline void sock_inuse_add(const struct net *net, int val) |
| { |
| } |
| #endif |
| |
| |
| /* With per-bucket locks this operation is not-atomic, so that |
| * this version is not worse. |
| */ |
| static inline int __sk_prot_rehash(struct sock *sk) |
| { |
| sk->sk_prot->unhash(sk); |
| return sk->sk_prot->hash(sk); |
| } |
| |
| /* About 10 seconds */ |
| #define SOCK_DESTROY_TIME (10*HZ) |
| |
| /* Sockets 0-1023 can't be bound to unless you are superuser */ |
| #define PROT_SOCK 1024 |
| |
| #define SHUTDOWN_MASK 3 |
| #define RCV_SHUTDOWN 1 |
| #define SEND_SHUTDOWN 2 |
| |
| #define SOCK_BINDADDR_LOCK 4 |
| #define SOCK_BINDPORT_LOCK 8 |
| |
| struct socket_alloc { |
| struct socket socket; |
| struct inode vfs_inode; |
| }; |
| |
| static inline struct socket *SOCKET_I(struct inode *inode) |
| { |
| return &container_of(inode, struct socket_alloc, vfs_inode)->socket; |
| } |
| |
| static inline struct inode *SOCK_INODE(struct socket *socket) |
| { |
| return &container_of(socket, struct socket_alloc, socket)->vfs_inode; |
| } |
| |
| /* |
| * Functions for memory accounting |
| */ |
| int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); |
| int __sk_mem_schedule(struct sock *sk, int size, int kind); |
| void __sk_mem_reduce_allocated(struct sock *sk, int amount); |
| void __sk_mem_reclaim(struct sock *sk, int amount); |
| |
| #define SK_MEM_SEND 0 |
| #define SK_MEM_RECV 1 |
| |
| /* sysctl_mem values are in pages */ |
| static inline long sk_prot_mem_limits(const struct sock *sk, int index) |
| { |
| return READ_ONCE(sk->sk_prot->sysctl_mem[index]); |
| } |
| |
| static inline int sk_mem_pages(int amt) |
| { |
| return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| } |
| |
| static inline bool sk_has_account(struct sock *sk) |
| { |
| /* return true if protocol supports memory accounting */ |
| return !!sk->sk_prot->memory_allocated; |
| } |
| |
| static inline bool sk_wmem_schedule(struct sock *sk, int size) |
| { |
| int delta; |
| |
| if (!sk_has_account(sk)) |
| return true; |
| delta = size - sk->sk_forward_alloc; |
| return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND); |
| } |
| |
| static inline bool |
| sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) |
| { |
| int delta; |
| |
| if (!sk_has_account(sk)) |
| return true; |
| delta = size - sk->sk_forward_alloc; |
| return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) || |
| skb_pfmemalloc(skb); |
| } |
| |
| static inline int sk_unused_reserved_mem(const struct sock *sk) |
| { |
| int unused_mem; |
| |
| if (likely(!sk->sk_reserved_mem)) |
| return 0; |
| |
| unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued - |
| atomic_read(&sk->sk_rmem_alloc); |
| |
| return unused_mem > 0 ? unused_mem : 0; |
| } |
| |
| static inline void sk_mem_reclaim(struct sock *sk) |
| { |
| int reclaimable; |
| |
| if (!sk_has_account(sk)) |
| return; |
| |
| reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk); |
| |
| if (reclaimable >= (int)PAGE_SIZE) |
| __sk_mem_reclaim(sk, reclaimable); |
| } |
| |
| static inline void sk_mem_reclaim_final(struct sock *sk) |
| { |
| sk->sk_reserved_mem = 0; |
| sk_mem_reclaim(sk); |
| } |
| |
| static inline void sk_mem_charge(struct sock *sk, int size) |
| { |
| if (!sk_has_account(sk)) |
| return; |
| sk->sk_forward_alloc -= size; |
| } |
| |
| static inline void sk_mem_uncharge(struct sock *sk, int size) |
| { |
| if (!sk_has_account(sk)) |
| return; |
| sk->sk_forward_alloc += size; |
| sk_mem_reclaim(sk); |
| } |
| |
| /* |
| * Macro so as to not evaluate some arguments when |
| * lockdep is not enabled. |
| * |
| * Mark both the sk_lock and the sk_lock.slock as a |
| * per-address-family lock class. |
| */ |
| #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ |
| do { \ |
| sk->sk_lock.owned = 0; \ |
| init_waitqueue_head(&sk->sk_lock.wq); \ |
| spin_lock_init(&(sk)->sk_lock.slock); \ |
| debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ |
| sizeof((sk)->sk_lock)); \ |
| lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ |
| (skey), (sname)); \ |
| lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ |
| } while (0) |
| |
| static inline bool lockdep_sock_is_held(const struct sock *sk) |
| { |
| return lockdep_is_held(&sk->sk_lock) || |
| lockdep_is_held(&sk->sk_lock.slock); |
| } |
| |
| void lock_sock_nested(struct sock *sk, int subclass); |
| |
| static inline void lock_sock(struct sock *sk) |
| { |
| lock_sock_nested(sk, 0); |
| } |
| |
| void __lock_sock(struct sock *sk); |
| void __release_sock(struct sock *sk); |
| void release_sock(struct sock *sk); |
| |
| /* BH context may only use the following locking interface. */ |
| #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) |
| #define bh_lock_sock_nested(__sk) \ |
| spin_lock_nested(&((__sk)->sk_lock.slock), \ |
| SINGLE_DEPTH_NESTING) |
| #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) |
| |
| bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock); |
| |
| /** |
| * lock_sock_fast - fast version of lock_sock |
| * @sk: socket |
| * |
| * This version should be used for very small section, where process wont block |
| * return false if fast path is taken: |
| * |
| * sk_lock.slock locked, owned = 0, BH disabled |
| * |
| * return true if slow path is taken: |
| * |
| * sk_lock.slock unlocked, owned = 1, BH enabled |
| */ |
| static inline bool lock_sock_fast(struct sock *sk) |
| { |
| /* The sk_lock has mutex_lock() semantics here. */ |
| mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); |
| |
| return __lock_sock_fast(sk); |
| } |
| |
| /* fast socket lock variant for caller already holding a [different] socket lock */ |
| static inline bool lock_sock_fast_nested(struct sock *sk) |
| { |
| mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_); |
| |
| return __lock_sock_fast(sk); |
| } |
| |
| /** |
| * unlock_sock_fast - complement of lock_sock_fast |
| * @sk: socket |
| * @slow: slow mode |
| * |
| * fast unlock socket for user context. |
| * If slow mode is on, we call regular release_sock() |
| */ |
| static inline void unlock_sock_fast(struct sock *sk, bool slow) |
| __releases(&sk->sk_lock.slock) |
| { |
| if (slow) { |
| release_sock(sk); |
| __release(&sk->sk_lock.slock); |
| } else { |
| mutex_release(&sk->sk_lock.dep_map, _RET_IP_); |
| spin_unlock_bh(&sk->sk_lock.slock); |
| } |
| } |
| |
| void sockopt_lock_sock(struct sock *sk); |
| void sockopt_release_sock(struct sock *sk); |
| bool sockopt_ns_capable(struct user_namespace *ns, int cap); |
| bool sockopt_capable(int cap); |
| |
| /* Used by processes to "lock" a socket state, so that |
| * interrupts and bottom half handlers won't change it |
| * from under us. It essentially blocks any incoming |
| * packets, so that we won't get any new data or any |
| * packets that change the state of the socket. |
| * |
| * While locked, BH processing will add new packets to |
| * the backlog queue. This queue is processed by the |
| * owner of the socket lock right before it is released. |
| * |
| * Since ~2.3.5 it is also exclusive sleep lock serializing |
| * accesses from user process context. |
| */ |
| |
| static inline void sock_owned_by_me(const struct sock *sk) |
| { |
| #ifdef CONFIG_LOCKDEP |
| WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); |
| #endif |
| } |
| |
| static inline bool sock_owned_by_user(const struct sock *sk) |
| { |
| sock_owned_by_me(sk); |
| return sk->sk_lock.owned; |
| } |
| |
| static inline bool sock_owned_by_user_nocheck(const struct sock *sk) |
| { |
| return sk->sk_lock.owned; |
| } |
| |
| static inline void sock_release_ownership(struct sock *sk) |
| { |
| if (sock_owned_by_user_nocheck(sk)) { |
| sk->sk_lock.owned = 0; |
| |
| /* The sk_lock has mutex_unlock() semantics: */ |
| mutex_release(&sk->sk_lock.dep_map, _RET_IP_); |
| } |
| } |
| |
| /* no reclassification while locks are held */ |
| static inline bool sock_allow_reclassification(const struct sock *csk) |
| { |
| struct sock *sk = (struct sock *)csk; |
| |
| return !sock_owned_by_user_nocheck(sk) && |
| !spin_is_locked(&sk->sk_lock.slock); |
| } |
| |
| struct sock *sk_alloc(struct net *net, int family, gfp_t priority, |
| struct proto *prot, int kern); |
| void sk_free(struct sock *sk); |
| void sk_destruct(struct sock *sk); |
| struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); |
| void sk_free_unlock_clone(struct sock *sk); |
| |
| struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, |
| gfp_t priority); |
| void __sock_wfree(struct sk_buff *skb); |
| void sock_wfree(struct sk_buff *skb); |
| struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, |
| gfp_t priority); |
| void skb_orphan_partial(struct sk_buff *skb); |
| void sock_rfree(struct sk_buff *skb); |
| void sock_efree(struct sk_buff *skb); |
| #ifdef CONFIG_INET |
| void sock_edemux(struct sk_buff *skb); |
| void sock_pfree(struct sk_buff *skb); |
| #else |
| #define sock_edemux sock_efree |
| #endif |
| |
| int sk_setsockopt(struct sock *sk, int level, int optname, |
| sockptr_t optval, unsigned int optlen); |
| int sock_setsockopt(struct socket *sock, int level, int op, |
| sockptr_t optval, unsigned int optlen); |
| |
| int sk_getsockopt(struct sock *sk, int level, int optname, |
| sockptr_t optval, sockptr_t optlen); |
| int sock_getsockopt(struct socket *sock, int level, int op, |
| char __user *optval, int __user *optlen); |
| int sock_gettstamp(struct socket *sock, void __user *userstamp, |
| bool timeval, bool time32); |
| struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, |
| unsigned long data_len, int noblock, |
| int *errcode, int max_page_order); |
| |
| static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk, |
| unsigned long size, |
| int noblock, int *errcode) |
| { |
| return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); |
| } |
| |
| void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); |
| void sock_kfree_s(struct sock *sk, void *mem, int size); |
| void sock_kzfree_s(struct sock *sk, void *mem, int size); |
| void sk_send_sigurg(struct sock *sk); |
| |
| static inline void sock_replace_proto(struct sock *sk, struct proto *proto) |
| { |
| if (sk->sk_socket) |
| clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); |
| WRITE_ONCE(sk->sk_prot, proto); |
| } |
| |
| struct sockcm_cookie { |
| u64 transmit_time; |
| u32 mark; |
| u32 tsflags; |
| }; |
| |
| static inline void sockcm_init(struct sockcm_cookie *sockc, |
| const struct sock *sk) |
| { |
| *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags }; |
| } |
| |
| int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, |
| struct sockcm_cookie *sockc); |
| int sock_cmsg_send(struct sock *sk, struct msghdr *msg, |
| struct sockcm_cookie *sockc); |
| |
| /* |
| * Functions to fill in entries in struct proto_ops when a protocol |
| * does not implement a particular function. |
| */ |
| int sock_no_bind(struct socket *, struct sockaddr *, int); |
| int sock_no_connect(struct socket *, struct sockaddr *, int, int); |
| int sock_no_socketpair(struct socket *, struct socket *); |
| int sock_no_accept(struct socket *, struct socket *, int, bool); |
| int sock_no_getname(struct socket *, struct sockaddr *, int); |
| int sock_no_ioctl(struct socket *, unsigned int, unsigned long); |
| int sock_no_listen(struct socket *, int); |
| int sock_no_shutdown(struct socket *, int); |
| int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); |
| int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); |
| int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); |
| int sock_no_mmap(struct file *file, struct socket *sock, |
| struct vm_area_struct *vma); |
| ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, |
| size_t size, int flags); |
| ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, |
| int offset, size_t size, int flags); |
| |
| /* |
| * Functions to fill in entries in struct proto_ops when a protocol |
| * uses the inet style. |
| */ |
| int sock_common_getsockopt(struct socket *sock, int level, int optname, |
| char __user *optval, int __user *optlen); |
| int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, |
| int flags); |
| int sock_common_setsockopt(struct socket *sock, int level, int optname, |
| sockptr_t optval, unsigned int optlen); |
| |
| void sk_common_release(struct sock *sk); |
| |
| /* |
| * Default socket callbacks and setup code |
| */ |
| |
| /* Initialise core socket variables using an explicit uid. */ |
| void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid); |
| |
| /* Initialise core socket variables. |
| * Assumes struct socket *sock is embedded in a struct socket_alloc. |
| */ |
| void sock_init_data(struct socket *sock, struct sock *sk); |
| |
| /* |
| * Socket reference counting postulates. |
| * |
| * * Each user of socket SHOULD hold a reference count. |
| * * Each access point to socket (an hash table bucket, reference from a list, |
| * running timer, skb in flight MUST hold a reference count. |
| * * When reference count hits 0, it means it will never increase back. |
| * * When reference count hits 0, it means that no references from |
| * outside exist to this socket and current process on current CPU |
| * is last user and may/should destroy this socket. |
| * * sk_free is called from any context: process, BH, IRQ. When |
| * it is called, socket has no references from outside -> sk_free |
| * may release descendant resources allocated by the socket, but |
| * to the time when it is called, socket is NOT referenced by any |
| * hash tables, lists etc. |
| * * Packets, delivered from outside (from network or from another process) |
| * and enqueued on receive/error queues SHOULD NOT grab reference count, |
| * when they sit in queue. Otherwise, packets will leak to hole, when |
| * socket is looked up by one cpu and unhasing is made by another CPU. |
| * It is true for udp/raw, netlink (leak to receive and error queues), tcp |
| * (leak to backlog). Packet socket does all the processing inside |
| * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets |
| * use separate SMP lock, so that they are prone too. |
| */ |
| |
| /* Ungrab socket and destroy it, if it was the last reference. */ |
| static inline void sock_put(struct sock *sk) |
| { |
| if (refcount_dec_and_test(&sk->sk_refcnt)) |
| sk_free(sk); |
| } |
| /* Generic version of sock_put(), dealing with all sockets |
| * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) |
| */ |
| void sock_gen_put(struct sock *sk); |
| |
| int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, |
| unsigned int trim_cap, bool refcounted); |
| static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, |
| const int nested) |
| { |
| return __sk_receive_skb(sk, skb, nested, 1, true); |
| } |
| |
| static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) |
| { |
| /* sk_tx_queue_mapping accept only upto a 16-bit value */ |
| if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) |
| return; |
| sk->sk_tx_queue_mapping = tx_queue; |
| } |
| |
| #define NO_QUEUE_MAPPING USHRT_MAX |
| |
| static inline void sk_tx_queue_clear(struct sock *sk) |
| { |
| sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING; |
| } |
| |
| static inline int sk_tx_queue_get(const struct sock *sk) |
| { |
| if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING) |
| return sk->sk_tx_queue_mapping; |
| |
| return -1; |
| } |
| |
| static inline void __sk_rx_queue_set(struct sock *sk, |
| const struct sk_buff *skb, |
| bool force_set) |
| { |
| #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING |
| if (skb_rx_queue_recorded(skb)) { |
| u16 rx_queue = skb_get_rx_queue(skb); |
| |
| if (force_set || |
| unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue)) |
| WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue); |
| } |
| #endif |
| } |
| |
| static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) |
| { |
| __sk_rx_queue_set(sk, skb, true); |
| } |
| |
| static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb) |
| { |
| __sk_rx_queue_set(sk, skb, false); |
| } |
| |
| static inline void sk_rx_queue_clear(struct sock *sk) |
| { |
| #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING |
| WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING); |
| #endif |
| } |
| |
| static inline int sk_rx_queue_get(const struct sock *sk) |
| { |
| #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING |
| if (sk) { |
| int res = READ_ONCE(sk->sk_rx_queue_mapping); |
| |
| if (res != NO_QUEUE_MAPPING) |
| return res; |
| } |
| #endif |
| |
| return -1; |
| } |
| |
| static inline void sk_set_socket(struct sock *sk, struct socket *sock) |
| { |
| sk->sk_socket = sock; |
| } |
| |
| static inline wait_queue_head_t *sk_sleep(struct sock *sk) |
| { |
| BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); |
| return &rcu_dereference_raw(sk->sk_wq)->wait; |
| } |
| /* Detach socket from process context. |
| * Announce socket dead, detach it from wait queue and inode. |
| * Note that parent inode held reference count on this struct sock, |
| * we do not release it in this function, because protocol |
| * probably wants some additional cleanups or even continuing |
| * to work with this socket (TCP). |
| */ |
| static inline void sock_orphan(struct sock *sk) |
| { |
| write_lock_bh(&sk->sk_callback_lock); |
| sock_set_flag(sk, SOCK_DEAD); |
| sk_set_socket(sk, NULL); |
| sk->sk_wq = NULL; |
| write_unlock_bh(&sk->sk_callback_lock); |
| } |
| |
| static inline void sock_graft(struct sock *sk, struct socket *parent) |
| { |
| WARN_ON(parent->sk); |
| write_lock_bh(&sk->sk_callback_lock); |
| rcu_assign_pointer(sk->sk_wq, &parent->wq); |
| parent->sk = sk; |
| sk_set_socket(sk, parent); |
| sk->sk_uid = SOCK_INODE(parent)->i_uid; |
| security_sock_graft(sk, parent); |
| write_unlock_bh(&sk->sk_callback_lock); |
| } |
| |
| kuid_t sock_i_uid(struct sock *sk); |
| unsigned long sock_i_ino(struct sock *sk); |
| |
| static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) |
| { |
| return sk ? sk->sk_uid : make_kuid(net->user_ns, 0); |
| } |
| |
| static inline u32 net_tx_rndhash(void) |
| { |
| u32 v = get_random_u32(); |
| |
| return v ?: 1; |
| } |
| |
| static inline void sk_set_txhash(struct sock *sk) |
| { |
| /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */ |
| WRITE_ONCE(sk->sk_txhash, net_tx_rndhash()); |
| } |
| |
| static inline bool sk_rethink_txhash(struct sock *sk) |
| { |
| if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) { |
| sk_set_txhash(sk); |
| return true; |
| } |
| return false; |
| } |
| |
| static inline struct dst_entry * |
| __sk_dst_get(struct sock *sk) |
| { |
| return rcu_dereference_check(sk->sk_dst_cache, |
| lockdep_sock_is_held(sk)); |
| } |
| |
| static inline struct dst_entry * |
| sk_dst_get(struct sock *sk) |
| { |
| struct dst_entry *dst; |
| |
| rcu_read_lock(); |
| dst = rcu_dereference(sk->sk_dst_cache); |
| if (dst && !rcuref_get(&dst->__rcuref)) |
| dst = NULL; |
| rcu_read_unlock(); |
| return dst; |
| } |
| |
| static inline void __dst_negative_advice(struct sock *sk) |
| { |
| struct dst_entry *ndst, *dst = __sk_dst_get(sk); |
| |
| if (dst && dst->ops->negative_advice) { |
| ndst = dst->ops->negative_advice(dst); |
| |
| if (ndst != dst) { |
| rcu_assign_pointer(sk->sk_dst_cache, ndst); |
| sk_tx_queue_clear(sk); |
| sk->sk_dst_pending_confirm = 0; |
| } |
| } |
| } |
| |
| static inline void dst_negative_advice(struct sock *sk) |
| { |
| sk_rethink_txhash(sk); |
| __dst_negative_advice(sk); |
| } |
| |
| static inline void |
| __sk_dst_set(struct sock *sk, struct dst_entry *dst) |
| { |
| struct dst_entry *old_dst; |
| |
| sk_tx_queue_clear(sk); |
| sk->sk_dst_pending_confirm = 0; |
| old_dst = rcu_dereference_protected(sk->sk_dst_cache, |
| lockdep_sock_is_held(sk)); |
| rcu_assign_pointer(sk->sk_dst_cache, dst); |
| dst_release(old_dst); |
| } |
| |
| static inline void |
| sk_dst_set(struct sock *sk, struct dst_entry *dst) |
| { |
| struct dst_entry *old_dst; |
| |
| sk_tx_queue_clear(sk); |
| sk->sk_dst_pending_confirm = 0; |
| old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); |
| dst_release(old_dst); |
| } |
| |
| static inline void |
| __sk_dst_reset(struct sock *sk) |
| { |
| __sk_dst_set(sk, NULL); |
| } |
| |
| static inline void |
| sk_dst_reset(struct sock *sk) |
| { |
| sk_dst_set(sk, NULL); |
| } |
| |
| struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); |
| |
| struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); |
| |
| static inline void sk_dst_confirm(struct sock *sk) |
| { |
| if (!READ_ONCE(sk->sk_dst_pending_confirm)) |
| WRITE_ONCE(sk->sk_dst_pending_confirm, 1); |
| } |
| |
| static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) |
| { |
| if (skb_get_dst_pending_confirm(skb)) { |
| struct sock *sk = skb->sk; |
| |
| if (sk && READ_ONCE(sk->sk_dst_pending_confirm)) |
| WRITE_ONCE(sk->sk_dst_pending_confirm, 0); |
| neigh_confirm(n); |
| } |
| } |
| |
| bool sk_mc_loop(struct sock *sk); |
| |
| static inline bool sk_can_gso(const struct sock *sk) |
| { |
| return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); |
| } |
| |
| void sk_setup_caps(struct sock *sk, struct dst_entry *dst); |
| |
| static inline void sk_gso_disable(struct sock *sk) |
| { |
| sk->sk_gso_disabled = 1; |
| sk->sk_route_caps &= ~NETIF_F_GSO_MASK; |
| } |
| |
| static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, |
| struct iov_iter *from, char *to, |
| int copy, int offset) |
| { |
| if (skb->ip_summed == CHECKSUM_NONE) { |
| __wsum csum = 0; |
| if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) |
| return -EFAULT; |
| skb->csum = csum_block_add(skb->csum, csum, offset); |
| } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { |
| if (!copy_from_iter_full_nocache(to, copy, from)) |
| return -EFAULT; |
| } else if (!copy_from_iter_full(to, copy, from)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, |
| struct iov_iter *from, int copy) |
| { |
| int err, offset = skb->len; |
| |
| err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), |
| copy, offset); |
| if (err) |
| __skb_trim(skb, offset); |
| |
| return err; |
| } |
| |
| static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, |
| struct sk_buff *skb, |
| struct page *page, |
| int off, int copy) |
| { |
| int err; |
| |
| err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, |
| copy, skb->len); |
| if (err) |
| return err; |
| |
| skb_len_add(skb, copy); |
| sk_wmem_queued_add(sk, copy); |
| sk_mem_charge(sk, copy); |
| return 0; |
| } |
| |
| /** |
| * sk_wmem_alloc_get - returns write allocations |
| * @sk: socket |
| * |
| * Return: sk_wmem_alloc minus initial offset of one |
| */ |
| static inline int sk_wmem_alloc_get(const struct sock *sk) |
| { |
| return refcount_read(&sk->sk_wmem_alloc) - 1; |
| } |
| |
| /** |
| * sk_rmem_alloc_get - returns read allocations |
| * @sk: socket |
| * |
| * Return: sk_rmem_alloc |
| */ |
| static inline int sk_rmem_alloc_get(const struct sock *sk) |
| { |
| return atomic_read(&sk->sk_rmem_alloc); |
| } |
| |
| /** |
| * sk_has_allocations - check if allocations are outstanding |
| * @sk: socket |
| * |
| * Return: true if socket has write or read allocations |
| */ |
| static inline bool sk_has_allocations(const struct sock *sk) |
| { |
| return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); |
| } |
| |
| /** |
| * skwq_has_sleeper - check if there are any waiting processes |
| * @wq: struct socket_wq |
| * |
| * Return: true if socket_wq has waiting processes |
| * |
| * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory |
| * barrier call. They were added due to the race found within the tcp code. |
| * |
| * Consider following tcp code paths:: |
| * |
| * CPU1 CPU2 |
| * sys_select receive packet |
| * ... ... |
| * __add_wait_queue update tp->rcv_nxt |
| * ... ... |
| * tp->rcv_nxt check sock_def_readable |
| * ... { |
| * schedule rcu_read_lock(); |
| * wq = rcu_dereference(sk->sk_wq); |
| * if (wq && waitqueue_active(&wq->wait)) |
| * wake_up_interruptible(&wq->wait) |
| * ... |
| * } |
| * |
| * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay |
| * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 |
| * could then endup calling schedule and sleep forever if there are no more |
| * data on the socket. |
| * |
| */ |
| static inline bool skwq_has_sleeper(struct socket_wq *wq) |
| { |
| return wq && wq_has_sleeper(&wq->wait); |
| } |
| |
| /** |
| * sock_poll_wait - place memory barrier behind the poll_wait call. |
| * @filp: file |
| * @sock: socket to wait on |
| * @p: poll_table |
| * |
| * See the comments in the wq_has_sleeper function. |
| */ |
| static inline void sock_poll_wait(struct file *filp, struct socket *sock, |
| poll_table *p) |
| { |
| if (!poll_does_not_wait(p)) { |
| poll_wait(filp, &sock->wq.wait, p); |
| /* We need to be sure we are in sync with the |
| * socket flags modification. |
| * |
| * This memory barrier is paired in the wq_has_sleeper. |
| */ |
| smp_mb(); |
| } |
| } |
| |
| static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) |
| { |
| /* This pairs with WRITE_ONCE() in sk_set_txhash() */ |
| u32 txhash = READ_ONCE(sk->sk_txhash); |
| |
| if (txhash) { |
| skb->l4_hash = 1; |
| skb->hash = txhash; |
| } |
| } |
| |
| void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); |
| |
| /* |
| * Queue a received datagram if it will fit. Stream and sequenced |
| * protocols can't normally use this as they need to fit buffers in |
| * and play with them. |
| * |
| * Inlined as it's very short and called for pretty much every |
| * packet ever received. |
| */ |
| static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) |
| { |
| skb_orphan(skb); |
| skb->sk = sk; |
| skb->destructor = sock_rfree; |
| atomic_add(skb->truesize, &sk->sk_rmem_alloc); |
| sk_mem_charge(sk, skb->truesize); |
| } |
| |
| static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk) |
| { |
| if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) { |
| skb_orphan(skb); |
| skb->destructor = sock_efree; |
| skb->sk = sk; |
| return true; |
| } |
| return false; |
| } |
| |
| static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk) |
| { |
| skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC)); |
| if (skb) { |
| if (sk_rmem_schedule(sk, skb, skb->truesize)) { |
| skb_set_owner_r(skb, sk); |
| return skb; |
| } |
| __kfree_skb(skb); |
| } |
| return NULL; |
| } |
| |
| static inline void skb_prepare_for_gro(struct sk_buff *skb) |
| { |
| if (skb->destructor != sock_wfree) { |
| skb_orphan(skb); |
| return; |
| } |
| skb->slow_gro = 1; |
| } |
| |
| void sk_reset_timer(struct sock *sk, struct timer_list *timer, |
| unsigned long expires); |
| |
| void sk_stop_timer(struct sock *sk, struct timer_list *timer); |
| |
| void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer); |
| |
| int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, |
| struct sk_buff *skb, unsigned int flags, |
| void (*destructor)(struct sock *sk, |
| struct sk_buff *skb)); |
| int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); |
| |
| int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, |
| enum skb_drop_reason *reason); |
| |
| static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) |
| { |
| return sock_queue_rcv_skb_reason(sk, skb, NULL); |
| } |
| |
| int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); |
| struct sk_buff *sock_dequeue_err_skb(struct sock *sk); |
| |
| /* |
| * Recover an error report and clear atomically |
| */ |
| |
| static inline int sock_error(struct sock *sk) |
| { |
| int err; |
| |
| /* Avoid an atomic operation for the common case. |
| * This is racy since another cpu/thread can change sk_err under us. |
| */ |
| if (likely(data_race(!sk->sk_err))) |
| return 0; |
| |
| err = xchg(&sk->sk_err, 0); |
| return -err; |
| } |
| |
| void sk_error_report(struct sock *sk); |
| |
| static inline unsigned long sock_wspace(struct sock *sk) |
| { |
| int amt = 0; |
| |
| if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { |
| amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); |
| if (amt < 0) |
| amt = 0; |
| } |
| return amt; |
| } |
| |
| /* Note: |
| * We use sk->sk_wq_raw, from contexts knowing this |
| * pointer is not NULL and cannot disappear/change. |
| */ |
| static inline void sk_set_bit(int nr, struct sock *sk) |
| { |
| if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && |
| !sock_flag(sk, SOCK_FASYNC)) |
| return; |
| |
| set_bit(nr, &sk->sk_wq_raw->flags); |
| } |
| |
| static inline void sk_clear_bit(int nr, struct sock *sk) |
| { |
| if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && |
| !sock_flag(sk, SOCK_FASYNC)) |
| return; |
| |
| clear_bit(nr, &sk->sk_wq_raw->flags); |
| } |
| |
| static inline void sk_wake_async(const struct sock *sk, int how, int band) |
| { |
| if (sock_flag(sk, SOCK_FASYNC)) { |
| rcu_read_lock(); |
| sock_wake_async(rcu_dereference(sk->sk_wq), how, band); |
| rcu_read_unlock(); |
| } |
| } |
| |
| /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might |
| * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. |
| * Note: for send buffers, TCP works better if we can build two skbs at |
| * minimum. |
| */ |
| #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) |
| |
| #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) |
| #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE |
| |
| static inline void sk_stream_moderate_sndbuf(struct sock *sk) |
| { |
| u32 val; |
| |
| if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) |
| return; |
| |
| val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); |
| val = max_t(u32, val, sk_unused_reserved_mem(sk)); |
| |
| WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF)); |
| } |
| |
| /** |
| * sk_page_frag - return an appropriate page_frag |
| * @sk: socket |
| * |
| * Use the per task page_frag instead of the per socket one for |
| * optimization when we know that we're in process context and own |
| * everything that's associated with %current. |
| * |
| * Both direct reclaim and page faults can nest inside other |
| * socket operations and end up recursing into sk_page_frag() |
| * while it's already in use: explicitly avoid task page_frag |
| * when users disable sk_use_task_frag. |
| * |
| * Return: a per task page_frag if context allows that, |
| * otherwise a per socket one. |
| */ |
| static inline struct page_frag *sk_page_frag(struct sock *sk) |
| { |
| if (sk->sk_use_task_frag) |
| return ¤t->task_frag; |
| |
| return &sk->sk_frag; |
| } |
| |
| bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); |
| |
| /* |
| * Default write policy as shown to user space via poll/select/SIGIO |
| */ |
| static inline bool sock_writeable(const struct sock *sk) |
| { |
| return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1); |
| } |
| |
| static inline gfp_t gfp_any(void) |
| { |
| return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; |
| } |
| |
| static inline gfp_t gfp_memcg_charge(void) |
| { |
| return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; |
| } |
| |
| static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) |
| { |
| return noblock ? 0 : sk->sk_rcvtimeo; |
| } |
| |
| static inline long sock_sndtimeo(const struct sock *sk, bool noblock) |
| { |
| return noblock ? 0 : sk->sk_sndtimeo; |
| } |
| |
| static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) |
| { |
| int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len); |
| |
| return v ?: 1; |
| } |
| |
| /* Alas, with timeout socket operations are not restartable. |
| * Compare this to poll(). |
| */ |
| static inline int sock_intr_errno(long timeo) |
| { |
| return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; |
| } |
| |
| struct sock_skb_cb { |
| u32 dropcount; |
| }; |
| |
| /* Store sock_skb_cb at the end of skb->cb[] so protocol families |
| * using skb->cb[] would keep using it directly and utilize its |
| * alignement guarantee. |
| */ |
| #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \ |
| sizeof(struct sock_skb_cb))) |
| |
| #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ |
| SOCK_SKB_CB_OFFSET)) |
| |
| #define sock_skb_cb_check_size(size) \ |
| BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) |
| |
| static inline void |
| sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) |
| { |
| SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? |
| atomic_read(&sk->sk_drops) : 0; |
| } |
| |
| static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb) |
| { |
| int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); |
| |
| atomic_add(segs, &sk->sk_drops); |
| } |
| |
| static inline ktime_t sock_read_timestamp(struct sock *sk) |
| { |
| #if BITS_PER_LONG==32 |
| unsigned int seq; |
| ktime_t kt; |
| |
| do { |
| seq = read_seqbegin(&sk->sk_stamp_seq); |
| kt = sk->sk_stamp; |
| } while (read_seqretry(&sk->sk_stamp_seq, seq)); |
| |
| return kt; |
| #else |
| return READ_ONCE(sk->sk_stamp); |
| #endif |
| } |
| |
| static inline void sock_write_timestamp(struct sock *sk, ktime_t kt) |
| { |
| #if BITS_PER_LONG==32 |
| write_seqlock(&sk->sk_stamp_seq); |
| sk->sk_stamp = kt; |
| write_sequnlock(&sk->sk_stamp_seq); |
| #else |
| WRITE_ONCE(sk->sk_stamp, kt); |
| #endif |
| } |
| |
| void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, |
| struct sk_buff *skb); |
| void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, |
| struct sk_buff *skb); |
| |
| static inline void |
| sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) |
| { |
| ktime_t kt = skb->tstamp; |
| struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); |
| |
| /* |
| * generate control messages if |
| * - receive time stamping in software requested |
| * - software time stamp available and wanted |
| * - hardware time stamps available and wanted |
| */ |
| if (sock_flag(sk, SOCK_RCVTSTAMP) || |
| (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || |
| (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || |
| (hwtstamps->hwtstamp && |
| (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) |
| __sock_recv_timestamp(msg, sk, skb); |
| else |
| sock_write_timestamp(sk, kt); |
| |
| if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb)) |
| __sock_recv_wifi_status(msg, sk, skb); |
| } |
| |
| void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, |
| struct sk_buff *skb); |
| |
| #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) |
| static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, |
| struct sk_buff *skb) |
| { |
| #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \ |
| (1UL << SOCK_RCVTSTAMP) | \ |
| (1UL << SOCK_RCVMARK)) |
| #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ |
| SOF_TIMESTAMPING_RAW_HARDWARE) |
| |
| if (sk->sk_flags & FLAGS_RECV_CMSGS || sk->sk_tsflags & TSFLAGS_ANY) |
| __sock_recv_cmsgs(msg, sk, skb); |
| else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) |
| sock_write_timestamp(sk, skb->tstamp); |
| else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP)) |
| sock_write_timestamp(sk, 0); |
| } |
| |
| void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags); |
| |
| /** |
| * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped |
| * @sk: socket sending this packet |
| * @tsflags: timestamping flags to use |
| * @tx_flags: completed with instructions for time stamping |
| * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno) |
| * |
| * Note: callers should take care of initial ``*tx_flags`` value (usually 0) |
| */ |
| static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags, |
| __u8 *tx_flags, __u32 *tskey) |
| { |
| if (unlikely(tsflags)) { |
| __sock_tx_timestamp(tsflags, tx_flags); |
| if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey && |
| tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) |
| *tskey = atomic_inc_return(&sk->sk_tskey) - 1; |
| } |
| if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) |
| *tx_flags |= SKBTX_WIFI_STATUS; |
| } |
| |
| static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags, |
| __u8 *tx_flags) |
| { |
| _sock_tx_timestamp(sk, tsflags, tx_flags, NULL); |
| } |
| |
| static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags) |
| { |
| _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags, |
| &skb_shinfo(skb)->tskey); |
| } |
| |
| static inline bool sk_is_tcp(const struct sock *sk) |
| { |
| return sk->sk_type == SOCK_STREAM && sk->sk_protocol == IPPROTO_TCP; |
| } |
| |
| /** |
| * sk_eat_skb - Release a skb if it is no longer needed |
| * @sk: socket to eat this skb from |
| * @skb: socket buffer to eat |
| * |
| * This routine must be called with interrupts disabled or with the socket |
| * locked so that the sk_buff queue operation is ok. |
| */ |
| static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) |
| { |
| __skb_unlink(skb, &sk->sk_receive_queue); |
| __kfree_skb(skb); |
| } |
| |
| static inline bool |
| skb_sk_is_prefetched(struct sk_buff *skb) |
| { |
| #ifdef CONFIG_INET |
| return skb->destructor == sock_pfree; |
| #else |
| return false; |
| #endif /* CONFIG_INET */ |
| } |
| |
| /* This helper checks if a socket is a full socket, |
| * ie _not_ a timewait or request socket. |
| */ |
| static inline bool sk_fullsock(const struct sock *sk) |
| { |
| return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); |
| } |
| |
| static inline bool |
| sk_is_refcounted(struct sock *sk) |
| { |
| /* Only full sockets have sk->sk_flags. */ |
| return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE); |
| } |
| |
| /** |
| * skb_steal_sock - steal a socket from an sk_buff |
| * @skb: sk_buff to steal the socket from |
| * @refcounted: is set to true if the socket is reference-counted |
| */ |
| static inline struct sock * |
| skb_steal_sock(struct sk_buff *skb, bool *refcounted) |
| { |
| if (skb->sk) { |
| struct sock *sk = skb->sk; |
| |
| *refcounted = true; |
| if (skb_sk_is_prefetched(skb)) |
| *refcounted = sk_is_refcounted(sk); |
| skb->destructor = NULL; |
| skb->sk = NULL; |
| return sk; |
| } |
| *refcounted = false; |
| return NULL; |
| } |
| |
| /* Checks if this SKB belongs to an HW offloaded socket |
| * and whether any SW fallbacks are required based on dev. |
| * Check decrypted mark in case skb_orphan() cleared socket. |
| */ |
| static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, |
| struct net_device *dev) |
| { |
| #ifdef CONFIG_SOCK_VALIDATE_XMIT |
| struct sock *sk = skb->sk; |
| |
| if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) { |
| skb = sk->sk_validate_xmit_skb(sk, dev, skb); |
| #ifdef CONFIG_TLS_DEVICE |
| } else if (unlikely(skb->decrypted)) { |
| pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n"); |
| kfree_skb(skb); |
| skb = NULL; |
| #endif |
| } |
| #endif |
| |
| return skb; |
| } |
| |
| /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV |
| * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) |
| */ |
| static inline bool sk_listener(const struct sock *sk) |
| { |
| return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); |
| } |
| |
| void sock_enable_timestamp(struct sock *sk, enum sock_flags flag); |
| int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, |
| int type); |
| |
| bool sk_ns_capable(const struct sock *sk, |
| struct user_namespace *user_ns, int cap); |
| bool sk_capable(const struct sock *sk, int cap); |
| bool sk_net_capable(const struct sock *sk, int cap); |
| |
| void sk_get_meminfo(const struct sock *sk, u32 *meminfo); |
| |
| /* Take into consideration the size of the struct sk_buff overhead in the |
| * determination of these values, since that is non-constant across |
| * platforms. This makes socket queueing behavior and performance |
| * not depend upon such differences. |
| */ |
| #define _SK_MEM_PACKETS 256 |
| #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) |
| #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) |
| #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) |
| |
| extern __u32 sysctl_wmem_max; |
| extern __u32 sysctl_rmem_max; |
| |
| extern int sysctl_tstamp_allow_data; |
| extern int sysctl_optmem_max; |
| |
| extern __u32 sysctl_wmem_default; |
| extern __u32 sysctl_rmem_default; |
| |
| #define SKB_FRAG_PAGE_ORDER get_order(32768) |
| DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); |
| |
| static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) |
| { |
| /* Does this proto have per netns sysctl_wmem ? */ |
| if (proto->sysctl_wmem_offset) |
| return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset)); |
| |
| return READ_ONCE(*proto->sysctl_wmem); |
| } |
| |
| static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) |
| { |
| /* Does this proto have per netns sysctl_rmem ? */ |
| if (proto->sysctl_rmem_offset) |
| return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset)); |
| |
| return READ_ONCE(*proto->sysctl_rmem); |
| } |
| |
| /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) |
| * Some wifi drivers need to tweak it to get more chunks. |
| * They can use this helper from their ndo_start_xmit() |
| */ |
| static inline void sk_pacing_shift_update(struct sock *sk, int val) |
| { |
| if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val) |
| return; |
| WRITE_ONCE(sk->sk_pacing_shift, val); |
| } |
| |
| /* if a socket is bound to a device, check that the given device |
| * index is either the same or that the socket is bound to an L3 |
| * master device and the given device index is also enslaved to |
| * that L3 master |
| */ |
| static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) |
| { |
| int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); |
| int mdif; |
| |
| if (!bound_dev_if || bound_dev_if == dif) |
| return true; |
| |
| mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif); |
| if (mdif && mdif == bound_dev_if) |
| return true; |
| |
| return false; |
| } |
| |
| void sock_def_readable(struct sock *sk); |
| |
| int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk); |
| void sock_set_timestamp(struct sock *sk, int optname, bool valbool); |
| int sock_set_timestamping(struct sock *sk, int optname, |
| struct so_timestamping timestamping); |
| |
| void sock_enable_timestamps(struct sock *sk); |
| void sock_no_linger(struct sock *sk); |
| void sock_set_keepalive(struct sock *sk); |
| void sock_set_priority(struct sock *sk, u32 priority); |
| void sock_set_rcvbuf(struct sock *sk, int val); |
| void sock_set_mark(struct sock *sk, u32 val); |
| void sock_set_reuseaddr(struct sock *sk); |
| void sock_set_reuseport(struct sock *sk); |
| void sock_set_sndtimeo(struct sock *sk, s64 secs); |
| |
| int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len); |
| |
| int sock_get_timeout(long timeo, void *optval, bool old_timeval); |
| int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, |
| sockptr_t optval, int optlen, bool old_timeval); |
| |
| static inline bool sk_is_readable(struct sock *sk) |
| { |
| if (sk->sk_prot->sock_is_readable) |
| return sk->sk_prot->sock_is_readable(sk); |
| return false; |
| } |
| #endif /* _SOCK_H */ |