| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * USB4 specific functionality |
| * |
| * Copyright (C) 2019, Intel Corporation |
| * Authors: Mika Westerberg <mika.westerberg@linux.intel.com> |
| * Rajmohan Mani <rajmohan.mani@intel.com> |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/ktime.h> |
| |
| #include "tb.h" |
| |
| #define USB4_DATA_DWORDS 16 |
| #define USB4_DATA_RETRIES 3 |
| |
| enum usb4_switch_op { |
| USB4_SWITCH_OP_QUERY_DP_RESOURCE = 0x10, |
| USB4_SWITCH_OP_ALLOC_DP_RESOURCE = 0x11, |
| USB4_SWITCH_OP_DEALLOC_DP_RESOURCE = 0x12, |
| USB4_SWITCH_OP_NVM_WRITE = 0x20, |
| USB4_SWITCH_OP_NVM_AUTH = 0x21, |
| USB4_SWITCH_OP_NVM_READ = 0x22, |
| USB4_SWITCH_OP_NVM_SET_OFFSET = 0x23, |
| USB4_SWITCH_OP_DROM_READ = 0x24, |
| USB4_SWITCH_OP_NVM_SECTOR_SIZE = 0x25, |
| }; |
| |
| #define USB4_NVM_READ_OFFSET_MASK GENMASK(23, 2) |
| #define USB4_NVM_READ_OFFSET_SHIFT 2 |
| #define USB4_NVM_READ_LENGTH_MASK GENMASK(27, 24) |
| #define USB4_NVM_READ_LENGTH_SHIFT 24 |
| |
| #define USB4_NVM_SET_OFFSET_MASK USB4_NVM_READ_OFFSET_MASK |
| #define USB4_NVM_SET_OFFSET_SHIFT USB4_NVM_READ_OFFSET_SHIFT |
| |
| #define USB4_DROM_ADDRESS_MASK GENMASK(14, 2) |
| #define USB4_DROM_ADDRESS_SHIFT 2 |
| #define USB4_DROM_SIZE_MASK GENMASK(19, 15) |
| #define USB4_DROM_SIZE_SHIFT 15 |
| |
| #define USB4_NVM_SECTOR_SIZE_MASK GENMASK(23, 0) |
| |
| typedef int (*read_block_fn)(struct tb_switch *, unsigned int, void *, size_t); |
| typedef int (*write_block_fn)(struct tb_switch *, const void *, size_t); |
| |
| static int usb4_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit, |
| u32 value, int timeout_msec) |
| { |
| ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); |
| |
| do { |
| u32 val; |
| int ret; |
| |
| ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1); |
| if (ret) |
| return ret; |
| |
| if ((val & bit) == value) |
| return 0; |
| |
| usleep_range(50, 100); |
| } while (ktime_before(ktime_get(), timeout)); |
| |
| return -ETIMEDOUT; |
| } |
| |
| static int usb4_switch_op_read_data(struct tb_switch *sw, void *data, |
| size_t dwords) |
| { |
| if (dwords > USB4_DATA_DWORDS) |
| return -EINVAL; |
| |
| return tb_sw_read(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords); |
| } |
| |
| static int usb4_switch_op_write_data(struct tb_switch *sw, const void *data, |
| size_t dwords) |
| { |
| if (dwords > USB4_DATA_DWORDS) |
| return -EINVAL; |
| |
| return tb_sw_write(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords); |
| } |
| |
| static int usb4_switch_op_read_metadata(struct tb_switch *sw, u32 *metadata) |
| { |
| return tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1); |
| } |
| |
| static int usb4_switch_op_write_metadata(struct tb_switch *sw, u32 metadata) |
| { |
| return tb_sw_write(sw, &metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1); |
| } |
| |
| static int usb4_switch_do_read_data(struct tb_switch *sw, u16 address, |
| void *buf, size_t size, read_block_fn read_block) |
| { |
| unsigned int retries = USB4_DATA_RETRIES; |
| unsigned int offset; |
| |
| offset = address & 3; |
| address = address & ~3; |
| |
| do { |
| size_t nbytes = min_t(size_t, size, USB4_DATA_DWORDS * 4); |
| unsigned int dwaddress, dwords; |
| u8 data[USB4_DATA_DWORDS * 4]; |
| int ret; |
| |
| dwaddress = address / 4; |
| dwords = ALIGN(nbytes, 4) / 4; |
| |
| ret = read_block(sw, dwaddress, data, dwords); |
| if (ret) { |
| if (ret == -ETIMEDOUT) { |
| if (retries--) |
| continue; |
| ret = -EIO; |
| } |
| return ret; |
| } |
| |
| memcpy(buf, data + offset, nbytes); |
| |
| size -= nbytes; |
| address += nbytes; |
| buf += nbytes; |
| } while (size > 0); |
| |
| return 0; |
| } |
| |
| static int usb4_switch_do_write_data(struct tb_switch *sw, u16 address, |
| const void *buf, size_t size, write_block_fn write_next_block) |
| { |
| unsigned int retries = USB4_DATA_RETRIES; |
| unsigned int offset; |
| |
| offset = address & 3; |
| address = address & ~3; |
| |
| do { |
| u32 nbytes = min_t(u32, size, USB4_DATA_DWORDS * 4); |
| u8 data[USB4_DATA_DWORDS * 4]; |
| int ret; |
| |
| memcpy(data + offset, buf, nbytes); |
| |
| ret = write_next_block(sw, data, nbytes / 4); |
| if (ret) { |
| if (ret == -ETIMEDOUT) { |
| if (retries--) |
| continue; |
| ret = -EIO; |
| } |
| return ret; |
| } |
| |
| size -= nbytes; |
| address += nbytes; |
| buf += nbytes; |
| } while (size > 0); |
| |
| return 0; |
| } |
| |
| static int usb4_switch_op(struct tb_switch *sw, u16 opcode, u8 *status) |
| { |
| u32 val; |
| int ret; |
| |
| val = opcode | ROUTER_CS_26_OV; |
| ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1); |
| if (ret) |
| return ret; |
| |
| ret = usb4_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500); |
| if (ret) |
| return ret; |
| |
| ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1); |
| if (val & ROUTER_CS_26_ONS) |
| return -EOPNOTSUPP; |
| |
| *status = (val & ROUTER_CS_26_STATUS_MASK) >> ROUTER_CS_26_STATUS_SHIFT; |
| return 0; |
| } |
| |
| /** |
| * usb4_switch_setup() - Additional setup for USB4 device |
| * @sw: USB4 router to setup |
| * |
| * USB4 routers need additional settings in order to enable all the |
| * tunneling. This function enables USB and PCIe tunneling if it can be |
| * enabled (e.g the parent switch also supports them). If USB tunneling |
| * is not available for some reason (like that there is Thunderbolt 3 |
| * switch upstream) then the internal xHCI controller is enabled |
| * instead. |
| */ |
| int usb4_switch_setup(struct tb_switch *sw) |
| { |
| struct tb_switch *parent; |
| bool tbt3, xhci; |
| u32 val = 0; |
| int ret; |
| |
| if (!tb_route(sw)) |
| return 0; |
| |
| ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1); |
| if (ret) |
| return ret; |
| |
| xhci = val & ROUTER_CS_6_HCI; |
| tbt3 = !(val & ROUTER_CS_6_TNS); |
| |
| tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n", |
| tbt3 ? "yes" : "no", xhci ? "yes" : "no"); |
| |
| ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); |
| if (ret) |
| return ret; |
| |
| parent = tb_switch_parent(sw); |
| |
| if (tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) { |
| val |= ROUTER_CS_5_UTO; |
| xhci = false; |
| } |
| |
| /* Only enable PCIe tunneling if the parent router supports it */ |
| if (tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) { |
| val |= ROUTER_CS_5_PTO; |
| /* |
| * xHCI can be enabled if PCIe tunneling is supported |
| * and the parent does not have any USB3 dowstream |
| * adapters (so we cannot do USB 3.x tunneling). |
| */ |
| if (xhci) |
| val |= ROUTER_CS_5_HCO; |
| } |
| |
| /* TBT3 supported by the CM */ |
| val |= ROUTER_CS_5_C3S; |
| /* Tunneling configuration is ready now */ |
| val |= ROUTER_CS_5_CV; |
| |
| ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); |
| if (ret) |
| return ret; |
| |
| return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR, |
| ROUTER_CS_6_CR, 50); |
| } |
| |
| /** |
| * usb4_switch_read_uid() - Read UID from USB4 router |
| * @sw: USB4 router |
| * |
| * Reads 64-bit UID from USB4 router config space. |
| */ |
| int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid) |
| { |
| return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2); |
| } |
| |
| static int usb4_switch_drom_read_block(struct tb_switch *sw, |
| unsigned int dwaddress, void *buf, |
| size_t dwords) |
| { |
| u8 status = 0; |
| u32 metadata; |
| int ret; |
| |
| metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK; |
| metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) & |
| USB4_DROM_ADDRESS_MASK; |
| |
| ret = usb4_switch_op_write_metadata(sw, metadata); |
| if (ret) |
| return ret; |
| |
| ret = usb4_switch_op(sw, USB4_SWITCH_OP_DROM_READ, &status); |
| if (ret) |
| return ret; |
| |
| if (status) |
| return -EIO; |
| |
| return usb4_switch_op_read_data(sw, buf, dwords); |
| } |
| |
| /** |
| * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM |
| * @sw: USB4 router |
| * |
| * Uses USB4 router operations to read router DROM. For devices this |
| * should always work but for hosts it may return %-EOPNOTSUPP in which |
| * case the host router does not have DROM. |
| */ |
| int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf, |
| size_t size) |
| { |
| return usb4_switch_do_read_data(sw, address, buf, size, |
| usb4_switch_drom_read_block); |
| } |
| |
| static int usb4_set_port_configured(struct tb_port *port, bool configured) |
| { |
| int ret; |
| u32 val; |
| |
| ret = tb_port_read(port, &val, TB_CFG_PORT, |
| port->cap_usb4 + PORT_CS_19, 1); |
| if (ret) |
| return ret; |
| |
| if (configured) |
| val |= PORT_CS_19_PC; |
| else |
| val &= ~PORT_CS_19_PC; |
| |
| return tb_port_write(port, &val, TB_CFG_PORT, |
| port->cap_usb4 + PORT_CS_19, 1); |
| } |
| |
| /** |
| * usb4_switch_configure_link() - Set upstream USB4 link configured |
| * @sw: USB4 router |
| * |
| * Sets the upstream USB4 link to be configured for power management |
| * purposes. |
| */ |
| int usb4_switch_configure_link(struct tb_switch *sw) |
| { |
| struct tb_port *up; |
| |
| if (!tb_route(sw)) |
| return 0; |
| |
| up = tb_upstream_port(sw); |
| return usb4_set_port_configured(up, true); |
| } |
| |
| /** |
| * usb4_switch_unconfigure_link() - Un-set upstream USB4 link configuration |
| * @sw: USB4 router |
| * |
| * Reverse of usb4_switch_configure_link(). |
| */ |
| void usb4_switch_unconfigure_link(struct tb_switch *sw) |
| { |
| struct tb_port *up; |
| |
| if (sw->is_unplugged || !tb_route(sw)) |
| return; |
| |
| up = tb_upstream_port(sw); |
| usb4_set_port_configured(up, false); |
| } |
| |
| /** |
| * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding |
| * @sw: USB4 router |
| * |
| * Checks whether conditions are met so that lane bonding can be |
| * established with the upstream router. Call only for device routers. |
| */ |
| bool usb4_switch_lane_bonding_possible(struct tb_switch *sw) |
| { |
| struct tb_port *up; |
| int ret; |
| u32 val; |
| |
| up = tb_upstream_port(sw); |
| ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1); |
| if (ret) |
| return false; |
| |
| return !!(val & PORT_CS_18_BE); |
| } |
| |
| /** |
| * usb4_switch_set_sleep() - Prepare the router to enter sleep |
| * @sw: USB4 router |
| * |
| * Enables wakes and sets sleep bit for the router. Returns when the |
| * router sleep ready bit has been asserted. |
| */ |
| int usb4_switch_set_sleep(struct tb_switch *sw) |
| { |
| int ret; |
| u32 val; |
| |
| /* Set sleep bit and wait for sleep ready to be asserted */ |
| ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); |
| if (ret) |
| return ret; |
| |
| val |= ROUTER_CS_5_SLP; |
| |
| ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); |
| if (ret) |
| return ret; |
| |
| return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR, |
| ROUTER_CS_6_SLPR, 500); |
| } |
| |
| /** |
| * usb4_switch_nvm_sector_size() - Return router NVM sector size |
| * @sw: USB4 router |
| * |
| * If the router supports NVM operations this function returns the NVM |
| * sector size in bytes. If NVM operations are not supported returns |
| * %-EOPNOTSUPP. |
| */ |
| int usb4_switch_nvm_sector_size(struct tb_switch *sw) |
| { |
| u32 metadata; |
| u8 status; |
| int ret; |
| |
| ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &status); |
| if (ret) |
| return ret; |
| |
| if (status) |
| return status == 0x2 ? -EOPNOTSUPP : -EIO; |
| |
| ret = usb4_switch_op_read_metadata(sw, &metadata); |
| if (ret) |
| return ret; |
| |
| return metadata & USB4_NVM_SECTOR_SIZE_MASK; |
| } |
| |
| static int usb4_switch_nvm_read_block(struct tb_switch *sw, |
| unsigned int dwaddress, void *buf, size_t dwords) |
| { |
| u8 status = 0; |
| u32 metadata; |
| int ret; |
| |
| metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) & |
| USB4_NVM_READ_LENGTH_MASK; |
| metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) & |
| USB4_NVM_READ_OFFSET_MASK; |
| |
| ret = usb4_switch_op_write_metadata(sw, metadata); |
| if (ret) |
| return ret; |
| |
| ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_READ, &status); |
| if (ret) |
| return ret; |
| |
| if (status) |
| return -EIO; |
| |
| return usb4_switch_op_read_data(sw, buf, dwords); |
| } |
| |
| /** |
| * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM |
| * @sw: USB4 router |
| * @address: Starting address in bytes |
| * @buf: Read data is placed here |
| * @size: How many bytes to read |
| * |
| * Reads NVM contents of the router. If NVM is not supported returns |
| * %-EOPNOTSUPP. |
| */ |
| int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf, |
| size_t size) |
| { |
| return usb4_switch_do_read_data(sw, address, buf, size, |
| usb4_switch_nvm_read_block); |
| } |
| |
| static int usb4_switch_nvm_set_offset(struct tb_switch *sw, |
| unsigned int address) |
| { |
| u32 metadata, dwaddress; |
| u8 status = 0; |
| int ret; |
| |
| dwaddress = address / 4; |
| metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) & |
| USB4_NVM_SET_OFFSET_MASK; |
| |
| ret = usb4_switch_op_write_metadata(sw, metadata); |
| if (ret) |
| return ret; |
| |
| ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &status); |
| if (ret) |
| return ret; |
| |
| return status ? -EIO : 0; |
| } |
| |
| static int usb4_switch_nvm_write_next_block(struct tb_switch *sw, |
| const void *buf, size_t dwords) |
| { |
| u8 status; |
| int ret; |
| |
| ret = usb4_switch_op_write_data(sw, buf, dwords); |
| if (ret) |
| return ret; |
| |
| ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_WRITE, &status); |
| if (ret) |
| return ret; |
| |
| return status ? -EIO : 0; |
| } |
| |
| /** |
| * usb4_switch_nvm_write() - Write to the router NVM |
| * @sw: USB4 router |
| * @address: Start address where to write in bytes |
| * @buf: Pointer to the data to write |
| * @size: Size of @buf in bytes |
| * |
| * Writes @buf to the router NVM using USB4 router operations. If NVM |
| * write is not supported returns %-EOPNOTSUPP. |
| */ |
| int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address, |
| const void *buf, size_t size) |
| { |
| int ret; |
| |
| ret = usb4_switch_nvm_set_offset(sw, address); |
| if (ret) |
| return ret; |
| |
| return usb4_switch_do_write_data(sw, address, buf, size, |
| usb4_switch_nvm_write_next_block); |
| } |
| |
| /** |
| * usb4_switch_nvm_authenticate() - Authenticate new NVM |
| * @sw: USB4 router |
| * |
| * After the new NVM has been written via usb4_switch_nvm_write(), this |
| * function triggers NVM authentication process. If the authentication |
| * is successful the router is power cycled and the new NVM starts |
| * running. In case of failure returns negative errno. |
| */ |
| int usb4_switch_nvm_authenticate(struct tb_switch *sw) |
| { |
| u8 status = 0; |
| int ret; |
| |
| ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, &status); |
| if (ret) |
| return ret; |
| |
| switch (status) { |
| case 0x0: |
| tb_sw_dbg(sw, "NVM authentication successful\n"); |
| return 0; |
| case 0x1: |
| return -EINVAL; |
| case 0x2: |
| return -EAGAIN; |
| case 0x3: |
| return -EOPNOTSUPP; |
| default: |
| return -EIO; |
| } |
| } |
| |
| /** |
| * usb4_switch_query_dp_resource() - Query availability of DP IN resource |
| * @sw: USB4 router |
| * @in: DP IN adapter |
| * |
| * For DP tunneling this function can be used to query availability of |
| * DP IN resource. Returns true if the resource is available for DP |
| * tunneling, false otherwise. |
| */ |
| bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in) |
| { |
| u8 status; |
| int ret; |
| |
| ret = usb4_switch_op_write_metadata(sw, in->port); |
| if (ret) |
| return false; |
| |
| ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &status); |
| /* |
| * If DP resource allocation is not supported assume it is |
| * always available. |
| */ |
| if (ret == -EOPNOTSUPP) |
| return true; |
| else if (ret) |
| return false; |
| |
| return !status; |
| } |
| |
| /** |
| * usb4_switch_alloc_dp_resource() - Allocate DP IN resource |
| * @sw: USB4 router |
| * @in: DP IN adapter |
| * |
| * Allocates DP IN resource for DP tunneling using USB4 router |
| * operations. If the resource was allocated returns %0. Otherwise |
| * returns negative errno, in particular %-EBUSY if the resource is |
| * already allocated. |
| */ |
| int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in) |
| { |
| u8 status; |
| int ret; |
| |
| ret = usb4_switch_op_write_metadata(sw, in->port); |
| if (ret) |
| return ret; |
| |
| ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &status); |
| if (ret == -EOPNOTSUPP) |
| return 0; |
| else if (ret) |
| return ret; |
| |
| return status ? -EBUSY : 0; |
| } |
| |
| /** |
| * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource |
| * @sw: USB4 router |
| * @in: DP IN adapter |
| * |
| * Releases the previously allocated DP IN resource. |
| */ |
| int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in) |
| { |
| u8 status; |
| int ret; |
| |
| ret = usb4_switch_op_write_metadata(sw, in->port); |
| if (ret) |
| return ret; |
| |
| ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &status); |
| if (ret == -EOPNOTSUPP) |
| return 0; |
| else if (ret) |
| return ret; |
| |
| return status ? -EIO : 0; |
| } |
| |
| static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port) |
| { |
| struct tb_port *p; |
| int usb4_idx = 0; |
| |
| /* Assume port is primary */ |
| tb_switch_for_each_port(sw, p) { |
| if (!tb_port_is_null(p)) |
| continue; |
| if (tb_is_upstream_port(p)) |
| continue; |
| if (!p->link_nr) { |
| if (p == port) |
| break; |
| usb4_idx++; |
| } |
| } |
| |
| return usb4_idx; |
| } |
| |
| /** |
| * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter |
| * @sw: USB4 router |
| * @port: USB4 port |
| * |
| * USB4 routers have direct mapping between USB4 ports and PCIe |
| * downstream adapters where the PCIe topology is extended. This |
| * function returns the corresponding downstream PCIe adapter or %NULL |
| * if no such mapping was possible. |
| */ |
| struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw, |
| const struct tb_port *port) |
| { |
| int usb4_idx = usb4_port_idx(sw, port); |
| struct tb_port *p; |
| int pcie_idx = 0; |
| |
| /* Find PCIe down port matching usb4_port */ |
| tb_switch_for_each_port(sw, p) { |
| if (!tb_port_is_pcie_down(p)) |
| continue; |
| |
| if (pcie_idx == usb4_idx && !tb_pci_port_is_enabled(p)) |
| return p; |
| |
| pcie_idx++; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter |
| * @sw: USB4 router |
| * @port: USB4 port |
| * |
| * USB4 routers have direct mapping between USB4 ports and USB 3.x |
| * downstream adapters where the USB 3.x topology is extended. This |
| * function returns the corresponding downstream USB 3.x adapter or |
| * %NULL if no such mapping was possible. |
| */ |
| struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw, |
| const struct tb_port *port) |
| { |
| int usb4_idx = usb4_port_idx(sw, port); |
| struct tb_port *p; |
| int usb_idx = 0; |
| |
| /* Find USB3 down port matching usb4_port */ |
| tb_switch_for_each_port(sw, p) { |
| if (!tb_port_is_usb3_down(p)) |
| continue; |
| |
| if (usb_idx == usb4_idx && !tb_usb3_port_is_enabled(p)) |
| return p; |
| |
| usb_idx++; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * usb4_port_unlock() - Unlock USB4 downstream port |
| * @port: USB4 port to unlock |
| * |
| * Unlocks USB4 downstream port so that the connection manager can |
| * access the router below this port. |
| */ |
| int usb4_port_unlock(struct tb_port *port) |
| { |
| int ret; |
| u32 val; |
| |
| ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1); |
| if (ret) |
| return ret; |
| |
| val &= ~ADP_CS_4_LCK; |
| return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1); |
| } |